
International Electronic Journal of Algebra
Published Online: July 21, 2025
DOI: 10.24330/ieja.1747239

ON COHOMOLOGY GROUPS OF CURRENT LIE ALGEBRAS

Rosendo García-Delgado

Received: 11 January 2025; Revised: 17 June 2025; Accepted: 23 June 2025
Communicated by Abdullah Harmancı

Abstract. In this work we state a result that relates the cohomology groups
of a Lie algebra g and a current Lie algebra g⊗ S, by means of a short exact
sequence similar to the universal coefficients theorem for modules, where S is a
finite dimensional, commutative and associative algebra with unit over a field
F. Using this result we determine the cohomology group of g⊗S where g is a
semisimple Lie algebra.
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1. Introduction

Let g be a Lie algebra with bracket [ · , · ] and let S be an associative and com-
mutative algebra over a field F with product (s, t) 7→ s t, for all s, t in S. The
skew-symmetric and bilinear map [ · , · ]g⊗S defined on g⊗ S, by

[x⊗ s, y ⊗ t]g⊗S = [x, y]⊗ s t, for all x, y ∈ g, and s, t ∈ S,

yields a Lie algebra in g⊗ S, which is called the current Lie algebra of g by S.
Let ρ : g → gl(V ) be a representation of g on a vector space V , then V is said

to be a g-module. The representation ρ can be extended to a representation R of
g⊗ S on the vector space V ⊗ S by means of

R(x⊗ s)(v ⊗ t) = ρ(x)(v)⊗ s t, for all x, y ∈ g, v ∈ V, s, t ∈ S. (1)

Let C(g;V ) = C0(g;V )⊕ . . .⊕Cp(g;V )⊕ . . . be the space of cochains from g into V ,
where C0(g, V ) = V and Cp(g;V ) is the space of the alternating p-multilinear maps
of g with values in V . For any g-mdule V and p ≥ 0, let d : Cp(g;V ) → Cp+1(g;V )
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be the differential map given by

dλ(x1, . . . , xp+1) =

p+1∑
j=1

(−1)j−1ρ(xj)(λ(x1, . . . , xĵ , . . . , xp+1))

+
∑
j<k

(−1)j+kλ([xj , xk], x1, . . . , xĵ , . . . , xk̂, . . . , xp+1), p > 0,

(2)

where λ is in Cp(g;V ) and x1, . . . , xp+1 are in g. For p = 0, we let d(v)(x) = ρ(x)(v)

where v is in V and x is in g.
The aim of this work is to set a result that relates the cohomology groups H(g⊗

S;V ⊗ S) and H(g;V ), similar to the Universal coefficient theorems for modules
(see [2, Chapter VI, §3, Theorem 3.3]).

To achieve our goal, in Proposition 3.2 we introduce a map T between the set of
cochains of g and cochains of g⊗S, that is sort like a functor except that T (Id) is
not the identity map Id (see §2 and Remark 3.1). Next we prove that there exists a
surjective linear map α between H(g⊗S;V ⊗S) and H(g;V )⊗S (see Proposition
4.2). In Theorem 4.3 we determine the kernel of α and we state a result that relates
the cohomology groups H(g⊗S;V ⊗S) and H(g;V )⊗S by means of a short exact
sequence.

It is a well known result that if V is an irreducible g-module and g is semisimple,
then H(g;V ) = {0} (see [4, Theorem 24.1]). In order to illustrate the results of
this work, we use this and the fact that T (Id) 6= Id to determine the cohomology
group H(g⊗S;V ⊗S), where g is a semisimple Lie algebra and V is an irreducible
g-module (see Proposition 4.5).

The results obtained in this work are focused at knowing the cohomology group
H(g⊗S;V ⊗S), based on the cohomology group H(g;V ). Results in the literature
include those given in [6] for the first and second cohomology groups of a current
Lie algebra g ⊗ S with coefficients in a module V ⊗ A, where V is a g-module
and A is an S-module. Other results are given in [7] (Theorem 2.1) for the second
cohomology group of g⊗S with coefficients in the trivial module and S has no unit.
A description of the cohomology group H(g⊗S;V), where V is a trivial g⊗S is given
in [5]. It seems that one of the first results with this focus appears in [1], where
it is shown that cohomology of g ⊗ S, where S is a local algebra, can be reduced
to cohomology of g. On the other hand, it is unknown if there exists a criterion
for recognizing whether an arbitrary Lie algebra is a current Lie algebra. A step
in this direction can be found in [3], where examples in 4-dimensional current Lie
algebras are given. All vector spaces considered in this work are finite dimensional
over a unique field F of zero characteristic.
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2. The map L : C(g⊗ S;V ) → C(g;V )

The proof of the following result is standard and we omit it.

Proposition 2.1. Let V and S be finite dimensional vector spaces over F. Let
{s1, . . . , sm} be a basis of S. For any X in V ⊗ S, there are unique elements
v1, . . . , vm in V such that X = v1 ⊗ s1 + . . .+ vm ⊗ sm.

Let g ⊗ S be the current Lie algebra of g by S, where S is an m-dimensional
commutative and associative algebra with unit 1 over F. We use the same symbol
for the bracket on g⊗S and the bracket on g, i.e., [x⊗ s, y ⊗ t] = [x, y]⊗ st for all
x, y in g and s, t in S.

