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Abstract. In this paper, we say a ring R is Nil∗-Artinian if any descending

chain of nil ideals stabilizes. We first study Nil∗-Artinian properties in terms

of quotients, localizations, polynomial extensions and idealizations, and then

study the transfer of Nil∗-Artinian rings to amalgamated algebras. Besides,

some examples are given to distinguish Nil∗-Artinian rings, Nil∗-Noetherian

rings and Nil∗-coherent rings.
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1. Introduction

Throughout this paper, all rings are commutative with identity and all modules

are unitary. Let R be a ring. We denote by Spec(R) the set of all prime ideals of

R and by Nil(R) the nil-radical of R, that is, the set of all nilpotent elements in R.

An ideal I of R is said to be a nil ideal provided that any element in I is nilpotent.

It is well-known that coherent rings with finite weak global dimensions and rings

with global dimensions at most 2 are all reduced rings, i.e., rings with zero nil-

radical (see [6, Corollary 4.2.4, Corollary 4.2.5]). So the nil radical is very crucial

to study rings with infinite homological dimensions (also see [5] for example). Some

algebraic researchers began to study rings by only consider their nil ideals. In 2014,

Xiang [10] introduced the notions of Nil∗-coherent rings in terms of nil ideals. A

ring R is said to be Nil∗-coherent provided that any finitely generated nil ideal

is finitely presented. Later in 2017, Ismaili et al. [8] studied the Nil∗-coherent

properties via idealization and amalgamated algebras under several assumptions.

Recently, Zhang [11] defined Nil∗-Noetherian rings to be rings in which every nil

ideal is finitely generated. He showed that the Hilbert Basis Theorem holds for

Nil∗-Noetherian rings and also studied Nil∗-Noetherian properties via idealization

and bi-amalgamated algebras under several assumptions.

The main motivation of this paper is to introduce and study Nil∗-Artinian rings.

We say a ring R is Nil∗-Artinian if any descending chain of nil ideals stabilizes.
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We study the quotient rings and localization of Nil∗-Artinian rings, and then show

when a polynomial ring is Nil∗-Artinian. We also show that an idealization R(+)M

is a Nil∗-Artinian ring if and only if R is a Nil∗-Artinian ring and the R-module

M is Artinian (see Theorem 2.9). Finally, we study the transfer of Nil∗-Artinian

rings to amalgamated algebras in Theorem 3.2. In particular, we show that A ./ J

is Nil∗-Artinian if and only if A is Nil∗-Artinian (see Corollary 3.3).

2. Basic properties of Nil∗-Artinian rings

Recall that an ideal of R is said to be nil provided every element in I is nilpotent.

We begin with the concept of Nil∗-Artinian rings.

Definition 2.1. A ring R is said to be a Nil∗-Artinian ring provided that any

descending chain of nil ideals stabilizes, i.e., let I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · be a

descending chain of nil ideals, then there exists an integer k such that In = Ik for

any n ≥ k.

Trivially, reduced rings and Artinian rings are Nil∗-Artinian. Obviously, a ring

R is Nil∗-Artinian if and only if the nil-radical Nil(R) is an Artinian R-module.

Lemma 2.2. Let R be a Nil∗-Artinian ring. If I is a nil ideal of R, then R/I is

also Nil∗-Artinian.

Proof. Let {Ki | i ∈ Z+} be a family of descending chain of nil ideals of R/I.

Then Ki = Ji/I for some R-ideal Ji containing I. Since I is a nil ideal, each Ji is

also a nil ideal of R. Hence the descending chain {Ji | i ∈ Z+} stabilizes. �

Note that the condition “I is a nil ideal of R” in Lemma 2.2 cannot be removed.

