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Abstract. In this paper, we extend the notions of friendly and solitary num-

bers to group theory and define friendly and solitary groups of type-1 and

type-2. We provide many examples of friendly and solitary groups and study

certain properties of the type-2 friends of cyclic p-groups, where p is a prime

number.
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1. Introduction and main results

1.1. Introduction and definitions. In number theory, two or more natural num-

bers are said to be friendly if the abundancy index (the ratio between the sum of

divisors of a number and the number itself) of each of these numbers is same. If

the abundancy index of a number is not equal to that of any other natural number,

then that number is solitary. We refer to [1] for more details on friendly and solitary

numbers. The main aim of this paper is to extend these number-theoretic notions

to group theory. To be more precise, in this paper, we define the notions of friendly

and solitary groups and study their properties. Let us first discuss the motivation

and logic behind defining these notions.

One of the oldest problems in number theory is related to perfect numbers, i.e.,

the numbers having abundancy index 2 (see [7,13] for a nice survey). The concept

of perfect numbers is extended to that of the concepts of friendly numbers and

Leinster groups that have drawn the attention of many researchers since they offer

several interesting open problems (see [9,13]). For example, to find out an odd

perfect number is a long-standing open problem but it has been shown that there

exists a Leinster group of odd order.

It is known that the friendly numbers form a club [1], which helps in studying

the properties of a subset of natural numbers rather than any particular natural

number. We note that the concept of friendly numbers can be straight-forwardly

defined for cyclic groups (see Definition 1.1), however, the club formation in the



2 SHUBHAM MITTAL, GAURAV MITTAL AND R. K. SHARMA

case of groups will be larger (in terms of size of the club) than that in the case of

the numbers (this is because a cyclic group may have a non-cyclic friend, which is

not the case with numbers). Therefore, one can study the properties of a larger

club that includes cyclic as well as non-cylic groups together. To be more pre-

cise, we know only a few particular classes of non-abelian groups such as dihedral

groups, quaternion groups, simple groups etc. However, our study would help in

the formation of a club(s) (or a new class of groups) that includes cyclic as well as

non-cyclic groups with at least one similarity, i.e., the common abundancy index.

An interesting work in this direction is done in [14], where a class of groups having

abundancy index less than or equal to 2 is considered and several characteristics of

the whole class are studied.

To this end, we discuss a particular situation where the new larger clubs may

play an important role. One of the well-known problems in abstract algebra is to

compute the Wedderburn decomposition (WD) of a semisimple group algebra (see

[11]). Using [12, Theorem 2.5], we know that the number of normal subgroups of a

group plays an important role in uniquely deducing the WD. Therefore, by knowing

the abundancy index of a club, results similar to that of [12] may be studied on a

whole club rather than only on particular groups (as done in [14]). This drives us

to define the notions of friendly and solitary groups and study their properties.

Next, we define the notions of friendly and solitary groups. Let G be a cyclic

group of order n. Then it is well known that if d | n, there always exists a unique

subgroup of G of order d [5]. This means that the notion of friendly numbers can

be extended trivially for a cyclic group. However, for any natural number n, there

may be a cyclic or a non-cyclic group of order n. Consequently, we define friendly

groups of type-1 and type-2 as follows:

Definition 1.1. Friendly groups of type-1: Two or more finite cyclic (non-cyclic)

groups are said to be friendly of type-1 if the ratio between the sum of orders of

their normal subgroups and the order of the group is same. Mathematically, let G1

and G2 be two finite cyclic (or non-cyclic) groups of order n1 and n2. Then G1 and

G2 are said to be friendly if ∑
H1/G1

|H1|

n1
=

∑
H2/G2

|H2|

n2
.

Definition 1.2. Friendly group of type-2: A cyclic (non-cyclic) group is said to

be friendly group of type-2 with a non-cyclic (cyclic) group if the ratio between the

sum of orders of their normal subgroups and the order of the group is same.

We discuss some friendly groups of type-1 and type-2 in the following example.
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Example 1.3. (1) Cyclic groups C30 and C140 form a friendly pair of type-1 having

abundancy index 12
5 . Further, cyclic groups C2480 and C6200 are also friendly with

both C30 and C140.

