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Abstract. Several authors have been interested in some like phantom mor-

phisms such as d-phantoms, d-Ext-phantoms, neat-phantom morphisms, clean-

cophantom morphisms, RD-phantom morphisms and RD-Ext-phantom mor-

phisms. In this paper, we prove that these notions can be unified. We are

mainly interested in proving that the majority of the existing results hold true

in our general framework.
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1. Introduction

Throughout this paper, unless otherwise stated, R will be an associative (not

necessarily commutative) ring with identity. We denote the category of left (resp.,

right) R-modules by R-Mod (resp., Mod-R), RX denotes an arbitrary class of left

R-modules and XR denotes a class of right R-modules, and all morphisms are

morphisms of left R-modules. We denote by R-Mor the category whose objects are

morphisms of left R-modules and a morphism in R-Mor between two morphisms

α : M1 →M2 and β : N1 → N2 is a pair of left R-modules

( M1
d // N1 , M2

s // N2 )

such that the following diagram

M1

α

��

d // N1

β

��
M2 s

// N2

is commutative. Recall that R-Mor is a Grothendieck category. For a module A,

pd(A) (resp., fd(A)) will denote its projective (resp., flat) dimension. For simplicity,

we will write RM (resp., MR) instead of R-Mod (resp., Mod-R) to refer to the

class of all left (resp., right) R-modules.
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Let n be a non negative integer, a left (resp., right) module A is said to be n-

presented if it has a finite n-presentation, that is, there is an exact sequence of left

(resp., right ) R-modules

Fn → Fn−1 → · · · → F1 → F0 → A→ 0

where each Fi is a finitely generated free R-module. The module A is said to be

infinitely presented if A is n-presented for any integer n ∈ N. Clearly every finitely

generated projective module is n-presented for any positive integer n. A module

is 0-presented (resp., 1-presented) if and only if it is a finitely generated (resp., a

finitely presented) module. An n-presented module is m-presented for any m ≥ n.

Let X be a class of modules and n ∈ N ∪ {∞} be an integer, we denote by Xn
the subclass of X consisting of n-presented modules, then we have a decreasing

sequence

X∞ ⊆ · · · ⊆ Xn+1 ⊆ Xn ⊆ · · · ⊆ X1 ⊆ X0

According to [2], a ring R is called left (resp., right) n-X -coherent if the subclass Xn
of left (resp., right) n-presented R-modules of X is not empty, and every R-module

in Xn is n + 1-presented. The ring R is called n-X -coherent if it is both left and

right n-X -coherent, when X is the whole category R-Mod then left n-X -coherent

rings are exactly left n-coherent rings.

The notion of phantom morphisms has a substantial role in module theory and

ideal approximation theory. The study of phantom morphisms has its roots in

algebraic topology in the study of maps between CW-complexes [16]. The definition

of a phantom morphism was generalized by Herzog to the category of R-modules

over an associative ring R in [6]. Herzog called a morphism of left R-modules

α : M → N a phantom morphism if for every finitely presented R-module A and

every morphism β : A→M , αβ factors through a projective module, equivalently

Tor1(A,α) = 0 for any right (finitely presented) module A. Similarly, a morphism

α : M → N of left R-modules is called an Ext-phantom morphism [6] if the induced

morphism Ext1(A,α) = 0 for every finitely presented left R-module A. In [12], Mao

generalizes these two definitions. For a non negative integer n, α is said to be an

n-phantom if Torn(A,α) = 0 for any finitely presented right module A and α is said

to be an n-Ext-phantom if Extn(A,α) is 0 for every finitely presented left R-module

A. Clearly α is a 1-phantom (resp., a 1-Ext-phantom) morphism if and only if α is

a phantom (resp., an Ext-phantom) morphism.

On the other hand, ideal approximation theory has been recently introduced

and developed by Fu, Guil Asensio, Herzog and Torrecillas in [5]. Let A be any

category and C a class of objects in A. Recall that a morphism φ : X → Y in A is

a C-precover of Y if X ∈ C and, for any morphism f : Z → Y with Z ∈ C, there
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is a morphism g : Z → X such that φg = f . A C-precover φ : X → Y is said

to be a C-cover of Y if every endomorphism g : X → X such that φg = φ is an

isomorphism. Dually, we have the definitions of a C-preenvelope and a C-envelope.

An ideal I of R-Mod is a subbifunctor of Hom(−,−) such that for every morphism

g in I and every morphisms f and h of R-modules we have fgh ∈ I whenever

it is defined. Let I be an ideal of R-Mod, a morphism ϕ : M → N in I is an

I-precover of N if for any morphism ψ : C → N in I there exists θ : C →M such

that ϕθ = ψ. An I-precover is called I-cover if every endomorphism h of M such

that ϕh = ϕ is an automorphism. An I-preenvelope and I-envelope are defined

dually. This theory is a generalization of the classical theory of covers and envelopes

(approximation theory) initiated by Enochs, Auslander and Smalø since it need to

be set forth in terms of morphisms instead of objects. An important instance

is about the approximation by the ideal of (n, d)-XR-phantom (resp., (n, d)-RX -

cophantom) morphisms.

In Section 2 we first introduce the concept of (n, d)-XR-phantom and (n, d)-RX -

cophantom morphisms and we give some of their properties, then we finish this

section by characterizing n-XR-coherent rings in terms of (n, d)-XR-phantom left

R-morphisms and (n, d)-XR-cophantom right R-morphisms. Section 3 is devoted

to the study of (n, d)-XR-phantom (resp., (n, d)-RX -cophantom) morphisms with

respect to a subfunctor of Ext. We start by introducing (n, d)-XR-epimorphisms

(resp., (n, d)-RX -monomorphisms), afterwards we examine their connection with

(n, d)-XR-phantom (resp., (n, d)-RX -cophantom) morphisms. Section 4 will be

dedicated to the existence of (n, d)-XR-phantom precovers (resp., preenvelopes)

and (n, d)-RX -cophantom precovers (resp., preenvelopes) of left R-modules. We

finish this paper by taking a close look to the properties of precovers and preen-

velopes by (n, d)-XR-phantom and (n, d)-RX -cophantom morphisms under change

of rings.

2. (n, d)-XR-phantom and (n, d)-RX -cophantom morphisms

In this section we give the definitions of (n, d)-XR-phantom and (n, d)-RX -

cophantom morphisms which unifies several notions and we study their closure

properties under direct sums, direct limits and direct products.

Definition 2.1. Let α : M → N be a morphism of left R-modules, n ∈ N∗ ∪ {∞}
and d ∈ N.

(1) Let XR be a non empty class of right R-modules. The morphism α is called

an (n, d)-XR-phantom morphism if (XR)n is not empty and the induced morphism

Tord+1(A,α) : Tord+1(A,M)→ Tord+1(A,N) is 0 for any R-module A of (XR)n.
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(2) Let RX be a non empty class of left R-modules. The morphism α is said to

be an (n, d)-RX -cophantom morphism if (RX )n is not empty and Extd+1(A,α) :

Extd+1(A,M)→ Extd+1(A,N) is 0 for any R-module A of (RX )n.

The right version is defined similarly: If α : M → N is a morphism of right

R-modules, we say that α is an (n, d)-RX -phantom morphism if (RX )n is not

empty and the induced morphism Tord+1(α,A) : Tord+1(M,A) → Tord+1(N,A)

is 0 for any R-module A of (RX )n. Similarly, we say that the morphism α is an

(n, d)-XR-cophantom morphism if (XR)n is not empty and the induced morphism

Extd+1(A,α) : Extd+1(A,M)→ Extd+1(A,N) is 0 for any R-module A of (RX )n.

Example 2.2. (1) (1, 0)-MR-phantom (resp., (1, 0)-RM-cophantom) morphisms

are the classical phantom (resp., cophantom or Ext-phantom) morphisms studied

in [6] (resp., [7]).