We fix a basis {s1, . . . , sm} of S, where s1 = 1. Let X1, . . . , Xp be in g⊗S and Λ

in Cp(g⊗S;V ⊗S), where p > 0. Since Λ(X1, . . . , Xp) lies in V ⊗S, by Proposition
2.1, we write Λ(X1, . . . , Xp) as follows:

Λ(X1, . . . , Xp) = Λ1(X1, . . . , Xp)⊗ s1 + . . .+ Λm(X1, . . . , Xp)⊗ sm, (3)

where Λj(X1, · · · , Xp) belongs to V for all j. As Λ is in Cp(g⊗S;V ⊗S), the map
(X1, . . . , Xp) 7→ Λj(X1, . . . , Xp) belongs to Cp(g ⊗ S;V ). We denote this map by
Λj for all 1 ≤ j ≤ m.

Let {ω1, . . . , ωm} ⊂ S∗ be the dual basis of {s1, . . . , sm}. For each j, the bilinear
map (v, s) 7→ ωj(s)v yields the linear map ω̂j : V ⊗ S → V , v ⊗ s 7→ ωj(s) v. By
Proposition 2.1, we can write any X in V ⊗S, as X = v1⊗ s1+ . . .+ vm⊗ sm, then
vj = ω̂j(X). Similarly, if Λ is in Cp(g ⊗ S;V ⊗ S), where p > 0, by (3) it follows
Λj = ω̂j ◦ Λ for all 1 ≤ j ≤ m.

For each j, define the map χj : C(g⊗S;V ⊗ S) → C(g⊗ S;V ) by

χj(Λ) = ω̂j ◦ Λ, for Λ ∈ Cp(g⊗ S;V ⊗ S), p > 0, and

χj(v ⊗ s) = ω̂j(v ⊗ s), for v ∈ V and s ∈ S.
(4)

Then for any Λ in Cp(g⊗ S;V ⊗ S), where p ≥ 0, we have

If Λ(X1,. . . ,Xp)=Λ1(X1, . . . ,Xp)⊗s1+. . .+Λm(X1, . . . ,Xp)⊗sm,

then Λj = χj(Λ) for each 1 ≤ j ≤ m.
(5)

Let L : C(g⊗ S;V ) → C(g;V ) be the map defined by

L(v) = v, for all v ∈ V, and

L(λ)(x1, . . . , xp) = λ(x1 ⊗ 1, . . . , xp ⊗ 1),
(6)

where λ is in Cp(g ⊗ S;V ), and x1, . . . , xp are in g. Let D be the differential in
C(g⊗S;V ⊗S) (see (2)). In the next result, we will prove that D, d, L and χj can
be inserted into a commutative diagram.
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Proposition 2.2. For each j, the following diagram is commutative

Cp(g⊗ S;V ⊗ S)
χj //

D

��

Cp(g⊗ S;V )
L // Cp(g;V )

d

��
Cp+1(g⊗ S;V ⊗ S)

χj // Cp+1(g⊗ S;V )
L // Cp+1(g;V )

(7)

That is d ◦L ◦ χj = L ◦ χj ◦D. By (5), this is equivalent to

L ((DΛ)j) = dL(Λj), for each 1 ≤ j ≤ m. (8)

Proof. Let Λ be in Cp(g ⊗ S;V ⊗ S) as in (5). Applying (5) to DΛ, we ob-
tain (DΛ)j = χj(DΛ) for all j. Then (8) holds if and only if the diagram (7) is
commutative, that is

L ((DΛ)j) = L (χj(DΛ)) = L ◦ χj ◦DΛ, and

d (L(Λj)) = dL(χj ◦ Λ) = d ◦L ◦ χj(Λ).
(9)

We shall prove that L ((DΛ)j) = d (L(Λj)). Let Xi = xi ⊗ 1, where xi belongs to
g for all 1 ≤ i ≤ p+ 1. By (2), we have

DΛ(X1, . . . , Xp+1)=

p+1∑
i=1

(−1)i−1R(Xi)(Λ(X1, . . . , Xī, . . . , Xp+1))

+
∑
i<k

(−1)i+kΛ([Xi, Xk], X1, . . . , Xî, . . . , Xk̂, . . . , Xp+1).

(10)

Applying (5) to Λ in (10) above, it follows

DΛ(X1, . . . , Xp+1)

=

p+1∑
i=1

m∑
j=1

(−1)i−1R(Xi) (Λj(X1, . . . , Xī, . . . , Xp+1)⊗sj)

+
∑
i<k

m∑
j=1

(−1)i+kΛj([Xi, Xk], X1, . . . , Xī, . . . , Xk̄, . . . , Xp+1)⊗sj .

(11)

Let us analyze each of the terms

R(Xi) (Λj(X1, . . . , Xī, . . . , Xp+1)⊗sj) , and

Λj([Xi, Xk], X1, . . . , Xī, . . . , Xk̄, . . . , Xp+1)⊗sj

given in (11). Applying the representation R (see (1)) and L (see (6)), we obtain

R(Xi) (Λj(X1, . . . , Xî, . . . , Xp+1)⊗ sj)

= ρ(xi) (Λj(X1, . . . , Xî, . . . , Xp+1))⊗ sj

= ρ(xi) (L(Λj)(x1, . . . , xî, . . . , xp+1))⊗ sj

(12)
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as Λj(X1, . . . , Xî, . . . , Xp+1)=L(Λj)(x1, . . . , xî, . . . , xp+1). In addition,

Λj([Xi, Xk], X1, . . . , Xî, . . . , Xk̂, . . . , Xp+1)

= L(Λj)([xi, xk], . . . , xî, . . . , xk̂, . . . , xp+1), for all 1 ≤ j ≤ m,
(13)

as [Xi, Xk]=[xi, xk]⊗1. We substitute (12)-(13) in (11), to get

DΛ(X1, . . . , Xp+1) = DΛ(x1 ⊗ 1, . . . , xp ⊗ 1)

=

p+1∑
i=1

m∑
j=1

(−1)i−1ρ(xi) (L(Λj)(x1, . . . , xî, . . . , xp+1))⊗ sj

+
∑
i<k

m∑
j=1

(−1)i+kL(Λj)([xi, xk], . . . , xî, . . . , xk̂, . . . , xp+1)⊗ sj .