(2) Cyclic groups of odd orders can also be friendly with each other. For instance,

C135 and C819 are type-1 friendly with abundancy index 16
9 .

(3) Cyclic groups of odd order can be friendly with cyclic groups of even order. For

instance, C42 and C544635 are type-1 friendly with abundancy index 16
7 .

(4) C3×S3 and (C3×C3)oC2 are two non-abelian type-1 friendly with abundancy

index 20
9 .

(5) Groups having abundancy index 2 are also known as Leinster groups [9,10].

Thus, all abelian Leinster groups are friendly of type-1 with each other. For exam-

ple, C6 and C28 are all type-1 friendly Leinster groups with abundancy index 2.

(6) C5 × S3 and C6 are type-2 friendly Leinster with abundancy index 2.

Next, we define the notion of Solitary groups of type-1 (or type-2) and present

their examples.

Definition 1.4. Solitary group of type-1 or type-2: A cyclic (non-cyclic) group

which is not a friend of any cyclic (non-cyclic) group is called solitary group of

type-1 (2).

Example 1.5. (1) Trivial group is a solitary group of both type-1 and type-2.

(2) All cyclic p-groups are solitary of type-1 (see [1]). More generally, all cyclic

groups of order n with (n, σ(n)) = 1 are solitary of type-1. Here σ(n) denotes the

sum of all the divisors of n.

(3) C18 is a solitary group of type-1 with (18, σ(18)) 6= 1, see [1].

Since the converse of Lagrange’s theorem is true for cyclic groups, we have al-

ready discussed that studying friendly cyclic groups of type-1 is equivalent to study-

ing the friendly numbers. However, the study of friendly non-cyclic groups of type-1

or friendly groups of type-2 is entirely a new area considered in this paper.

Next, let us first discuss the importance of a computational algorithm to compute

the abundancy index of a group. For cyclic groups, we know that the computation

of abundancy index is same as that of natural numbers. However, for a non-cyclic

group, in general, there is no straight-forward formula that tells about the number

of normal subgroups and their order. Consequently, the computation of abundancy

index for a non-cyclic group is a challenging task. We present a simple GAP [6]

algorithm for the same in Appendix section. Its importance can be understood

through the following example.
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Example 1.6. The group C2 × C2 × C2 × C2 has 67 normal subgroups and the

group C2 × C2 × C2 × C2 × C2 has 374 normal subgroups which are very difficult

to compute manually.

Using Algorithm 1, we can see that abundancy index of the group C5 o C4 (its

GAP identity is SmallGroup(20, 3)) is 9
5 which means that C5 o C4 is a type-2

friend of C10. This shows that a cyclic group can have a friend of type-2 even if its

type-1 friend is not known [3].

1.2. Properties of abundancy index. Next, we discuss some properties of the

abundancy index A(G) of any finite group G. Let us define the set A := {A(G) | G
is any group of finite order}. Clearly, A is the set of abundancy indexes of all finite

groups.

Proposition 1.7. The following hold.

(1) For any non-trivial group, A(G) > 1 and A(G) = 1 iff G = {1}.
(2) For any cyclic group G of order n, A(G) = σ(n)

n , where σ(n) is sum of

positive divisors of n.

(3) For any simple group G, A(G) = 1+|G|
|G| .

(4) For any normal subgroup N of G, A(G/N) ≤ A(G).

(5) For any finite groups G1 and G2 of co-prime orders, we have A(G) =

A(G1)×A(G2), where G = G1 ×G2.

(6) The set A has infimum 1 but unbounded above.

Proof. It is trivial to observe that the points (1)-(2) hold. For a simple group,

only normal subgroups are identity and the whole group itself. Thus, (3) holds.

Next, if N is normal in G, then the normal subgroups of G/N are of the form H/N ,

where H is a normal subgroup of G containing N . Consequently, A(G/N) ≤ A(G).

Next, we prove point (5). Let a1 and a2 be the abundancy indexes of G1 and G2,

respectively. This means

a1 =

∑
H1/G1

|H1|

|G1|
, a2 =

∑
H2/G2

|H2|

|G2|
.