Example 2.3. [11, Example 1.3] Let S = k[x1, x2, · · · ] be the polynomial ring

over a field k with countably infinite variables. Then S is Nil∗-Artinian. Set the

quotient ring R = S/〈x2i | i ≥ 1〉. Then Nil(R) = 〈x1, x2, · · · 〉, where xi denotes the

representative of xi in R for each i. Let Ji = {〈xi, xi+1, · · · 〉}, then J1 ⊇ J2 ⊇ · · ·
is a descending chain which does not stop.

Proposition 2.4. A finite direct product R = R1 × · · · × Rn of rings R1, · · · , Rn
is Nil∗-Artinian if and only if each Ri is Nil∗-Artinian (i = 1, · · · , n).

Proof. It follows by Nil(R) = Nil(R1) × · · · × Nil(Rn) and we will have Nil(R)

is an Artinian R-module if and only if each Nil(Ri) is an Artinian Ri-module

(i = 1, · · · , n). �
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Proposition 2.5. Let R be Nil∗-Artinian and S a multiplicative subset of R. Then

RS is also Nil∗-Artinian.

Proof. Let (I1)S ⊇ (I2)S ⊇ · · · ⊇ (In)S ⊇ · · · be a descending chain of nil ideals

of RS . Since Nil(RS) = Nil(R)S , we may assume each Ii is a nil ideal of R. Since R

is Nil∗-Artinian, there exists an integer k such that In = Ik for any n ≥ k. Hence

(In)S = (Ik)S for any n ≥ k. Consequently, RS is also Nil∗-Artinian. �

Next, we will focus on the Nil∗-Artinian properties of polynomial rings.

Lemma 2.6. [9, Exercise 1.47] Let R be a ring. Then J(R[x]) = Nil(R[x]) =

Nil(R)[x].

Proposition 2.7. Let R be a ring. If R[x] is a Nil∗-Artinian ring, then R is a

Nil∗-Artinian ring.

Proof. Suppose R[x] is a Nil∗-Artinian ring. Let I• := {Ii | i ∈ Z+} be a descend-

ing chain of nil R-ideals. Then I•R[x] := {IiR[x] | i ∈ Z+} is a descending chain of

nil R[x]-ideals, and so stabilizes. Consequently, the constant terms of the ideals in

I•R[x], i.e., I• also stabilizes. �

The following example shows the converse of Proposition 2.7 does not hold.

Example 2.8. Let R = Z4. Then R is an Artinian, and so is Nil∗-Artinian. Then

Nil(Z4[x]) = Nil(Z4)[x] = 2Z4[x] by Lemma 2.6. Note that the descending chain

〈2x〉 ) 〈2x2〉 ) · · · of nil ideals does not stabilize. Hence R[x] is not Nil∗-Artinian.

Some non-reduced rings are constructed by the idealization R(+)M where M is

an R-module (see [7]). Let R(+)M = R⊕M as an R-module, and define

(1) (r,m)+(s, n)=(r + s,m+ n),

(2) (r,m)(s, n)=(rs, sm+ rn),

where r, s ∈ R and m,n ∈ M. Under this construction, R(+)M is a commutative

ring with identity (1, 0).

Theorem 2.9. Let R be a ring and M an R-module. Then R(+)M is a Nil∗-

Artinian ring if and only if R is a Nil∗-Artinian ring and M is an Artinian R-

module.

Proof. For necessity, since R ∼= R(+)M/0(+)M and 0(+)M is a nil ideal, R is

Nil∗-Artinian by Lemma 2.2. Since 0(+)M is a nil ideal, any descending chain of

sub-ideals of 0(+)M is stabilizing, which is equivalence to that M is an Artinian

R-module.
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For sufficiency, consider the exact sequence of R(+)M -modules: 0→ 0(+)M
i−→

R(+)M
π−→ R → 0. Let O• : O1 ⊇ O2 ⊇ · · · be a descending chain of nil R(+)M -

ideals. Then there is a descending chain of nil R-ideals: π(O•) : π(O1) ⊇ π(O2) ⊇
· · · . Thus there exists k ∈ Z+ such that π(On) = π(Ok) for any n ≥ k. Similarly,

O•∩0(+)M : O1∩0(+)M ⊇ O2∩0(+)M ⊇ ... is a descending chain of nil sub-ideals

of 0(+)M which are equivalent to some submodules of M . So there exists k′ ∈ Z+

such that On ∩ 0(+)M = Ok ∩ 0(+)M for any n ≥ k′ as M is an Artinian module.