(2) Let d ≥ 1. (1, d−1)-MR-phantom (resp., (1, d−1)-RM-cophantom) morphisms

are d-phantom (resp., d-Ext-phantom) morphisms introduced and studied in [8],

[12] and [13].

(3) (∞, 0)-MR-phantom (resp., (∞, 0)-RM-cophantom) morphisms are exactly

neat-phantom (resp., clean-cophantom) morphisms defined in [14].

(4) Let RC (resp., CR) be the class of left (resp., right) principally cyclic mod-

ules, i.e., modules of the form R/Ra (resp., R/aR) with a ∈ R. Then (1, 0)-

CR-phantom (resp., (1, 0)-RC-cophantom) morphisms are RD-phantom (resp., RD-

Ext-phantom) morphisms defined and studied in [11].

Remark 2.3. (1) If α is an (n, d)-XR-phantom (resp., an (n, d)-RX -cophantom)

morphism, then α is an (m, d)-XR-phantom (resp., an (m, d)-RX -phantom) mor-

phism for any m > n.

(2) It is clear that if Y is a subclass of XR (resp., RX ) with Yn is not empty then

every (n, d)-XR-phantom (resp., (n, d)-RX -cophantom) morphism is an (n, d)-Y-

phantom (resp., an (n, d)-Y-cophantom) morphism.

(3) We will call an (n, d)-MR-phantom (resp., an (n, d)-RM-cophantom) morphism

by (n, d)-phantom (resp., (n, d)-cophantom) morphism.

The following propositions study the closure properties of (n, d)-XR-phantom

and (n, d)-RX -cophantom morphisms under direct sums, direct limits and direct

products.

Proposition 2.4. (1) The class of (n, d)-XR-phantom morphisms is closed un-

der direct sums and direct limits.

(2) The class of (n, d)-RX -cophantom morphisms is closed under direct prod-

ucts.
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Proof. (1) It is a consequence of the natural isomorphisms

Tord+1(A,
⊕
I

Mi) ∼=
⊕
I

Tord+1(A,Mi)

and

Tord+1(A, limIMi) ∼= limI Tord+1(A,Mi).

(2) The second assertion holds from the natural isomorphism

Extd+1(A,
∏
I

Mi) ∼=
∏
I

Extd+1(A,Mi). �

Lemma 2.5. (1) If n ≥ d+1, then Extd+1(A,
⊕

i∈IMi) ∼=
⊕

i∈I Extd+1(A,Mi)

for any n-presented left R-module A and any family (Mi)i∈I of left R-

modules.

(2) If n > d + 1, then lim Ext (A,Mi) ∼= Ext (A, limMi) for any n-presented

left R-module A and any directed system (Mi)i∈I of left R-modules.

(3) If n > d + 1, then Tord+1(A,
∏
i∈IMi) ∼=

∏
i∈I Tord+1(A,Mi) for any n-

presented right R-module A and any family (Mi)i∈I of left R-modules.

The lemma above is still true if we suppose that R is n-coherent since every

n-presented R-module is (d + 1)-presented. The following proposition generalizes

[12, Proposition 2.9] and [14, Proposition 3.8].

Proposition 2.6. Suppose that n ≥ d+ 1. Then

(1) The class of (n, d)-RX -cophantom morphisms is closed under direct sums.

(2) If n > d + 1, in particular if R is n-coherent, then the class of (n, d)-RX -

cophantom morphisms is closed under direct limits.

(3) If n > d + 1, in particular if R is n-coherent, then the class of (n, d)-XR-

phantom morphisms is closed under direct products.

Proof. (1) Let (αi : Mi → Ni)i∈I be a family of (n, d)-RX -cophantom morphisms

and A be an n-presented module of RX . Then by (1) of Lemma 2.5

Extd+1(A,
⊕
i∈I

Mi) ∼=
⊕
i∈I

Extd+1(A,Mi)

and

Extd+1(A,
⊕
i∈I

Ni) ∼=
⊕
i∈I

Extd+1(A,Ni).

So

Extd+1(A,
⊕

i∈IMi)

∼=
��

// Extd+1(A,
⊕

i∈I Ni)

∼=
��⊕

i∈I Extd+1(A,Mi) // ⊕
i∈I Extd+1(A,Ni)
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Since Extd+1(A,αi) = 0 for each i ∈ I, Extd+1(A,
⊕

i∈I αi) = 0.

(2) Similar to (1), apply (2) of Lemma 2.5.

(3) If n > d+1, let (αi : Mi → Ni)i∈I be a family of (n, d)-XR-phantom morphisms

and A be an n-presented module of X . By (3) of Lemma 2.5

Tord+1(A,
∏
i∈I

Mi) ∼=
∏
i∈I

Tord+1(A,Mi)

and

Tord+1(A,
∏
i∈I

Ni) ∼=
∏
i∈I

Tord+1(A,Ni)

Since Tord+1(A,αi) = 0 for all i ∈ I, Tord+1(A,
∏
i∈I αi) is zero. �

For a left R-module M , M+ := HomZ(M,Q/Z) denotes the character module

of M which is a right R-module and a morphism of left R-modules α : M → N

induces a morphism α+ : N+ → M+ of right R-modules. The following result

extends [9, Proposition 3.8 and Proposition 3.9], [11, Lemma 2.7], [12, Proposition

2.10] and [14, Proposition 3.3].

Proposition 2.7. Let α : M → N be a morphism of left R-modules.

(1) α is an (n, d)-XR-phantom morphism if and only if α+ is an (n, d)-XR-

cophantom morphism.

(2) If R is left n-coherent, then α is an (n, d)-RX -cophantom morphism if and

only if α+ is an (n, d)-RX -cophantom morphism.

Proof. (1) For any n-presented module A of XR we have natural isomorphisms

Tord+1(A,M)+ ∼= Extd+1(A,M+)

and

Tord+1(A,N)+ ∼= Extd+1(A,N+).

Then there is a commutative diagram

Tord+1(A,N)+

∼=
��

// Tord+1(A,M)+

∼=
��

Extd+1(A,N+) // Extd+1(A,M+)

We get the result.

(2) Since R is n-coherent, any A in (RX )n is infinitely presented, hence by [17,

Theorem 9.51] and remark following it, for any module M , we have the natural

isomorphism

Tord+1(M+, A) ∼= Extd+1(A,M)+.

And so Extd+1(A,α) = 0 if and only if Tord+1(α+, A) = 0. �
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Now we give a generalization of [11, Proposition 2.10] and [12, Proposition 2.7].

Theorem 2.8. Let n ∈ N ∪ {∞}, d ∈ N, RX be a class of left R-modules and XR
be a class of right R-modules.

(1) Every morphism of left R-modules is an (n, d)-XR-phantom morphism if

and only if every module of (XR)n has flat dimension at most d.

(2) Every morphism of left R-modules is an (n, d)-RX -cophantom morphism if

and only if every module of (RX )n has projective dimension at most d.

Proof. (1) (⇒) Let A be an n-presented module of XR and M be any left R-

module, then by hypothesis IdM is an (n, d)-XR-phantom morphism, so the induced

morphism Tord+1(A, IdM ) : Tord+1(A,M) → Tord+1(A,M) is zero, which means

that Tord+1(A,M) = 0 for any left R-module M , hence fd(A) ≤ d.

(⇐) Let α : M → N be a morphism of left R-modules and A be an n-presented

module of XR, then fd(A) ≤ d, hence

Tord+1(A,M) = Tord+1(A,N) = 0.

So Tord+1(A,α) = 0.

(2) It is similar to (1) by using the result: pd(A) ≤ d if and only if for any left

R-module M , Extd+1(A,M) = 0. �

Recall that a ring R is said to be a left (resp., a right) (n, d)-ring, if every n-

presented left (resp., right) R-module has projective dimension at most d;R is said

to be a left (resp., a right) weak (n, d)-ring, if every n-presented left (resp., right) R-

module has flat dimension at most d. R is an (n, d)-ring (resp., a weak (n, d)-ring)

if it is both left and right (n, d)-ring (resp., weak (n, d)-ring).