For the group G = G1×G2, the complete set of its normal subgroups is of the form

{(H1 ×H2) : H1 / G1, H2 / G2} since gcd(|G1|, |G2|) = 1. This means that

A(G) =

∑
H1/G1,H2/G2

|H1||H2|

|G1||G2|
= a1a2 as gcd(|G1|, |G2|) = 1.

This proves point (5). Finally, we prove point (6). We know that the alternating

group An is simple for every n > 5. Using point (3), we have A(An) =
1+n!

2
n!
2

.
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For n → ∞, clearly A(An) → 1 which together with point (1) imply that 1 is the

infimum of A. Next, let us suppose that A be bounded above and K ∈ Q be its

least upper bound. This means that there exists at least one group G1 such that

A(G1) > K−1. Let p1, p2, · · · be the enumeration of primes in the increasing order

starting from 2 and let pt be the largest prime that appear in the prime factorization

of |G1|. Let G2 be a cyclic group of order pt+1pt+2 · · · pr, where r will be defined

later on. Clearly, we have gcd(|G1|, |G2|) = 1. Then, for G = G1 × G2, point (5)

derives that

A(G) = A(G1)×A(G2) > (K − 1)

(
1 +

1

pt+1
+

1

pt+2
+ · · ·+ 1

pr

)
.

It follows from the last inequality that

A(G) > K provided (K − 1)

(
1

pt+1
+

1

pt+2
+ · · ·+ 1

pr

)
> 1.

Since the series
∑

p prime

1
p is divergent (so does its sub-series

∑∞
i=t+1

1
pi

), we conclude

that there exists a positive integer l such that
∑l
i=t+1

1
pi
> 1

K−1 . Therefore, by

taking r = l, we note that A(G) > K, which is a contradiction. Therefore, the set

A is unbounded above. This completes the proof. �

1.3. Type-2 friends of cyclic p-groups. Since it is known that all cyclic p-

groups have no type-1 friends, we are interested in their type-2 friends. In other

words, cyclic p-groups are solitary of type-1. But we can find a sequence of abun-

dancy indexes of cyclic groups which converges to the abundancy index of a cyclic

p-group. We call it as friend at infinity.

Lemma 1.8. The cyclic group C32 has a type-1 friend at infinity.

Proof. Let ne = 3 · 13e for e ≥ 1. Then, A(ne) = A(3) × A(13e) = 4
3 .

(13e+1−1)
13e.12 .

Using this we get

lim
e→∞

A(ne) = lim
e→∞

(13e+1 − 1)

12.13e
· 4

3
=

13

9
= A(C9).

This completes the proof. �

We are now interested in looking for the type-2 friends of a cyclic p-group.

Lemma 1.9. A cyclic p-group can not have an abelian type-2 friend.

Proof. Let G be a friend of a cyclic group of order pα. Then,

A(G) =
1 + p+ p2 + . . .+ pα−1 + pα

pα
≤ 2 · pα

pα
= 2.

Therefore, by Leinster’s abelian quotient theorem [9], if G is abelian then it must

be cyclic. Hence, G can not be a type-2 friend of a cyclic p-group. �
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By virtue of Lemma 1.9, in order to identify the type-2 friends of a cyclic p-

group, we need to look into the class of non-abelian groups. For a cyclic group of

order p, first we characterize the order of its type-2 friend in the following lemma.

Lemma 1.10. Let G be a cyclic p-group of order p. Then any type-2 friend G1 of

G must be of order pn, where n is the sum of orders of all normal subgroups of G1

except the whole group.

Proof. Let G1 be a type-2 friend of G. Then

A(G1) =

∑
H1/G1

|H1|

|G1|
=

1 + p

p
= A(G).

This means that

|G1| = p×

∑
H1/G1

|H1|

p+ 1
.

Since gcd(p, p+ 1) = 1, we conclude that |G1| = pn, where n is a positive integer.

Next, we explicitly find the value of n. Let x be the sum of orders of all non-trivial

and proper normal subgroups of G1. Then, we have

A(G1) =
1 + x+ np

np
=

1 + p

p
= A(G).

This means that 1 + x = n. �

Next, we study certain properties of type-2 friends of a cyclic group of order p

in the following propositions and theorems.