(14)

In (14) we gather the terms corresponding at each sj and we obtain

DΛ(x1 ⊗ 1, . . . , xp ⊗ 1) =

m∑
j=1

d (L(Λj)) (x1, . . . , xp+1)⊗ sj . (15)

On the other hand, applying (5) to DΛ, we obtain

DΛ(x1 ⊗ 1, . . . , xp ⊗ 1) =

m∑
j=1

(D(Λ))j (x1 ⊗ 1, . . . , xp ⊗ 1)⊗ sj . (16)

By (6), (DΛ)j(x1 ⊗ 1, . . . , xp ⊗ 1) = L ((DΛ)j) (x1, . . . , xp). Then from (15) and
(16), it follows L ((DΛ)j) = dL(Λj) for each 1 ≤ j ≤ m. Therefore by (9), the
diagram (7) is commutative. □

3. The map T : C(g) → C(g⊗ S)

Let C(g) be the set of cochains of g, i.e., C(g) = {C(g;V ) |V is a g-module}. We
define a map T : C(g) → C(g⊗ S) by

T (Cp(g;V )) = Cp(g⊗ S;V ⊗ S), for p > 0, and
T (V ) = V ⊗ S, where V is a g-module.

(17)

From now on, we assume that x, x1, . . . , xp+1 are in g; s, t, t1, . . . , tp+1 are in S; u
is in U , v is in V , w is in W ; U, V,W are finite dimensional g-modules. We also
consider any cochain Λ as in (5). For t1, . . . , tp in S, we write t̃ = t1 · · · tp.

Given a linear map f : V → W , where V,W are in C(g), we shall define a linear
map T (f) : T (U) → T (V). We shall consider four cases.
Case 1: Let f : Cp(g;V ) → Cp(g;W ) be a linear map. We define the linear map
T (f) : Cp(g⊗ S;V ⊗ S) → Cp(g⊗ S;W ⊗ S) by

T (f)(Λ)(x1 ⊗ t1, . . . , xp ⊗ tp) =

m∑
j=1

f (L(Λj)) (x1, . . . , xp)⊗ sj t̃. (18)
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Observe that by (5), we can write Λ as

Λ(x1 ⊗ t1, . . . , xp ⊗ tp) =

m∑
j=1

Λj(x1 ⊗ t1, . . . , xp ⊗ tp)⊗ sj ,

where Λj belongs to Cp(g ⊗ S, V ) for all j. Since L(Λj) belongs to Cp(g, V ), it
makes sense to consider f(L(Λj)) in (18) above.
Case 2: Now consider p = 0, f : V → W a linear map and v⊗s in C0(g⊗S;V ⊗S) =
V ⊗ S. We define T (f) : V ⊗ S → W ⊗ S by

T (f)(v ⊗ s) = f(v)⊗ s. (19)

In this case we also denote T (f) by f ⊗ S.
Case 3: Let f : V → Cp(g;W ) be a linear map. We define the linear map T (f) :

V ⊗ S → Cp(g⊗ S;V ⊗ S) by

T (f)(v ⊗ s)(x1 ⊗ t1, . . . , xp ⊗ tp) = f(v)(x1, . . . , xp)⊗ s t̃. (20)

Case 4: Let f : Cp(g;V ) → W be a linear map. We define the linear map T (f) :

Cp(g⊗ S;V ⊗ S) → W ⊗ S by

T (f)(Λ) = f(L(Λ1))⊗ s1 + . . .+ f(L(Λm))⊗ sm. (21)

Remark 3.1. If Id is the identity map on Cp(g;V ), then T (Id) is not the identity
map on Cp(g ⊗ S;V ⊗ S). Indeed, let Λ be in Cp(g ⊗ S;V ⊗ S). By definition of
L and (18), it follows

T (Id)(Λ)(x1⊗t1, . . . , xp⊗tp)=

m∑
j=1

Id (L(Λj)) (x1, . . . , xp)⊗sj t̃

=

m∑
j=1

L(Λj)(x1, . . . , xp)⊗sj t̃=

m∑
j=1

Λj(x1⊗1, . . . , xp⊗1)⊗sj t̃.

(22)

Then T (Id)(Λ) = Λ if and only if

Λ(x1 ⊗ t1, . . . , xp ⊗ tp) =

m∑
j=1

Λj(x1 ⊗ 1, . . . , xp ⊗ 1)⊗ sj t̃. (23)

As we mentioned in the introduction, we will determine the cohomology group
H(g ⊗ S;V ⊗ S), where V is an irreducible g-module and g is a semisimple Lie
algebra (see Proposition 4.5). Apart from the fact that in this case H(g;V ) = {0},
we find this case interesting to apply our results since the condition given in (23),
is exactly the fact that helps to determine the cohomology group H(g⊗S;V ⊗S).

In the next result, we prove that T preserves the composition of maps.
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Proposition 3.2. The cochain complexes maps f : Cp(g;V ) → Cp(g;V ) and g :

Cp(g;V ) → Cp(g;W ) yield a map T (g◦f) from Cp(g⊗S;U⊗S) to Cp(g⊗S;W⊗S)
satisfying T (f ◦ g) = T (f) ◦ T (g).

We shall verify that if f : U → V and g : V → W are maps in C(g), then
T (g ◦ f) = T (g) ◦ T (f) : T (U) → T (W). Several cases should be considered and
we only will prove one of them. The proof of the remaining cases uses the same
arguments.