Let l = max(k, k′) and n ≥ l. Consider the following natural commutative diagram

with exact rows:

0 // On ∩ 0(+)M // On //
� _

��

π(On) // 0

0 // Ol ∩ 0(+)M // Ol // π(Ol) // 0.

Then we have On = Ol for any n ≥ l. So R(+)M is a Nil∗-Artinian ring. �

Recall from [11] that a ring R is called Nil∗-Noetherian provided that any nil

ideal is finitely generated. The following example shows that Nil∗-Noetherian rings

need not be Nil∗-Artinian in general.

Example 2.10. Let D be an integral domain which is not a field. Then D is not an

Artinian D-module. Set R = D(+)D. Then R is Nil∗-Noetherian by [11, Theorem

1.8], but not Nil∗-Artinian by Theorem 2.9.

The following example shows that Nil∗-Artinian rings need not be Nil∗-Noetherian.

Example 2.11. Let D = Z be the ring of all integers with its quotient field Q and

p a prime number. Let Qp = {x ∈ Q | pnx ∈ Z for some n}. Set M = Qp/Z. Then

M is an Artinian Z-module but not finitely generated (see [9, Example 2.8.16]). Set

R = D(+)M . Then R is Nil∗-Artinian by Theorem 2.9, but not Nil∗-Noetherian

by [11, Theorem 1.8].

Recall from [10] that a ring R is called Nil∗-coherent provided that any finitely

generated ideal in Nil(R) is finitely presented. Similar to the classical case, Nil∗-

coherent rings are not Nil∗-Artinian in general. Indeed, let D be a coherent domain

but not a field, then R = D(+)D is also coherent by [1, Lemma 3.2], and hence

Nil∗-coherent. Since D is not an Artinian ring, R is not Nil∗-Artinian by Theorem

2.9. The following example shows that Nil∗-Artinian rings are not Nil∗-coherent in

general.
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Example 2.12. [11, Example 1.11] Let S = k[x1, x2, · · · ] be the polynomial ring

over a field k with countably infinite variables. Set R = S/〈x1xi | i ≥ 1〉. Then

Nil(R) = 〈x1〉 is the only non-trivial nil ideal of R. So R is Nil∗-Artinian. However,

since (0 :R x1) = 〈x1, x2, · · · 〉 is infinitely generated, Nil(R) is not finitely presented.

Hence R is not Nil∗-coherent.

By Proposition 2.5, if R is a Nil∗-Artinian ring, then Rp is also Nil∗-Artinian for

any prime ideal p of R. However, the converse does not hold in general.

Example 2.13. Let S =
∞∏
i=1

k be countably infinite direct product of a field k.

Then for any prime ideal p of S, we have Sp
∼= k. Set R = S(+)S. Then Spec(R) =

{p(+)S | p ∈ Spec(S)} by [2, Theorem 3.2(2)]. Since S is not an Artinian ring,

R is not Nil∗-Artinian by Theorem 2.9. However, by [2, Theorem 4.1(2)], we have

Rp = Sp(+)Sp = k(+)k which is Nil∗-Artinian by Theorem 2.9 again.

3. Transfer of Nil∗-Artinian rings to amalgamated algebras

We recall the amalgamated algebras constructed in [3]. Let f : A→ B be a ring

homomorphism and let I an ideal of B. The amalgamated algebra of A with B

along J with respect to f is the subring of A×B given by:

A ./f J := {(a, f(a) + j) | a ∈ A, j ∈ J}.