Corollary 2.9. (1) R is a right weak (n, d)-ring if and only if every morphism

of left R-modules is an (n, d)-phantom morphism.

(2) R is a left (n, d)-ring if and only if every morphism of left R-modules is an

(n, d)-cophantom morphism.

Let RX (resp., XR) be a class of left (resp., right) R-modules. Recall that a ring

R is called left (resp., right) n-RX -coherent (resp., n-XR-coherent) if the subclass

(RX )n (resp., (XR)n) is not empty, and every R-module in (RX )n (resp., (XR)n)

is n + 1-presented. We are going to give some results which are extensions of [11,

Theorem 2.8] and [14, Proposition 3.5].

Theorem 2.10. For a ring R and a positive integer n ≥ 1, the following statements

are equivalent:

(1) R is right n-XR-coherent;
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(2) the class of (n, n−1)-XR-phantom morphisms left R-modules is closed under

direct products;

(3) the class of (n, n−1)-X -cophantom morphisms of right R-modules is closed

under direct limits.

Proof. (1) ⇔ (2) Assume R is right n-XR-coherent. Let (αi)i∈I be a family of

(n, n − 1)-XR-phantom morphisms, then (αi)i∈I is a family of (n + 1, n − 1)-XR-

phantom morphisms, hence by Proposition 2.6
∏
i∈I αi is an (n + 1, n − 1)-XR-

phantom morphism. Since R is n-XR-coherent,
∏
i∈I αi is an (n, n−1)-XR-phantom

morphism. Conversely, let I be a set, since R is n-XR-flat as a left R-module, IdR

is an (n, n− 1)-XR-phantom morphism, then by (2) the product
∏
I IdR = IdRI is

an (n, n− 1)-XR-phantom morphism, hence RI is an n-XR-flat module, and so by

[2, Theorem 2.6] R is right n-XR-coherent.

(1) ⇔ (3) Suppose R is right n-XR-coherent. Let (Mi)i∈I and (Ni)i∈I be directed

systems of right R-modules over a directed index set I and (αi : Mi → Ni)i∈I

be a family of (n, n − 1)-RX -cophantom morphisms, then (αi)i∈I is a family of

(n + 1, n − 1)-XR-cophantom morphisms hence by Proposition 2.6 limI αi is an

(n + 1, n − 1)-XR-cophantom morphism. Since R is right n-XR-coherent, limI αi

is an (n, n − 1)-RXR-cophantom morphism. Conversely, let (Mi∈I) be a directed

system of n-XR-injective right R-modules, then (IdMi)i∈I is a family of (n, n− 1)-

XR-cophantom morphisms, hence by (3) limI Idi = IdlimI Mi is an (n, n − 1)-XR-

cophantom morphism and so limIMi is an n-XR-injective module. By [2, Theorem

2.6] R is right n-XR-coherent. �

Theorem 2.11. For a ring R and a positive integer n ≥ 1, the following statements

are equivalent:

(1) R is right n-XR-coherent;

(2) a morphism α of right R-modules is an (n, n−1)-XR-cophantom morphism

if and only if α+ is an (n, n− 1)-XR-phantom morphism;

(3) a morphism α of right R-modules is an (n, n−1)-XR-cophantom morphism

if and only if α++ is an (n, n− 1)-XR-cophantom morphism;

(4) a morphism α of left R-modules is an (n, n− 1)-XR-phantom morphism if

and only if α++ is an (n, n− 1)-XR-phantom morphism.

Proof. (1) ⇒ (2) Since R is right n-XR-coherent, any A ∈ (XR)n is (n + 1)-

presented, so by [3, Lemma 2.7] we have Torn(A,M+) ∼= (Extn(A,M))+, for a
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morphism α : M → N we have the following commutative diagram

Torn(A,N+)

∼=
��

// Torn(A,M+)

∼=
��

(Extn(A,N))+ // (Extn(A,M))+

Extn(A,α) = 0 if and only if Torn(A,α+) = 0.

(2) ⇒ (3) A morphism α is an (n, n − 1)-XR-cophantom morphism if and only if

“by (2)” α+ is an (n, n− 1)-XR-phantom morphism if and only if “by Proposition

2.7” α++ is an (n, n− 1)-XR-phantom morphism.

(3) ⇒ (4) A morphism α is an (n, n− 1)-XR-phantom morphism if and only if “by

Proposition 2.7” α+ is an (n, n − 1)-XR-cophantom morphism if and only if “by

(4)” α+++ is an (n, n− 1)-XR-cophantom morphism if and only if “by Proposition

2.7” α++ is an (n, n− 1)-XR-phantom morphism.

(4) ⇒ (1) Let M be a left R-module. M is n-XR-flat if and only if IdM is an

(n, n − 1)-XR-phantom morphism if and only if “by (4)” Id++
M = IdM++ is an

(n, n − 1)-XR-phantom morphism if and only if M++ is n-XR-flat. Hence by [2,

Theorem 2.6] R is right n-XR-coherent. �

In the following theorem we assume that the class XR contains all finitely gen-

erated free R-modules and closed under kernels of epimorphisms.

Theorem 2.12. For a ring R and a positive integer n ≥ 1, the following statements

are equivalent:

(1) R is right n-XR-coherent;

(2) For each m ≥ n and each d ≥ 0, every (m, d)-XR-cophantom morphism of

right R-modules is an (n, d)-XR-cophantom morphism;

(3) For each m ≥ n and each d ≥ 0, every (m, d)-XR-phantom morphism of

left R-modules is an (n, d)-XR-phantom morphism;

(4) Every (n + 1, n − 1)-XR-cophantom morphism of right R-modules is an

(n, n− 1)-RX -phantom morphism;

(5) Every (n+1, n−1)-XR-phantom morphism of left R-modules is an (n, n−1)-

XR-phantom morphism.

Proof. (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (5) are obvious.

(4) ⇒ (5) Let α : M → N be an (n + 1, n − 1)-XR-phantom morphism, then by

Proposition 2.7 α+ is an (n + 1, n − 1)-XR-cophantom morphism, hence by (4)

α+ is an (n, n − 1)-XR-cophantom morphism, so α be an (n, n − 1)-XR-phantom

morphism.

(5)⇒ (1) Let (αi)i∈I be a family of (n, n−1)-XR-phantom morphisms, then (αi)i∈I
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is a family of (n + 1, n − 1)-XR-phantom morphisms, it follows from Proposition

2.6 that
∏
i∈I αi is an (n+ 1, n− 1)-XR-phantom morphism. By (5)

∏
i∈I αi is an

(n, n−1)-XR-phantom morphism. So the class of (n, n−1)-XR-phantom morphisms

is closed under direct product, therefore by Theorem 2.10 R is right n-XR-coherent.

�

3. (n, d)-XR-phantom and (n, d)-RX -cophantom morphisms with respect

to a subfunctor of Ext

In this section we introduce the concept of (n, d)-XR-epimorphisms and (n, d)-

RX -monomorphisms, we study some of their properties, and finally we describe the

relationship between (n, d)-XR-phantom (resp,. (n, d)-RX -cophantom) morphisms

and (n, d)-XR-epimorphisms (resp,. (n, d)-RX -monomorphisms). For example we

prove that:

(1) a morphism α is an (n, d)-XR-phantom morphism if and only if the pullback

of any epimorphism along α is an (n, d)-XR-epimorphism.

(2) a morphism α is an (n, d)-RX -cophantom morphism if and only if the

pushout of any monomorphism along α is an (n, d)-RX -monomorphism.

Definition 3.1. Let n ∈ N∗ ∪ {∞}, d ∈ N.

(1) A morphism f : M → N is said to be an (n, d)-XR-epimorphism if (XR)n

is not empty and Tord+1(A, f) is an epimorphism for any A ∈ (XR)n.

(2) f : M → N is said to be an (n, d)-RX -monomorphism if (RX )n is not

empty and Extd+1(A, f) is a monomorphism for any A ∈ (RX )n.