Claim 1. Let f : Cp(g;U) → Cp(g;V ) and g : Cp(g;V ) → Cp(g;W ) be maps, then
T (g ◦ f) = T (g) ◦ T (f) is a map between Cp(g⊗S;U ⊗S) and Cp(g⊗S;W ⊗S).

Proof. Let Λ be in Cp(g⊗S;U⊗S), and Θ=T (f)(Λ). By (18), we have

T (g)(Θ)(x1 ⊗ t1, · · · , xp ⊗ tp) =

m∑
j=1

g(L(Θj))(x1, . . . , xp)⊗ sj t̃, (24)

where Θj = ω̂j ◦ T (f)(Λ) (see (5)). We claim that L(Θj) = f(L(Λj)). Indeed,
using the definition of L and applying (18) to T (f)(Λ), we get

L(Θj)(x1, . . . , xp) = Θj(x1 ⊗ 1, . . . , xp ⊗ 1)

= ω̂j ◦ T (f)(Λ)(x1 ⊗ 1, . . . , xp ⊗ 1)

= ω̂j

(
m∑

k=1

f (L(Λk)) (x1, . . . , xp)⊗ sk

)
= f(L(Λj))(x1, . . . , xp).

Then L(Θj) = f(L(Λj)), for all j. Substituting this in (24), we obtain

T (g)◦T (f)(Λ)(x1⊗t1,. . ., xp⊗tp) =

m∑
j=1

(g ◦ f)(L(Λj))(x1, . . . , xp)⊗sj t̃,

= T (g ◦ f)(Λ)(x1⊗t1, · · · , xp⊗tp).

In the last step above we use (18). Thus T (g ◦ f)=T (g) ◦ T (f). □

Proposition 3.3. Let f : C(g;V ) → C(g;W ) be a map of complexes, that is
d ◦f = f ◦ d and f(Cp(g;V )) ⊂ Cp(g;W ) for all p ≥ 0. Then T (f) : C(g⊗ S;V ⊗
S) → C(g⊗ S;W ⊗ S) is a map of complexes.

Proof. To shorten the length of expressions, we will use the notation:

x t = (x1 ⊗ t1, . . . , xp+1 ⊗ tp+1),

(x t)i = (x1 ⊗ t1, . . . , xî ⊗ t̂i, . . . , xp+1 ⊗ tp+1),

(x t)i,j = (x1 ⊗ t1, . . . , xî ⊗ t̂i, . . . , xĵ ⊗ tĵ , . . . , xp+1 ⊗ tp+1),

x = (x1, . . . , xp+1), xi = (x1, . . . , xî, . . . , xp+1),

xi,j = (x1, . . . , xî, . . . , xĵ , . . . , xp+1).

(25)
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Let Λ be in Cp(g⊗S;V ⊗S), p > 0. We shall prove that D ◦T (f)(Λ) = T (f)◦DΛ.
Indeed, first we apply D to T (f)(Λ):

D T (f)(Λ)(x t) =
p+1∑
i=1

(−1)i−1R(xi ⊗ ti) (T (f)(Λ)) ((x t)i)

+
∑
i<j

(−1)i+jT (f)(Λ) ([xi ⊗ ti, xj ⊗ tj ], (x t)i,j).
(26)

We write A and B to denote the first and second term in (26), respectively, i.e.,
D T (f)(Λ)(x t)=A+B. Applying (18) to T (f)(Λ) in A, we obtain

A =

p+1∑
i=1

m∑
k=1

(−1)i−1R(xi ⊗ ti)
(
f(L(Λk))(xi)⊗ sk t̂i

)
, (27)

where t̂i = t1 · · · ti−1ti+1 · · · tp+1. In (27) above, we apply R(xi⊗ti) to f(L(Λk))(xi)⊗
sk t̂i (see (1)), and we get

A =

p+1∑
i=1

m∑
k=1

(−1)i−1ρ(xi) (f (L(Λk)) (xi)⊗ sk t̃, (28)

because t̃= tit̂i. Regarding to B, we fix i<j; by (25), we have

T (f)(Λ) ([xi ⊗ ti, xj ⊗ tj ], (x t)i,j)

=T (f)(Λ)
(
[xi, xj ]⊗titj , x1 ⊗ t1, . . . , xî⊗ t̂i, . . . , xĵ⊗tĵ , . . . , xp+1⊗tp+1

)
=

m∑
k=1

f (T (Λk)) ([xi, xj ],xi,j)⊗ sk t̃ (we use (18))

because t̃ = (titj)(t1 · · · t̂i · · · tĵ · · · tp+1). Hence,

B =
∑
i<j

m∑
k=1

(−1)i+jf (L(Λk)) ([xi, xj ],xi,j)⊗ sk t̃. (29)

From (28) and (29), it follows:

D T (f)(Λ)(x t) = A+B =

m∑
k=1

d (f (L(Λk))) (x)⊗ sk t̃. (30)

By hypothesis, f is a map of complex, then f ◦ d = d ◦f . By (8), d(L(Λk)) =

L((DΛ)k), then by (30), we get

D T (f)(Λ)(x t) =
m∑

k=1

f(d(L(Λk)))(x)⊗ sk t̃

=

m∑
k=1

f ((L(DΛ)k)) (x)⊗ sk t̃ = T (f)(DΛ)(x t). (We use (18).)
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As Λ is arbitrary, it follows D ◦T (f)=T (f) ◦ D. The proof of the case p = 0 uses
the same arguments. □

4. The map α : H(g⊗ S;V ⊗ S) → H(g;V )⊗ S

Let V be a g-module. We denote the group of cocycles and coboundaries of
C(g;V ), by Z and B, respectively. The cohomology group of g with coefficients in
V is denoted by H(g;V ). The quotient C(g;V )/B is denoted by Z ′ and C(g;V )/Z
is denoted by B′.