Set π1 : A ./f J → A where π1((a, f(a) + j)) = a, π2 : A ./f J → B where

π2((a, f(a) + j)) = f(a) + j. Then π1 and π2 are ring homomorphisms.

Lemma 3.1. [8, Lemma 5.2] Let f : A → B be a ring homomorphism and J an

ideal of B. Then

Nil(A ./f J) = Nil(A) ./f (J ∩Nil(f(A) + J)) = Nil(A) ./f (J ∩Nil(B)).

Theorem 3.2. Let f : A → B be a ring homomorphism and J an ideal of B.

If A and f(A) + J are Nil∗-Artinian rings, then A ./f J is a Nil∗-Artinian ring.

Moreover, suppose one of the following cases holds:

(1) Ker(f) is nil and f is surjective.

(2) Ker(f) is nil and J is a nil ideal of B.

Then the converse also holds.

Proof. Suppose A and f(A) + J are Nil∗-Artinian rings. Let L• := L1 ⊇ L2 ⊇
· · · be a descending chain of nil ideals of A ./f J . Then π1(L•) and π2(L•) are

descending chains of ideals of A and f(A) + J , respectively. Certainly, π1(L•) is

composed of nil ideals of A by Lemma 3.1. Let i ≥ 1. Then π2(Li) = {f(a) + j |
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(a, f(a) + j) ∈ Li} with a ∈ Nil(A) and j ∈ J ∩ Nil(f(A) + J) by Lemma 3.1. So

f(a) + j is nilpotent in B, and thus π2(Li) is also a nil ideal. Hence there exists an

integer k such π1(Ln) = π1(Lk) and π2(Ln) = π2(Lk) for any n ≥ k. So Ln = Lk

for any n ≥ k. Consequently, A ./f J is Nil∗-Artinian.

On the other hand, suppose A ./f J is Nil∗-Artinian. Let I• := I1 ⊇ I2 ⊇ · · ·
be a descending chain of nil ideals of A. Set I ′i = {(a, f(a)) | a ∈ Ii}. Then

I ′• := I ′1 ⊇ I ′2 ⊇ · · · be a descending chain of nil ideals of A ./f J . Thus I ′• stabilizes.

Hence I• also stabilizes, and thus A is Nil∗-Artinian. Let K• := K1 ⊇ K2 ⊇ · · · be

a descending chain of nil ideals of f(A) + J . We consider the following two cases.

(1) Suppose Ker(f) is a nil ideal of A and f is surjective. Set K ′i = {(a, f(a)) |
f(a) ∈ Ki}. We claim that a is nilpotent. Indeed, suppose (f(a))n = 0. Then

an ∈ Ker(f). Since Ker(f) is a nil ideal of A, a is also nilpotent. Hence K ′i is a nil

ideal of A ./f J . Since A ./f J is Nil∗-Artinian, there exists an integer k such that

K ′n = K ′k for any n ≥ k. Hence Kn = Kk for any n ≥ k, and thus f(A) + J is also

Nil∗-Artinian.

(2) Suppose Ker(f) is nil and J is a nil ideal of B. Set K ′i = {(a, f(a) + j) |
there exists j ∈ J such that f(a) + j ∈ Ki}. We claim that a is nilpotent. Indeed,

since f(a) + j and j is nilpotent, f(a) is also nilpotent. Since Ker(f) is nil, a is

nilpotent. As in (1), we can show f(A) + J is Nil∗-Artinian. �

Recall from [4] that, by setting f = IdA : A → A to be the identity homomor-

phism of A, we denote by A ./ J = A ./IdA J and call it the amalgamated algebra

of A along J . By Theorem 3.2, we obviously have the following result.

Corollary 3.3. Let J be an ideal of A. Then A ./ J is a Nil∗-Artinian ring if and

only if A is a Nil∗-Artinian ring.
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