Proposition 1.11. If G is a type-2 friend of a cyclic group of order p, then the

following holds:

(1) G can not be simple,

(2) p does not divide |G/G′|, where G′ denotes the commutator subgroup of G,

(3) For any prime divisor q of |G/G′|, q > p.

Proof. If G is simple, then using Lemma 1.10 and Proposition 1.7, we have A(G) =
1+pn
pn 6= 1+p

p for any positive integer n ≥ 2. For (2), we suppose p | |G/G′|. Then

(4) of Proposition 1.7 yields A(G/G′) ≤ A(G)= 1+p
p < 2. By virtue of [9], it follows

that G/G′ is cyclic. Consequently, A(G/G′) > 1+p
p which is not true. Finally, we

prove (3). For any prime divisor q of |G/G′|, there must be a normal subgroup

of G/G′ of order q. Hence, we have 1+q
q < A(G/G′) ≤ A(G)= 1+p

p . This gives

q > p. �

Proposition 1.12. Let G be a type-2 friend of Cp having order pn such that p is

an odd prime and n ∈ Z+, where p - n. Then Sylow p-subgroup is normal in G.
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Proof. We have the following two cases depending on whether n is even or odd.

Case 1: n is odd.

We show the result via induction on the order of group G. It is straight-forward

to see that the result is true for groups of order p, 3p, 5p. Let it be true for all

such groups of order less than pn. By Fiet-Thompson Theorem [4], G is solvable.

Then G′ is a proper normal subgroup of G and p | |G′| (cf. Proposition 1.11). In

particular, the Sylow p-subgroup P is normal in G′ and hence it is normal in G.

This is because any two Sylow p-subgroups are conjugate in G and hence conjugate

in G′ as G′ is normal in G.

Case 2: n is even.

Let n = 2αm, where α ≥ 1 and m odd. We again show the result via induction.

One can note that the result is true for groups of order 2p, 4p, 6p (if |G| = 4p, where

p is an odd prime, then G is solvable [2]. As p | |G′| (cf. Proposition 1.11), |G′| = p

or 2p. In either case, Sylow p-subgroup is normal in G). Suppose it is true for all

such groups of order less than pn. As G is non-simple, let N be a maximal normal

subgroup of G. Then G/N is either a cyclic group of prime order or a non-abelian

simple group. So, either |G/N | = q, where q 6= p for some prime divisor q of n or

G/N is a non-abelian simple group. In either case, we have |N | = p · 2β ·m1, where

2βm1 < n. Consequently, the induction hypothesis implies that Sylow p-subgroup

is normal in N and hence normal in G. This completes the proof. �

Theorem 1.13. Let G be a non-abelian group of order pn, where p - n. Then G

can not be a type-2 friend of Cp.

Proof. Suppose that G is a type-2 friend of Cp. If p = 2, then G has a normal

subgroup of order n (subgroup of all odd order elements). Hence, Lemma 1.10 gives

n = 1 + x ≥ 1 + n > n, where x is the sum of order of all non-trivial and proper

normal subgroups of G. But this is a contradiction. Hence p can not be 2.

If p 6= 2, then by Proposition 1.12, Sylow p-subgroup P is normal inG. Therefore,

by Schur-Zassenhaus Theorem [8], G = P oφ G1, where G1 is a subgroup of G of

order n and φ : G1 → Aut(P ) is a group homomorphism that represents the action

(by conjugation) of G1 on P . Here Aut(P ) represents the automorphism group

of P . If φ is a trivial homomorphism, then G1 is a normal subgroup of G and so

n = 1 + x ≥ 1 +n > n, which is a contradiction. If φ is non-trivial, then (p− 1) | n
as Aut(P ) ∼= Cp−1. Hence, n can not be odd. We note that the kernel of φ, i.e.,

Ker(φ) 6= {e}, where e is the identity of G1 (if Ker(φ) = {e}, then n ≤ p − 1 and

hence Sylow p-subgroup is normal and n = 1 + x ≥ 1 + p > 1 + n > n, which is

not possible). Thus, φ induces an injective homomorphism φ̃ : G1/Ker(φ) ↪→ Cp−1,
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which implies that |G1/Ker(φ)| divides p− 1. So, |Ker(φ)| = nr
p−1 for some positive

integer r. Therefore, we have

n = 1 + x ≥ 1 + p

(
nr

p− 1

)
> 1 + nr > n,

which is a contradiction. Hence, G can not be a type-2 friend of Cp. �

Theorem 1.14. If G is a non-abelian group of order pn, where p | n, then G

can not be a type-2 friend of Cp if the Sylow p-subgroup is either cyclic or its

automorphism group is itself a p-group.