By [4, Chapter IV, §23], Z and B are g-modules, then Z ′,B′ and H(g;V ) are g-
modules. Moreover, as in the classical and standard way, the g-modules Z,B,Z ′,B′

and H(g;V ) will be regarded as modules with zero differentiation (see [2, Chapter
IV, §1]).

Lemma 4.1. For p = 0, H0(g⊗ S;V ⊗ S) = H0(g;V )⊗ S.

Proof. For p = 0, we have Z0 = H0(g;V ). Let v̄ be an element in H0(g⊗ S;V ⊗
S) ⊂ V ⊗ S. We write v̄ = v1 ⊗ s1 + . . . + vm ⊗ sm, where vj belongs to V for all
1 ≤ j ≤ m (see Proposition 2.1). Then

0 = D(v̄)(x⊗ 1) = R(x⊗ 1)(v̄)

= ρ(x)(v1)⊗ s1 + . . .+ ρ(x)(vm)⊗ sm

= d(v1)(x)⊗ s1 + . . .+ d(vm)(x)⊗ sm.

(31)

Whence d(vj) = 0 and vj belongs to H0(g;V ) for all j, which implies that v̄ belongs
to H0(g;V )⊗ S. Hence, H0(g⊗ S;V ⊗ S) ⊂ H0(g;V )⊗ S.

Let v̄ be in H0(g;V ) ⊗ S ⊂ V ⊗ S. By Proposition 2.1, there are v1, . . . , vm in
H0(g;V ) such that v̄ = v1⊗s1+. . .+vm⊗sm. As each vj belongs to H0(g; v) = Z0,
then d(vj) = 0. Thus,

D(v̄)(x⊗ s) = R(x⊗ s)(v̄) =

m∑
j=1

R(x⊗ s)(vj ⊗ sj)

=

m∑
j=1

ρ(x)(vj)⊗ ssj =

m∑
j=1

d(vj)(x)⊗ ssj = 0.

Hence D(v̄) = 0, and v̄ is in H0(g ⊗ S;V ⊗ S). Therefore H0(g ⊗ S;V ⊗ S) =

H0(g;V )⊗ S. □

Let ι : Z → C(g;V ) be the inclusion map. By (20), we get a map T (ι) : Z⊗S →
C(g ⊗ S;V ⊗ S). Since Z ⊗ S has zero differential, we can define a map Φ from
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Z ⊗ S into H(g⊗ S;V ⊗ S), by

Φ : Z ⊗ S −→ H(g⊗ S;V ⊗ S)
x̄ 7→ T (ι)(x̄) + B(g⊗ S;V ⊗ S).

(32)

Consider π′ : C(g;V ) → Z ′ defined by π′(λ) = λ + B. By (21), we get a map
T (π′) : C(g⊗S;V ⊗S) → Z ′ ⊗S. As Z ′ ⊗S has zero differential, we can define a
map Ψ from H(g⊗ S;V ⊗ S) into Z ′ ⊗ S by

Ψ : H(g⊗S;V ⊗S) −→ Z ′⊗S

Λ + B(g⊗S;V ⊗S) 7→ T (π′)(Λ)=

m∑
j=1

(L(Λj) + B)⊗sj .
(33)

We shall prove that Ψ is well-defined. Let σ be in C(g⊗ S;V ⊗ S). Using (8) and
(21), as well as π′ ◦ d = 0, we obtain

T (π′)(Dσ) = π′ (L((Dσ)1))⊗ s1 + . . .+ π′ (L((Dσ)m))⊗ sm

= π′ (dL(σ1))⊗ s1 + . . .+ π′ (dL(σm))⊗ sm = 0.

Then B(g⊗ S;V ⊗ S) ⊂ Ker(T (π′)), hence Ψ is well-defined.
Let π : Z → H(g;V ) be the projection map and ι′ : H(g;V ) → Z ′ be the

inclusion map. In the next result we will prove that there exists a surjective linear
map α between H(g⊗ S;V ⊗ S) and H(g;V )⊗ S.

Proposition 4.2. Let g⊗ S be the current Lie algebra of g by S.

(i) For any g-module V , there exists a unique surjective linear map α :H(g ⊗
S;V ⊗ S)→H(g;V )⊗ S that makes commutative the diagram

Z ⊗ S
π⊗S //

Φ

��

H(g;V )⊗ S

ι′⊗S

��
H(g⊗ S;V ⊗ S) Ψ //

α

66nnnnnnnnnnnnnnnnnn
Z ′ ⊗ S

(34)

(ii) Let f : C(g;V ) → C(g;W ) be a map of complexes and consider H(f) :

H(g;V )→H(g;W ) the map induced by f , i.e., H(f)(λ + B) = f(λ) + B.
Then the following diagram is commutative

H(g⊗ S;V ⊗ S)
H(T (f))

//

αV

��

H(g⊗ S;W ⊗ S)

αW

��
H(g;V )⊗ S

H(f)⊗S=T (H(f))
// H(g;W )⊗ S

(35)

where H(T (f)) is the map induced by T (f).
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Proof. (i) Let η : B → Z be the inclusion map and ζ : Z ′ → B′ be the map defined
by ζ(λ+ B) = λ+ Z. We have the following short exact sequences

0 // H(g;V )
ι′ // Z ′ ζ // B′ // 0,

0 // B
η // Z π // H(g;V ) // 0.

Since S is finite dimensional, the following sequences are exact

0 // H(g;V )⊗ S
ι′⊗S // Z ′ ⊗ S

ζ⊗S // B′ ⊗ S // 0,

0 // B ⊗ S
η⊗S // Z ⊗ S

π⊗S // H(g;V )⊗ S // 0.