The right versions are defined similarly.

Example 3.2. (1) A morphism f is a (1, d)-MR-epimorphism (resp., a (1, d)-

RM-monomorphism) if and only if f is a Tord+1-epimorphism (resp., an Extd+1-

monomorphism) [6].

(2) (1, 0)-MR-epimorphisms (resp., (1, 0)-RM-monomorphisms) are exactly Tor-

epimorphisms (resp., Ext-monomorphisms) [9].

Proposition 3.3. Let n ∈ N∗∪{∞}, d ∈ N. A morphism f : M → N is an (n, d)-

XR-epimorphism if and only if f+ : N+ →M+ is an (n, d)-RX -monomorphism.

Proof. It follows from the the commutative diagram

Tord+1(A,N)+

∼=
��

// Tord+1(A,M)+

∼=
��

Extd+1(A,N+) // Extd+1(A,M+)
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where A is an n-presented module of XR. �

Proposition 3.4. Let η : 0 → L
α→ M

β→ N → 0 be an exact sequence of left

R-modules.

(1) β is an (n, d)-XR-phantom morphism if and only if α is an (n, d)-XR-

epimorphism.

(2) α is an (n, d)-RX -cophantom morphism if and only if β is an (n, d)-RX -

monomorphism.

Proof. (1) For any A ∈ (XR)n, by the long exact sequence of Tor(A,−) to the

sequence η, we have the exact sequence

Tord+1(A,L) // Tord+1(A,M) // Tord+1(A,N).

Tord+1(A, β) = 0 if and only if Tord+1(A,α) is an epimorphism.

(2) For any A ∈ (RX )n, by the long exact sequence of Ext(A,−) to the sequence

η, we have the exact sequence

Extd+1(A,L) // Extd+1(A,M) // Extd+1(A,N).

Extd+1(A,α) = 0 if and only if Extd+1(A, β) is a monomorphism. �

Proposition 3.5. Let f be an (n, d)-XR-epimorphism in R-Mod and gf = h.

(1) g is an (n, d)-XR-phantom morphism if and only if h is an (n, d)-XR-

phantom morphism.

(2) g is an (n, d)-XR-epimorphism if and only if h is an (n, d)-XR-epimorphism.

Proof. For any A ∈ (XR)n we have

Tord+1(A, g) Tord+1(A, f) = Tord+1(A, h).

Since Tord+1(A, f) is an epimorphism,

(1) Tord+1(A, g) = 0 if and only if Tord+1(A, h) = 0,

(2) Tord+1(A, g) is an epimorphism if and only if Tord+1(A, h) is an epimor-

phism. �

Proposition 3.6. Let g be an (n, d)-RX -monomorphism in R-Mod and gf = h.

(1) f is an (n, d)-RX -cophantom morphism if and only if h is an (n, d)-RX -

cophantom morphism.

(2) f is an (n, d)-RX -monomorphism if and only if h is an (n, d)-RX - monomor-

phism.
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Proof. For any A ∈ (RX )n, we have

Extd+1(A, g) Extd+1(A, f) = Extd+1(A, h).

Since Extd+1(A, g) is a monomorphism, we get the following two equivalences

(1) Extd+1(A, f) = 0 if and only if Extd+1(A, h) = 0,

(2) Extd+1(A, f) is a monomorphism if and only if Extd+1(A, h) is a monomor-

phism. �

Proposition 3.7. Let n ∈ N∗ ∪ {∞}, d ∈ N. Let 0 → K
α→ M

f→ N → 0

and 0 → K
β→ L

g→ Q → 0 be two exact sequences of left R-modules with g an

(n, d)-XR-epimorphism. Consider the following pushout:

0

��

0

��
0 // K

β

��

α // M

γ

��

f // N

=

��

// 0

0 // L

g

��

φ // H

��

h // N // 0

Q

��

= // Q

��
0 0

(1) f is an (n, d)-XR-phantom morphism if and only if h is an (n, d)-XR-

phantom morphism,

(2) f is an (n, d)-XR-epimorphism if and only if h is an (n, d)-XR-epimorphism.

Proof. For any A ∈ (XR)n, the exact sequence 0 → K
β→ L

g→ Q → 0 induces an

exact sequence

Tord+1(A,L) // Tord+1(A,Q) // Tord(A,K) // Tord(A,L).

Since Tord+1(A, g) is an epimorphism, Tord(A, β) is a monomorphism. Consider

the following commutative diagram

Tord+1(A,M)

��

// Tord+1(A,N)

=

��

ψ // Tord(A,K)

��
Tord+1(A,H) // Tord+1(A,N) //λ // Tord(A,L)

(1) Tord+1(A, f) = 0 if and only if ψ is a monomorphism if and only if λ is a

monomorphism if and only if Tord+1(A, h) = 0.
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(2) Tord+1(A, f) is an epimorphism if and only if ψ = 0 if and only if λ = 0 if and

only if Tord+1(A, h) is an epimorphism. �

Recall that an additive subfunctor F of Ext [5] is defined as follows: For every

pair A and B of left R-modules, F associates a subgroup F(A,B) of Ext(A,B)

so that for any f : X → A, g : B → Y , if η ∈ F(A,B), then Ext(f, g)(η) =

Ext(f, Y ) Ext(A, g)(η) ∈ F(X,Y ). Equivalently, F includes the split exact se-

quences and is closed under direct sums, pullbacks and pushouts by [1, Lemma

1.1]. In [13] Mao denoted the collection of exact sequences η : 0 → K → M →
N → 0 such that M → N (resp., K → M) is a Torn-epimorphism (resp., Extn-

monomorphism) by ∆n (resp., ∇n). Following these notations we will denote the

collection of exact sequences η such that M → N (resp., K →M) is an (n, d)-XR-

epimorphism (resp., (n, d)-RX -monomorphism) by XR-∆(n,d) (resp., RX -∇(n,d)).

Lemma 3.8. Let R be a ring.

(1) The collection XR-∆(n,d) constitutes an additive subfunctor of Ext.

(2) The collection RX -∇(n,d) constitutes an additive subfunctor of Ext.

Proof. (1) Let 0 → K → M
f→ N → 0 be a split exact sequence, then there

exists a morphism g : N → M such that fg = IdM , hence for any A in (XR)n,

Tord+1(A, f) Tord+1(A, g) = IdTord+1(A,M) and so Tord+1(A, f) is an epimorphism.

It is clear that XR-∆(n,d) is closed under direct sums. Now consider an exact

sequence η : 0 → K → M
β→ N → 0 with β an (n, d)-XR-epimorphism. For any

morphism α : L→ N we obtain the pullback η′ of η along the morphism α

η′ : 0 // K

=

��

// H

��

γ // L

α

��

// 0

η : 0 // K // M
β // N // 0

For any A ∈ (XR)n, we get the following commutative diagram

Tord+1(A,H)

��

// Tord+1(A,L)

��

φ // Tord(A,K)

=

��
Tord+1(A,M) // Tord+1(A,N)

θ
// Tord(A,K)

Since Tord+1(A, β) is an epimorphism, θ = 0 and so φ = 0. Thus Tord+1(A, γ)

is an epimorphism, hence XR-∆(n,d) is closed under pullbacks. For any morphism



14 MOURAD KHATTARI AND DRISS BENNIS

λ : K → L we get the pushout η′′ of η along λ

η : 0 // K

λ

��

// M

��

β // N

=

��

// 0

η′′ : 0 // L // G
σ // N // 0

which gives rise to the following commutative diagram

Tord+1(A,M)

��

// Tord(A,N)

=

��
Tord(A,G) // Tord(A,N)

Since Tord+1(A, β) is an epimorphism, Tord+1(A, σ) is an epimorphism and so XR-

∆(n,d) is closed under pushouts. It follows that XR-∆(n,d) constitutes an additive

subfunctor of Ext.