Proof. Let G be a type-2 friend of Cp and n = pαm for some α ≥ 1 and m is

a positive integer coprime to p. First, we show that Sylow p-subgroup is normal

in G by induction on the order of group. The result is true for groups of order

pα+1, 2pα+1, 3pα+1 for any positive integer α ( if |G| = 3 · 2α+1, then G is solvable

[2]. As 2 - |G/G′| (cf. Proposition 1.11), |G′| = 2α+1 and hence Sylow p-subgroup

is normal in G). As G is not simple, let N be a maximal normal subgroup of G.

Then either |G/N | = q for some prime q | n or G/N is a non-abelian simple group.

By induction hypothesis, |N | = pα+1m1, for some m1 | m and Sylow p-subgroup P

is normal in N and hence normal in G. Therefore, by Schur-Zassenhaus Theorem

[8], G = P oϕ G1, where G1 is a subgroup of G of order m and ϕ denotes the

action of G1 on P by conjugation. Now, if ϕ is trivial, then G1 is normal in G and

G/G1
∼= P . So,

pαm = n = 1 + x ≥ 1 +m(1 + p+ p2 + · · ·+ pα) ≥ 1 +mpα > mpα = n,

which is absurd.

Next, we note that if Aut(P ) is a p-group, then ϕ is trivial as p is coprime to m. If

P is a cyclic p-group, then Aut(P ) ∼= Cpα(p−1) for p odd. Therefore, |G1/Ker(ϕ)| |
(p− 1)pα, which further implies that |G1/Ker(ϕ)| | (p− 1). So, |Ker(ϕ)| = ms

p−1 for

some positive integer s. Hence,

pαm = n = 1 + x ≥ 1 + pα+1

(
ms

p− 1

)
= 1 + pαm

(
ps

p− 1

)
> n,

which is absurd. Thus, result holds. �

Because of our main results, we are in a position to make the following conjecture:

Conjecture 1.15. All cyclic p-groups for prime p are solitary of type-2.

It is found that abelian (non-cyclic) p-groups are not solitary of type-2, in general.

For example:

(1) C5×C5 and C22·52·31 = C3100 are type-2 friends with abundancy index 56
25 .
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(2) C2×C2 and C29·3·31 = C47616 are type-2 friends with abundancy index 11
4 .

Appendix: In this section, we give a GAP algorithm to compute the abundancy

index of any finite group. Let the order of group be n and let its GAP identity be

SmallGroup(n, r) for some positive integer r. Comments are enclosed in between

%.

Algorithm 1. Algorithm to compute abundancy index of any group.

G :=SmallGroup(n, r);

N :=NormalSubgroups(G); % this lists all normal subgroups of G%

t :=Size(N); % total number of normal subgroups of G%

s := 0; % setting the initial counter to 0%

% initiating for loop to find the sum of orders of normal subgroups%

for i in [1..t] do s := s+Size(N [i]); % N [i] is the ith normal subgroup of G.%

od; % end for loop%

s := s/Size(G); % s is the required abundancy index. % �

2. Discussion

We have introduced the notions of friendly groups of type-1 and type-2 and soli-

tary groups and discussed several examples of these groups. Further, we focused

on the type-2 friends of cyclic p-groups and characterize the various possibilities for

type-2 friends of the cyclic group Cp, where p is a prime number. This paper can

be extended in a number of directions. One of the possible extensions is to look for

type-2 friends of cyclic p-groups apart from Cp. Moreover, one can also work on

the characterization of type-1 friends of non-cyclic groups.

Acknowledgement. The authors would like to thank the referee for careful read-

ing of the manuscript and providing many valuable suggestions and comments that

enhanced the quality of this paper.
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