Whence, π⊗S is surjective and ι′ ⊗S is injective. Since ι′ ◦ π = π′ ◦ ι, Proposition
3.2 leads to the commutativity of the following diagram:

Z ⊗ S
π⊗S //

T (ι)

��

H(g;V )⊗ S

ι′⊗S
��

C(g⊗ S;V ⊗ S)
T (π′)

// Z ′ ⊗ S

(36)

By (32) and (33), we have the commutative diagram

0

��
Z ⊗ S

π⊗S //

Φ

��

H(g;V )⊗ S

ι′⊗S
��

// 0

H(g⊗ S;V ⊗ S) Ψ // Z ′ ⊗ S

(37)

If α and α′ make commutative the diagram (37), then (ι′ ⊗ S)◦α = (ι′ ⊗ S)◦α′.
As ι′ ⊗ S is injective, it follows α = α′.

Claim 2. For p = 0, α : H(g⊗ S;V ⊗ S) → H(g, V )⊗ S is the identity map.

Proof. For p = 0, T (ι) = ι⊗ S because ι : Z0 → C0(g;V ) and V = C0(g;V ) (see
(19)). Then Im(T (ι)) = Im(ι⊗ S) = Z0 ⊗ S = H0(g;V )⊗ S = H0(g⊗ S;V ⊗ S).
Hence, by (32), Φ0 : Z0 ⊗ S → H0(g⊗ S;V ⊗ S) is the identity map.

Similarly for p = 0, π′ : C(g;V ) → Z ′ is the identity, as C0(g, V ) = V and Z ′0=

V . Since both V and Z ′ have zero differential, by (19), T (π′) = IdV ⊗S = IdV⊗S

is the identity on V ⊗S. Therefore, Ψ0 :H0(g⊗S;V ⊗S)→Z ′0⊗S is the inclusion
(see (33)).
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For p = 0, the map π ⊗ S : Z0 ⊗ S → H0(g;V ) ⊗ S is the identity, as Z0 =

H0(g, V ). Similarly, ι′ ⊗ S : H0(g;V ) ⊗ S → Z ′0 ⊗ S is the inclusion map, as
Z ′0 = C0(g, V )/B0(g, V ) = V .

In summary, for p = 0, we have that Φ0 and π ⊗ S are the identity maps while
Ψ0 and ι′⊗S are the inclusion maps. Since any map that makes commutative (34)
is unique, we deduce that α is the identity for p = 0. □

Now we shall consider p > 0. If Im(Ψ) ⊂ Im (ι′ ⊗ S) = Ker (ζ ⊗ S), then there
exists a map α between H(g⊗S;V ⊗S) and H(g;V )⊗S. We shall now prove this
assertion.

Claim 3. The composition (ζ ⊗ S) ◦Ψ is zero.

Proof. For p > 0, let Λ be in Cp(g⊗ S;V ⊗ S) such that DΛ = 0. By (8), L(Λj)

belongs to Z for all j. By (19) and (33), we have

(ζ ⊗ S) ◦Ψ(Λ + B(g⊗ S;V ⊗ S))

= (ζ ⊗ S) ((L(Λ1) + B)⊗ s1 + . . .+ (L(Λm) + B)⊗ sm)

= (L(Λ1) + Z)⊗ s1 + . . .+ (L(Λm) + Z)⊗ sm = 0.

Then the composition (ζ ⊗ S) ◦Ψ is zero for p > 0. Using a similar argument, it is
proved that (ζ ⊗ S) ◦Ψ = 0 for p = 0. □

Claim 4. There exists a linear map α : H(g⊗S;V ⊗S) → H(g;V )⊗S that makes
commutative the diagram (34).

Proof. Since Im(Ψ) ⊂ Ker(ζ ⊗ S) = Im(ι′ ⊗ S) (see Claim 3), for each Λ in
H(g⊗S;V ⊗S), there exists θ in H(g;V )⊗S such that Ψ(Λ) = (ι′ ⊗ S) (θ). Since
ι′ ⊗ S is injective, θ is unique.

Define α : H(g⊗ S;V ⊗ S) → H(g;V )⊗ S, by α(Λ) = θ, then Ψ = (ι′ ⊗ S) ◦ α.
Since ι′⊗S is injective, Ker(α) = Ker(Ψ). As (37) is commutative, (ι′⊗S)◦(α ◦ Φ)=
(ι′ ⊗ S) ◦ (π ⊗ S). Hence, α ◦ Φ = π ⊗ S and α makes commutative the diagram
(34). □

Claim 5. The map α : H(g⊗ S;V ⊗ S) → H(g;V )⊗ S is surjective.

Proof. Let θ be in H(g;V )⊗ S. Since π ⊗ S is surjective, there exists µ in Z ⊗ S
such that (π ⊗ S) (µ) = θ. Let Λ̄ = Φ(µ), then α(Λ̄) = (α◦Φ)(µ) = (π⊗S)(µ) = θ.
Whence, α is surjective. □

For p > 0, we shall give an explicit description of the map α. Let Λ+B(g⊗S;V ⊗
S) be in H(g⊗S;V ⊗S), where Λ is in Cp(g⊗S;V ⊗S). As α(Λ+B(g⊗S;V ⊗S))
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belongs to H(g;V )⊗ S, by Proposition 2.1, there are µj in Z such that

α(Λ + B(g⊗ S;V ⊗ S))=(µ1 + B)⊗ s1 + · · ·+ (µm + B)⊗ sm. (38)

By (34), (ι′ ⊗ S) ◦ α = Ψ, and using (21) and (33) it follows that:

(ι′ ⊗ S) ◦ α(Λ + B(g⊗ S;V ⊗ S)) = Ψ (Λ + B(g⊗ S;V ⊗ S))