The proof of (2) is dual. �

In [5], Fu, Guil Asensio, Herzog and Torrecillas introduced a relative version of

phantom morphisms in the sense: For an additive subfunctor F of Ext, a morphism

ϕ : X → A in R-Mod is an F-phantom morphism if the pullback of any epimor-

phism along ϕ is in F . Dually, a morphism ψ : Y → Z in R-Mod is called an

F-cophantom morphism if the pushout of any monomorphism along ψ is in F .

A morphism f : U → V in R-Mod is called F-projective if for any left R-module

B, F(f,B) : F(V,B)→ F(U,B) is 0. A left R-module M is called F-projective if

1M is F-projective. Dually, a morphism g : X → Y in R-Mod is called F-injective

if for any left R-module B,F(B, g) : F(B,X) → F(B, Y ) is 0. A left R-module

N is called F-injective if 1N is F-injective. The following two theorems are a

generalizations of [2, Theorem 2.2], [13, Theorem 2.12] and [14, Theorem 3.6].

Theorem 3.9. Let n ∈ N∗ ∪ {∞} and d ∈ N.

(1) A morphism f : M → N of left R-modules is an (n, d)-XR-phantom mor-

phism if and only if f is a XR-∆(n,d)-phantom morphism.

(2) A morphism g : X → Y of left R-modules is an (n, d)-RX -cophantom

morphism if and only if f is a RX -∇(n,d)-cophantom morphism.
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Proof. (1) ⇒) Let η : 0 → K → Q → N → 0 be any exact sequence, we get the

pullback η′ of η along f

η′ : 0 // K

=

��

// H

��

h // M

f

��

// 0

η : 0 // K // Q // N // 0

For any A ∈ (XR)n, we have the following commutative diagram with exact rows

Tord+1(A,H)

��

// Tord+1(A,M)

��

φ // Tord(A,K)

=

��
Tord+1(A,Q) // Tord+1(A,N)

ψ
// Tord(A,K)

Since f is an (n, d)-XR-phantom morphism, φ = ψTord+1(A, f) = 0, therefore

Tord+1(A, h) is an epimorphism and so h is an (n, d)-XR-epimorphism. Thus f is

a XR-∆(n,d)-phantom morphism.

⇐) There exists an exact sequence ζ : 0 → C → P → N → 0 with P projective.

We get the pullback of ζ along f :

ζ ′ : 0 // C

=

��

// G

��

γ // M

f

��

// 0

ζ : 0 // C // P // N // 0

For any A ∈ (XR)n, we get the following commutative diagram:

Tord+1(A,G)

��

// Tord+1(A,M)

��
0 = Tord+1(A,P ) // Tord+1(A,N)

So Tord+1(A, f) Tord+1(A, γ) = 0 and Tord+1(A, f) = 0 since Tord+1(A, γ) is an

epimorphism, i.e., f is an (n, d)-XR-phantom morphism.

The proof of (2) is dual. �

Theorem 3.10. Let n ∈ N∗ ∪ {∞}, d ∈ N.

(1) If a morphism α : M → N is an (n, d)-XR-phantom morphism, then for ev-

ery morphism β : F →M with F XR-∆(n,d)-projective, αβ factors through

a projective module.

(2) If a morphism g : X → Y is an (n, d)-RX -cophantom morphism, then for

every morphism h : Y → Z with Z RX -∇(n,d)-injective, hg factors through

an injective module.
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Proof. (1) There exists an exact sequence η : 0 → K → P → N → 0 with P

projective. Then we get the pullback η′ of η along f

η′ : 0 // K

=

��

// H

��

// M

f

��

// 0

η : 0 // K // P // N // 0

By Theorem 3.9 η′ ∈ ∆X(n,d). Since F is ∆X(n,d)-projective, α lifts to H. So fα

factors through P .

The proof of (2) is dual. �

For phantom (resp., cophantom) morphisms we find that the assertions (1) and

(2) are equivalent and the converse holds from the fact that every module M has

a pure-projective precover (resp., a pure-injective preenevelope) and it is the same

for RD-phantom and RD-Ext-phantom morphisms. In our case it is an open ques-

tion: Does every left module M have an XR-∆(n,d)-projective (resp., an RX -∇(n,d)-

injective) precover (resp., preenvelope)?

4. (n, d)-XR-phantom and (n, d)-RX -cophantom precovers and

preenvelopes

Lemma 4.1. Let 0 → X
λ→ Y

π→ Z → 0 be an exact sequence in R-Mod. The

following conditions are equivalent:

(1) 0→ X
λ→ Y

π→ Z → 0 is pure.

(2) The induced sequence 0→ Torn(A,X)→ Torn(A, Y )→ Torn(A,Z)→ 0 is

exact for any n ≥ 1 and any right R-module A.

If R is a left coherent ring, then the above conditions are equivalent to

(3) The induced sequence 0 → Extn(G,X) → Extn(G, Y ) → Extn(G,Z) → 0

is exact for any n ≥ 1 and any finitely presented left R-module G.

Lemma 4.2. If 0 → ψ → φ → γ → 0 is pure exact in R-Mor, i.e., the following

exact sequence is pure exact in R-Mor

η1 : 0 // K1

ψ

��

α1 // M1

φ

��

β1 // L1

γ

��

// 0

η2 : 0 // K2 α2

// M2
β2

// L2
// 0

Then both η1 and η2 are pure exact in R-Mod.
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Lemma 4.3. Let 0→ ψ → φ→ γ → 0 be pure exact in R-Mor. Then

(1) If φ is an (n, d)-XR-phantom morphism then γ and ψ are also (n, d)-XR-

phantom morphism;

(2) If R is n-coherent and φ is an (n, d)-RX -cophantom morphism then γ and

ψ are also an (n, d)-RX -cophantom morphism.

Proof. We have a commutative diagram with pure exact rows by Lemma 4.2:

η1 : 0 // K1

ψ

��

α1 // M1

φ

��

β1 // L1

γ

��

// 0

η2 : 0 // K2 α2

// M2
β2

// L2
// 0

Then we obtain the commutative diagram with split exact rows:

0 // L+
2

γ+

��

β+
2 // M+

2

φ+

��

α+
2 // K+

2

ψ+

��

// 0

0 // L+
1

β+
1

// M+
1

α+
1

// K+
1

// 0

(1) Note that φ+is an (n, d)-XR-cophantom morphism by Proposition 2.7. For

any n-presented R-module A in XR, we have

Extd+1
(
A,ψ+

)
Extd+1

(
A,α+

2

)
= Extd+1

(
A,α+

1

)
Extd+1

(
A, φ+

)
= 0.

Since Extd+1
(
A,α+

2

)
is an epimorphism, Extd+1 (A,ψ+) = 0. Thus, ψ+is

an (n, d)-XR-cophantom morphism and so ψ is an (n, d)-XR-phantom mor-

phism by Proposition 2.7. Also, we have

Extd+1
(
A, β+

1

)
Extd+1

(
A, γ+

)
= Extd+1

(
A, φ+

)
Extd+1

(
A, β+

2

)
= 0.

Since Extd+1
(
A, β+

1

)
is a monomorphism, Extd+1 (A, γ+) = 0. Thus, γ+is

an (n, d)-XR-cophantom morphism. So γ is an (n, d)-XR-phantom mor-

phism by Proposition 2.7.

(2) By Proposition 2.7, φ+ is an (n, d)-RX -phantom morphism. For any n-

presented module A of RX , we obtain

Tord+1

(
ψ+, A

)
Tord+1

(
α+
2 , A

)
= Tord+1

(
α+
1 , A

)
Tord+1

(
φ+, A

)
= 0.