= (L(Λ1) + B)⊗ s1 + . . .+ (L(Λm) + B)⊗ sm.
(39)

Applying ι′ ⊗ S to (38) we get

(ι′ ⊗ S) ◦ α(Λ + B(g⊗ S;V ⊗ S))

= (ι′ ⊗ S)

 m∑
j=1

(µj + B)⊗ sj

 =

m∑
j=1

(µj + B)⊗ sj .
(40)

From (39) and (40), it follows µj + B = L(Λj) + B for all j. Hence, by (38), we
obtain

α(Λ + B(g⊗ S;V ⊗ S))=(L(Λ1) + B)⊗ s1 + . . .+ (L(Λm) + B)⊗ sm. (41)

(ii) We shall prove that if f : C(g;V ) → C(g;W ) is a map of complexes, then
the following diagram is commutative:

H(g⊗ S;V ⊗ S)
H(T (f))

//

αV

��

H(g⊗ S;W ⊗ S)

αW

��
H(g;V )⊗ S

T (H(f))
// H(g;W )⊗ S

(42)

where T (H(f)) = H(f) ⊗ S. Let f ′ : Z ′(g;V ) → Z ′(g;W ) be the map induced
by f , i.e., f ′(λ + B) = f(λ) + B. Then π′ ◦ f = f ′ ◦ π′. Since diagram (34) is
commutative, (33) implies that:

(ι′ ⊗ S) ◦ (αW ◦ H(T (f))

= ((ι′ ⊗ S) ◦ αW ) ◦ H(T (f)) = Ψ ◦ H(T (f)) = T (f ′) ◦Ψ.
(43)

By (19), T (f ′) = f ′ ⊗S and by (34), Ψ = (ι′ ⊗S) ◦αV . In addition, T (ι′) = ι′ ⊗S
and since f is a map of complexes, it follows that ι′ ◦ H(f) = f ′ ◦ ι′. Hence:

T (f ′) ◦Ψ = T (f ′) ◦ (T (ι′) ◦ αV ) = (T (f ′) ◦ T (ι′)) ◦ αV

= T (f ′ ◦ ι′) ◦ αV = T (ι′ ◦ H(f)) ◦ αV

= ((ι′ ◦ H(f))⊗ S) ◦ αV = (ι′ ⊗ S) ◦ ((H(f)⊗ S) ◦ αV ) .

(44)

As ι′ ⊗ S is injective, from (43) and (44), we deduce that αW ◦ H(T (f)) =

(H(f)⊗ S) ◦ αV . Whence, the diagram (42) is commutative. □
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Let R0 = {0} and for each p > 0, define Rp as the subspace of Cp(g⊗S;V ⊗S)
generated by all the cochains Θ satisfying Θ(x1 ⊗ 1, . . . , xp ⊗ 1) = 0. Let R =

⊕p≥0Rp and define Q by

Q = (Z(g⊗ S;V ⊗ S) ∩R+ B(g⊗ S;V ⊗ S)) /B(g⊗ S;V ⊗ S). (45)

Now we shall state the main result of this work.

Theorem 4.3. Let g be a Lie algebra and let S be an m-dimensional, associative
and commutative algebra with unit, over a field F. Let g ⊗ S be the current Lie
algebra of g by S. Let α : H(g⊗S;V ⊗S) → H(g;V )⊗S be the map of Proposition
4.2. Then the following short sequence is exact

0 // Q ι // H(g⊗ S;V ⊗ S) α // H(g;V )⊗ S // 0, (46)

where ι is the inclusion map and Q is the subspace defined in (45).

Proof. By (3), observe that a cochain Θ belongs to R if and only if Θj(x1 ⊗
1, . . . , xp ⊗ 1) = L(Θj)(x1, . . . , xp) = 0, for all j. Then Θ is in R if and only if Θj

belongs to Ker(L) for all j.
In the proof of Claim 4, we showed that Ker(α) = Ker(Ψ). We claim that

Ker(Ψ) = Q. First we assume that p > 0. Let Λ + B(g⊗ S;V ⊗ S) be in Ker(Ψ).
We will find a cochain Θ in R such that Λ+B(g⊗S;V ⊗S) = Θ+B(g⊗S;V ⊗S).
Indeed, by (33), we have

Ψ(Λ + B(g⊗ S;V ⊗ S))=
m∑
j=1

(L(Λj) + B)⊗sj = 0. (47)

Then L(Λj) belongs to B for all j. Hence, there exists θj in Cp−1(g;V ) such that
L(Λj) = d θj . For each j, define ∆j in Cp−1(g⊗S;V ) by

∆j(x1 ⊗ t1, . . . , xp−1 ⊗ tp−1) = ω1 (t1 · · · tp−1) θj(x1, . . . , xp−1).

Then L(∆j) = θj (see (6)). Let ∆ in Cp−1(g⊗ S;V ⊗ S) be defined by

∆(X1, . . . , Xp−1)=∆1(X1, . . . , Xp−1)⊗ s1+. . .+∆m(X1, . . . , Xp−1)⊗ sm,

where X1, . . . , Xp−1 are in g⊗ S. From (8), we have

L(Λj) = d θj = d(L(∆j)) = L((D∆)j), for all 1 ≤ j ≤ m.

Then there exists Θj in Ker(L) such that Λj = (D∆)j + Θj . Let Θ in Cp(g ⊗
S;V ⊗ S) be defined by

Θ(X1, . . . , Xp) = Θ1(X1, . . . , Xp)⊗ s1 + . . .+Θm(X1, . . . , Xp)⊗ sm,
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for all X1, . . . , Xp in g ⊗ S. Since Λj = (D∆)j + Θj for each j, Λ = D∆ + Θ

(see (5)). Since Θj belongs to Ker(L), Θ belongs to R and Λ+B(g ⊗ S;V ⊗ S)=
Θ+B(g⊗ S;V ⊗ S) belongs to Q.