Since Tord+1

(
α+
2 , A

)
is an epimorphism, Tord+1 (ψ+, A) = 0. Thus, ψ+is

an (n, d)-RX -phantom morphism and so ψ is an (n, d)-RX -cophantom mor-

phism by Proposition 2.7. On the other hand, we get

Tord+1

(
β+
1 , A

)
Tord+1

(
γ+, A

)
= Tord+1

(
φ+, A

)
Tord+1

(
β+
2 , A

)
= 0.
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Since Tord+1

(
β+
1 , A

)
is a monomorphism, Tord+1 (γ+, A) = 0. Hence γ+is

an (n, d)-RX -phantom morphism and so γ is an (n, d)-RX -phantom comor-

phism by Proposition 2.7. �

Theorem 4.4. Let n ∈ N∗ ∪ {∞}, d ∈ N, and RX (resp., XR) be a class of left

(resp., right) R-modules.

(1) Every left R-module morphism has an epic (n, d)-XR-phantom cover in R-

Mor.

(2) If n > d+ 1, and in particular if R is n-coherent, then every left R-module

morphism has an (n, d)-XR-phantom preenvelope in R-Mor.

(3) If R is n-coherent, then every left R-module morphism has a monic (n, d)-

RX -cophantom preenvelope in R-Mor.

(4) If R is n-coherent, then every left R-module morphism has an (n, d)-RX -

cophantom cover.

Proof. (1) Note that the class of (n, d)-XR-phantom morphisms is closed under di-

rect limits by Proposition 2.4 and closed under pure epimorphic images by Lemma

4.3. So every left R-module morphism has an (n, d)-XR-phantom cover by [4, Theo-

rem 2.6]. The (n, d)-XR-phantom cover is an epimorphism because every projective

object of R-Mor is an (n, d)-XR-phantom morphism.

(2) The class of (n, d)-XR-phantom morphisms is closed under direct products by

Proposition 2.6 and closed under pure subobjects by Lemma 4.3. Then every left

R-module morphism has an (n, d)-XR-phantom preenvelope in R-Mor by [4, The-

orem 4.1].

(3) The class of (n, d)-RX -cophantom morphisms is closed under direct products

by Proposition 2.4 and closed under pure subobjects by Lemma 4.3. Then every

left R-module morphism has an (n, d)-XR-phantom preenvelope in R-Mor by [4,

Theorem 4.1]. The (n, d)-RX -cophantom preenvelope is a monomorphism because

every injective object of R-Mor is an (n, d)-XR-phantom morphism.

(4) The class of (n, d)-RX -cophantom morphisms is closed under direct limits by

Proposition 2.6 and closed under pure epimorphic images by Lemma 4.3. Then

every left R-module morphism has an (n, d)-RX -cophantom cover by [4, Theorem

2.6]. �

In ideal approximation theory, the concepts of (pre)covers and (pre) envelopes

for classes of objects were generalized to ideals of morphisms. An ideal I of R-

Mod is a subbifunctor of Hom(−,−) such that for every morphism g in I and

every morphisms f and h of R-modules we have fgh ∈ I whenever it is defined.

Let XR-φ(n,d) and RX -ψ(n,d) denote respectively the class of (n, d)-XR-phantom
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morphisms and the class of (n, d)-RX -cophantom morphisms, it is clear that XR-

φ(n,d) and RX -ψ(n,d) are ideals of R-Mod. Let I be an ideal of R-Mod, a morphism

ϕ : M → N in I is an I-precover of N if for any morphism ψ : C → N in I
there exists θ : C →M such that ϕθ = ψ. An I-precover is called I-cover if every

endomorphism h of M such that ϕh = ϕ is an automorphism. An I-preenvelope

and I-envelope are defined dually.

The following lemma establishes the connection between an I-cover of a left

R-module and the usual I-cover of a morphism in R-Mor.

Lemma 4.5. [10, Lemma 2.7] Let I be an ideal of R-Mod and ϕ : M → N be a

morphism of left R-modules. The following conditions are equivalent:

(1) ϕ : M → N is an I-precover (resp., I-cover) of N in R-Mod;

(2) (ϕ, IdN ) : ϕ→ IdN is an I-precover (resp., I-cover) of IdN in R-Mor;

(3) IdN has an I-precover (resp., I-cover) (ϕ, f) : ψ → IdN in R-Mor.

Lemma 4.6. [10, Lemma 2.6] Let I be an ideal of R-Mod and ϕ : M → N be a

left R-module morphism. The following conditions are equivalent:

(1) ϕ : M → N is an I-prenvelope of M in R-Mod;

(2) (IdM , ϕ) : IdM → ϕ is an I-preenvelope of IdM in R-Mor;

(3) IdM has an I-preenvelope (f, ϕ) : IdM → ψ in R-Mor.

Theorem 4.7. Let n ∈ N∗ ∪ {∞}, d ∈ N.

(1) Every left R-module has an epic (n, d)-XR-phantom cover.

(2) If n > d+ 1, and in particular if R is n-coherent, then every left R-module

has an (n, d)-XR-phantom preenvelope.

(3) If R is n-coherent, then every left R-module has a monic (n, d)-RX -cophantom

preenvelope.

(4) If R is n-coherent, then every left R-module has an (n, d)-RX -cophantom

cover.

Proof. (1) Let N be a left R-module, by Theorem 4.4 IdN has an epic (n, d)-XR-

phantom cover in R-Mor, so by Lemma 4.5 N has an epic (n, d)-XR-phantom cover.

(2) Let M be left R-module, by Theorem 4.4 IdM has an (n, d)-XR-phantom preen-

velope. Hence by Lemma 4.6 M has an (n, d)-XR-phantom preenvelope in R-Mod.

(3) If R is n-coherent and M a left R-module, then by Theorem 4.4 IdM has an

(n, d)-RX -cophantom preenvelope, therefore by Lemma 4.6 M has an (n, d)-RX -

cophantom preenvelope.

(4) Let N be a left R-module, by Theorem 4.4 IdN has (n, d)-RX -cophantom cover,

then by Lemma 4.5 N has an (n, d)-RX -cophantom cover. �
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Theorem 4.8. Let R be a left coherent ring and d ≥ 1. The following assertions

are equivalent:

(1) R is a right weak (n, d)-ring;

(2) Every left R-module has an epic (n, d− 1)-phantom envelope;

(3) Every left R-module has a monic (n, d− 1)-cophantom cover;

(4) Every pure injective left R-module has a monic (n, d−1)-cophantom cover.

Proof. (1) ⇔ (2) If R is a right weak (n, d)-ring and M is a left R-module, by

Theorem 4.7 M has an (n, d − 1)-phantom preenvelope f : M → N . Then we

get an epimorphism γ : M → Im(f) and the inclusion β : Im(f) → N such that

f = βγ. For any n-presented right R-module A, the exact sequence 0→ Im(f)
β→

N
π→ L→ 0 induces the exact sequence

0 = Tord+1(A,L) // Tord(A, Im(f))
Tord(A,β)// Tord(A,N).

So Tord(A, β) is a monomorphism. Note that

Tord(A, β) Tord(A, γ) = Tord(A, f) = 0.

Thus Tord(A, γ) = 0, i.e., γ is an (n, d − 1)-phantom morphism. It is easy to

verify that γ is an epic (n, d − 1)-phantom preenvelope of M and so γ is an epic

(n, d− 1)-phantom envelope of M . Conversely, suppose (2) is satisfied, let A be an

n-presented right R-module, there exists an exact sequence 0→ K
α→ P → A→ 0

with P projective. By (2) K has an epic (n, d− 1)-phantom envelope ϕ : K → N ,

since P is projective, α is an (n, d− 1)-phantom morphism of right R-modules. It

is now easy to see that ϕ is a monomorphism and so is an isomorphism. Hence K

is (n, d− 1)-flat. Since R is left coherent, any finitely presented left R-module F is

n-presented and so Tord(K,F ) = 0. Therefore fd(K) ≤ d − 1 and so fd(A) ≤ d,

which means that R is a right weak (n, d)-ring.

(1) ⇔ (3) Suppose R is a right weak (n, d)-ring, let M be a left R-module, by

Theorem 4.7 M has an (n, d − 1)-cophantom cover f : C → M . Then we get

an epimorphism λ : C → Im(f) and a monomorphism ϕ : Im(f) → M such that

f = ϕλ, hence f+ = λ+ϕ+. Since R is coherent, by Proposition 2.7 f+ is an

(n, d − 1)-phantom morphism. Similar to the proof (1) ⇒ (2), we obtain that ϕ+

is an (n, d − 1)-phantom morphism and so by Proposition 2.7 ϕ is an (n, d − 1)-

cophantom morphism. It is easy to see that φ is a monic (n, d − 1)-cophantom

precover and so φ is a monic (n, d−1)-cophantom cover of M . Conversely, let A be

an n-presented right R-module, there exists a short exact sequence 0→ K
g→ F →

A → 0 with F flat, it induces an exact sequence 0 → A+ → F+ g+

→ K+ → 0 with

F+ injective. By (2) K+ has monic (n, d− 1)-cophantom cover ρ : C → K+. Since
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F+ is injective, g+ is an (n, d− 1)-cophantom morphism, thus ρ is an epimorphism

and so is an isomorphism. Therefore K+ is an (n, d − 1)-injective module. Since

R is left coherent, any finitely presented left R-module B is n-presented. Thus

Extd(B,K+) = 0 for any finitely presented left R-module B which means that FP -

id(K+) ≤ d − 1 and so FP -id(A+) ≤ d. Therefore by [15, Lemma 3.1] fd(A) ≤ d

and R is a right weak (n, d)-ring.

(3) ⇔ (4) It is clear that (3) implies (4). It suffices to show that (4) implies

(3). Let M be a left R-module, M++ is pure injective, then M++ has a monic

(n, d − 1)-cophantom cover γ : C → M++. Let µ : M → M++ be the canonical

pure monomorphism. So we get the following pullback diagram

0

��
0 // K

ϕ

��

λ // C

γ

��
M

µ // M++

with λ and ϕ monomorphisms. Since γ is an (n, d−1)-cophantom morphism, µϕ =

γλ is an (n, d−1)-cophantom morphism. Let A be an n-presented rightR-module, A

is finitely presented, since µ is a pure monomorphism and Extd(A,µ) Extd(A,ϕ) =

Extd(A, γ) Extd(A, λ) = 0, by Lemma 4.1, Extd(A,µ) is a monomorphism and so

Extd(A,ϕ) = 0, i.e., ϕ is an (n, d− 1)-cophantom morphism. Let h : L→M be an

(n, d−1)-cophantom morphism, there exists ψ : L→ C such that γψ = µh. By the

universal property of a pullback diagram, there exists a morphism η : L→ K such

that h = ϕη and so ϕ is a monic (n, d− 1)-cophantom precover of M . Therefore ϕ

is an (n, d− 1)-cophantom cover of M . �

5. (n, d)-X -phantom and (n, d)-X -cophantom morphisms under change

of rings

Finally, we study (n, d)-X -phantom and (n, d)-X -cophantom morphisms under

change of rings. Let R→ S be a ring homomorphism. Then S is an R-R-bimodule

in a canonical way. Moreover, any left (resp., right) S-module can be regarded as

a left (resp., right) R-module, and any left (resp., right) S-module morphism can

be regarded as a left (resp., right) R-module morphism.

Let RM be a left R-module and SN be a left S-module. There exists a natural

S-module morphism µN : S ⊗R N →S N defined by µN (t⊗ x) = tx for any x ∈ N
and t ∈ S and a natural R-module morphism vM :R M → S ⊗R M defined by
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vM (y) = 1⊗ y for any y ∈ M . It is easy to check that the composition of R-

module morphisms RN
vN→ S ⊗R N

µN→ SN is the identity and the composition

of S-module morphisms S ⊗R M
1⊗RvM→ S ⊗R (S ⊗RM)

µΘRM→ S ⊗R M is also

the identity. On the other hand, there are a natural S-module morphism ηN :

SN → HomR(S,N) defined by ηN (y)(t) = ty for any y ∈ N and t ∈ S and a

natural R-module morphism εM : HomR(S,M) →R M defined by εM (f) = f(1)

for any f ∈ HomR(S,M). It is not hard to verify that the composition of R-module

morphisms SN
ηN→ HomR(S,N)

εN→ RN is the identity and the composition of S-

module morphisms is also the identity. For a class SX (resp., XS) of left (resp.,

right) S-modules we denote R
SX (resp., XRS ) the same class considered as a class of

left (resp., right) R-modules.

Lemma 5.1. Let R→ S be a ring homomorphism.

(1) Let XS be a class of right S-modules such that X⊗RS ∈ XS for any element

X of XS. If RS is flat and ϕ : SM → SN is an (n, d)-XS-phantom mor-

phism in S-Mod, then ϕ : RM → RN is an (n, d)-XRS -phantom morphism

in R-Mod.

(2) Let XR be a class of right R-modules and YS be a class of right S-modules

such that YRS ⊆ XR. If SR is finitely generated and projective and ψ :

RM → RN is an (n, d)-XR-phantom morphism in R-Mod, then 1 ⊗R ψ :

S ⊗RM → S ⊗R N is an (n, d)-YS-phantom morphism in S-Mod.

Proof. (1) For any A ∈ (XRS )n, by [17, Corollary 11.63], we get the following

commutative diagram

TorRd+1(A,M)

TorRd+1(A,ϕ)

��

∼= // TorSd+1(A⊗R S,M)

TorSd+1(A⊗RS,ϕ)

��
TorRd+1(A,N)

∼= // TorSd+1(A⊗R S,N)

Since RS is flat, A⊗RS ∈ (XS)n. Then TorSd+1(A⊗RS, ϕ) = 0 and so TorRd+1(A,ϕ) =

0.

(2) For any A ∈ (YS)n, by [17, Corollary 11.64], we get the following commutative

diagram

TorRd+1(A,M)

TorRd+1(A,ϕ)

��

∼= // TorSd+1(A,S ⊗RM)

TorSd+1(A,1⊗Rϕ)

��
TorRd+1(A,N)

∼= // TorSd+1(A,S ⊗R N)

Since SR is finitely generated and projective, A ∈ (YRS )n and so A ∈ (XR)n. Hence

TorRd+1(A,ϕ) = 0, thus TorSd+1(A, 1⊗R ϕ) = 0. �
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Theorem 5.2. Let R → S be a ring homomorphism such that RS is flat and SR

is finitely generated and projective.

(1) Let XS be a class of right S-modules such that X ⊗R S ∈ XS for any

X ∈ XS. If ϕ : SM → SN is an (n, d)-XS-phantom precover in S-Mod

then ϕ : RM → RN is an (n, d)-XRS -phantom precover in R-Mod.

(2) If XS be a class of right S-modules and ψ : RM → RN is an (n, d)-XRS -

phantom preenvelope in R-Mod then 1 ⊗R ψ : S ⊗R M → S ⊗R N is an

(n, d)-XS-phantom preenvelope in S-Mod.

Proof. (1) By Lemma 5.1 ϕ : RM → RN is an (n, d)-XRS -phantom morphism in

R-Mod. Let f : RL → RN be an (n, d)-XRS -phantom morphism, then 1 ⊗R f :

S ⊗R L → RS ⊗R N is an (n, d)-XS-phantom morphism, and so µN (1 ⊗R f) :

S ⊗R L
1⊗Rf→ S ⊗R N

µN→S N is an (n, d)-XS-phantom morphism. By hypothesis

there exists an S-morphism λ : S ⊗R L → SM such that µN (1 ⊗R f) = ϕλ, i.e.,

such that the following diagram is commutative

RL

vL

��

f //
RN

vN

��
S ⊗R L

λ

��

1⊗Rf // S ⊗R N

µN

��
SM

ϕ //
SN

So we have

ϕ(λvL) = µN (1⊗R f)vL = µNvNf = f.

It follows that ϕ :R M →R N is an (n, d)-XRS -phantom precover in R-Mod.

(2) By Lemma 5.1, 1⊗Rψ : S⊗RM → S⊗RM is an (n, d)-XS-phantom morphism.

Let g : S ⊗R M → SL be an (n, d)-XS-phantom morphism in S-Mod, then g :

S⊗RM → RL is an (n, d)-XRS -phantom morphism in R-Mod by Lemma 5.1. Thus

gvM :R M
vM→ S⊗RM

g→R L is an (n, d)-XRS -phantom morphism in R-Mod. Hence

there exists α : RN → RL such that the following diagram is commutative

S ⊗R (S ⊗RM)

µS⊗RM

��

1⊗Rg // S ⊗R L

µL

��
S ⊗RM

g //
RL

RM

vM

OO

ψ //
RN

α

OO
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So we have

(µL(1⊗R α))(1⊗R ψ) = µL(1⊗R αψ) = µL(1⊗R gvM )

= µL(1⊗R g)(1⊗R vM ) = gµS⊗RM (1⊗R vM ) = g.

Thus 1⊗R ψ : S ⊗RM → S ⊗R N is an (n, d)-XS-phantom preenvelope. �

Corollary 5.3. Let R→ S be a surjective ring homomorphism and XS be a class

of right S-modules. Suppose that RS is flat and SR is projective. A morphism

ϕ : SM → SN is an (n, d)-XS-phantom precover(resp., cover) in S-Mod if and only

if ϕ : RM → RN is an (n, d)-XRS -phantom precover (resp., cover) in R-Mod.

Proof. Note that by [17, Corollary 10.72] S ⊗R B ∼=S B for any left S-module

SB. By a proof similar to that of Theorem 5.2 (1), ϕ : SM → SN is an (n, d)-

XS-phantom precover in S-Mod if and only if ϕ : RM → RN is an (n, d)-XRS -

phantom precover in R-Mod. Suppose that ϕ : MS → NS is an (n, d)-XS-phantom

cover in Mod-S. Let θ : RM → RM be an R-morphism such that ϕθ = ϕ. Then

ϕ
(
µM (θ ⊗R 1)µ−1M

)
= ϕµMµ

−1
M θ = ϕθ = ϕ. Hence θ = µM (θ ⊗R 1)µ−1M is an

isomorphism. It follows that ϕ : RM → RN is an (n, d)-XRS -phantom cover in

R-Mod. The converse is obvious. �

Lemma 5.4. Let R→ S be a ring homomorphism.

(1) Let SX be a class of left S-modules such that S ⊗R X ∈S X for any X ∈
SX . If SR is flat and ϕ : SM → SN is an (n, d)-SX -cophantom morphism

in S-Mod, then ϕ : RM → RN is an (n, d)-RSX -cophantom morphism in

R-Mod.

(2) Let RX be a class of left R-modules and SY be a class of left S-modules such

that R
SY ⊆ RX . If RS is finitely generated and projective and ψ : RM →

RN is an (n, d)-RX -cophantom morphism in R-Mod, then the morphism

ψ∗ : HomR(S,M)→ HomR(S,N) is an (n, d)-SY-cophantom morphism in

S-Mod.

Proof. (1) For any RA ∈ (RSX )n, by [17, Corollary 11.65], we get the following

commutative diagram

Extd+1
S (S ⊗R A,M)

Extd+1
S (S⊗RA,ϕ)

��

∼= // Extd+1
R (A,M)

Extd+1
R (A,ϕ)

��
Extd+1

S (S ⊗R A,N)
∼= // Extd+1

R (A,N)

Since SR is flat, S⊗RA ∈ (SX )n. Then ExtSd+1(S⊗RA,ϕ) = 0 and so ExtRd+1(A,ϕ) =

0.
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(2) For any A ∈ (SY)n, by [17, Corollary 11.66], we get the following commutative

diagram

Extd+1
S (A,HomR(S,M))

Extd+1
S (A,ψ∗)

��

∼= // Extd+1
R (A,M)

Extd+1
R (A,ψ)

��
Extd+1

S (A,HomR(S,N))
∼= // Extd+1

R (A,N)

RS is finitely generated and projective then A ∈ (RSY)n and so A ∈ (RX )n, thus

Extd+1
R (A,ψ) = 0 and so Extd+1

S (A,ψ∗) = 0. �

Theorem 5.5. Let R → S be a ring homomorphism such that SR is flat and RS

is finitely generated and projective.

(1) Let SX be a class of S-modules such that S ⊗R X ∈ SX for any X ∈ SX .

If ϕ : SM → SN is an (n, d)-SX -cophantom preenvelope in S-Mod then

ϕ : RM → RN is an (n, d)-RSX -cophantom preenvelope in R-Mod.

(2) If SX be a class of left S-modules and ψ : RM → RN is an (n, d)-RSX -

cophantom precover in R-Mod then ψ∗ : HomR(S,M) → HomR(S,N) is

an (n, d)-SX -cophantom precover in S-Mod.

Proof. (1) Note that ϕ : RM → RN is an (n, d)-RSX -cophantom morphism in R-

Mod by Lemma 5.4. Let f : RM → RL be an (n, d)-RSX -cophantom morphism

in R-Mod. Then f∗ : HomR(S,M) → HomR(S,L) is an (n, d)-SX -cophantom

morphism in S-Mod by Lemma 5.4. So f∗ηM : SM
ηM→ HomR(S,M)

f∗→ HomR(S,L)

is also an (n, d)-SX -cophantom morphism in S-Mod. Thus there exists a left S-

homomorphism g : SN → HomR(S,L) such that gϕ = f∗ηM . So we have

(εLg)ϕ = εLf∗ηM = εLηLf = f.

Hence ϕ : RM → RN is an (n, d)-RSX -cophantom preenvelope in R-Mod.

(2) By Lemma 5.4, ψ∗ : HomR(S,M) → HomR(S,N) is an (n, d)-SX -cophantom

morphism in S-Mod. Let f : SL → HomR(S,N) be any (n, d)-SX -cophantom

morphism in S-Mod. Then f : RL → HomR(S,N) is an (n, d)-RSX -cophantom

morphism in R-Mod by Lemma 5.4. Thus εNf : RL
f→ HomR(S,N)

εN→ RN is also

an (n, d)-RSX -cophantom morphism in R-Mod. Hence there is α : RL → RM such

that ψα = εNf . Thus

ψ∗ (α∗ηL) = (ψα)∗ηL = (εNf)∗ ηL = (εN )∗ (f∗ηL) = (εN )∗ ηHomR(S,N)f = f.

So ψ∗ : HomR(S,M) → HomR(S,N) is an (n, d)-SX -cophantom precover in S-

Mod. �
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Corollary 5.6. Let R → S be a surjective ring homomorphism with RS flat

and SR projective. A left S-homomorphism ϕ : SM → SN is an (n, d)-SX -

cophantom preenvelope (resp., (n, d)-SX -cophantom envelope) in S-Mod if and

only if ϕ : RM → RN is an (n, d)-RSX -cophantom preenvelope (resp., (n, d)-RSX -

cophantom envelope) in R-Mod.

Proof. Note that HomR(S,B) ∼= SB for any left S-module SB. By a proof similar

to that of Theorem 5.5, ϕ : SSMS is an (n, d)-RX -cophantom preenvelope in S-Mod

if and only if ϕ : RM → RN is an (n, d)-XR-cophantom preenvelope in R-Mod.

Suppose that ϕ : SMSSN is an (n, d)-RX -cophantom envelope in S-Mod. Let

θ : RN → RN be a left R-homomorphism such that θϕ = ϕ. Then θ∗ϕ∗ = ϕ∗. Thus(
η−1N θ∗ηN

)
ϕ = η−1N θ∗ϕ∗ηM = η−1N ϕ∗ηM = η−1N ηNϕ = ϕ. Hence θ = η−1N θ∗ηN is

an isomorphism. So ϕ : RM → RN is an (n, d)-XR-cophantom envelope in R-Mod.

The converse is obvious. �
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