Since DΛ = 0, DΘ = 0. Therefore Λ + B(g⊗ S;V ⊗ S) = Θ + B(g⊗ S;V ⊗ S)
belongs to Q, which proves that Ker(α) ⊂ Q.

Now we affirm Q ⊂ Ker(α). Let Θ + B(g ⊗ S;V ⊗ S) be in Q, where Θ is in
Z(g ⊗ S;V ⊗ S) ∩ R. As Θ(x1 ⊗ 1, . . . , xp ⊗ 1) = 0, then Θj belongs to Ker(L)
for all j. By (47), we have that Θ+ B(g⊗ S;V ⊗ S) belongs to Ker(Ψ) = Ker(α).
Then Ker(α) = Q. Since α is surjective, we deduce that the short exact sequence
(46) is exact for p > 0.

For p = 0, we have Q0 = {0}, because by hypothesis, R0 = {0}. In Lemma 4.1,
we showed that H0(g⊗S;V ⊗S) = H0(g;V )⊗S while in Claim 2, we proved that
α is the identity. Therefore, Ker(α) = {0} = Q0 and the sequence (46) is exact for
p = 0. □

Corollary 4.4. Let g be a Lie algebra and let S be a finite dimensional, associative
and commutative algebra with unit over a field F. Let V be a g-module. Then
H(g⊗ S;V ⊗ S) is isomorphic to H(g;V )⊗ S if and only if

Zp(g⊗ S, V ⊗ S) ∩Rp ⊂ Bp(g⊗ S;V ⊗ S), for all p > 0. (48)

Proof. By Theorem 4.3, we know Ker(α) = Q. By (45), it is clear that Q = {0} if
and only if (48) holds. Observe that for p = 0, Q0 = 0 by definition. Moreover, we
proved that H0(g ⊗ S;V ⊗ S) = H0(g;V ) ⊗ S (see Lemma 4.1) and that α is the
identity map (see Claim 2). □

4.1. Current Lie algebras over semisimple Lie algebras. In the next result,
we will determine the cohomology group H(g⊗S;V ⊗S), where g is a semisimple
Lie algebra and V is an irreducible g-module. It is a well known result that in this
case H(g;V ) = {0} (see [4, Theorem 24.1]). We shall use this fact in proving the
following:

Proposition 4.5. Let g be a semisimple Lie algebra and V an irreducible g-module.
Let S be a finite dimensional, associative and commutative algebra with unit over
a field F of zero characteristic. Then H(g⊗ S;V ⊗ S)=Q.

Proof. As H(g;V ) = {0}, by Theorem 4.3, we get H(g⊗ S;V ⊗ S) = Q. Now we
shall verify this result without using Theorem 4.3.

Let Λ + B(g⊗ S;V ⊗ S) be in H(g⊗ S;V ⊗ S). Then DΛ = 0 and ω̂j ◦ DΛ =

(DΛ)j = 0 for all j. By Proposition 2.2, 0 = L ((DΛ)j) = d (L(Λj)), which
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implies that L(Λj) belongs to Z = B. Hence, there exists µj in C(g;V ) such that
L(Λj) = dµj . Then by (6), we have

Λj(x1 ⊗ 1, . . . , xp ⊗ 1) = dµj(x1, . . . , xp), for all 1 ≤ j ≤ m. (49)

Let Ω in C(g⊗ S;V ⊗ S) be defined by

Ω(x1 ⊗ t1, . . . , xp ⊗ tp) =

m∑
j=1

µj(x1, . . . , xp)⊗ sj t̃, (50)

where t̃ = t1 · · · tp. We claim that

DΩ(x1 ⊗ t1, . . . , xp ⊗ tp) =

m∑
j=1

dµj(x1, . . . , xp)⊗ sj t̃. (51)

Indeed, if we write Ω as in (5), we obtain

Ω(x1 ⊗ t1, . . . , xp ⊗ tp) =
∑
j=1

Ωj(x1 ⊗ t1, . . . , xp ⊗ tp)⊗ sj . (52)

Using (50), (52) and the definition of L, it follows L(Ωj)(x1, . . . , xp) = Ωj(x1 ⊗
1, . . . , xp ⊗ 1)=µj(x1, . . . , xp), then L(Ωj)=µj . From (50), this implies that

Ω(x1 ⊗ t1, . . . , xp ⊗ tp) =

m∑
j=1

Ωj(x1 ⊗ 1, . . . , xp ⊗ 1)⊗ st̃. (53)

On the other hand, by (8), we get

L ((DΩ)j) = dL(Ωj) = dµj for all 1 ≤ j ≤ m. (54)

By Remark 3.1 and (53), we deduce that T (Id)(Ω) = Ω. Then by Proposition 3.3,
DΩ = D T (Id)(Ω) = T (Id)(DΩ). Hence by (18) and (54),

DΩ(x1 ⊗ t1, . . . , xp ⊗ tp) = T (Id)(DΩ)((x1 ⊗ t1, . . . , xp ⊗ tp))

=

m∑
j=1

L ((DΩ)j) (x1, . . . , xp)⊗ sj t̃ =

m∑
j=1

dµj(x1, . . . , xp)⊗ sj t̃,

which proves (51). Let Θ = Λ−DΩ. By (49) and (51), we obtain

Θ(x1 ⊗ 1, . . . , xp ⊗ 1)=Λ(x1 ⊗ 1, . . . , xp ⊗ 1)−DΩ(x1 ⊗ 1, . . . , xp ⊗ 1)

=

m∑
j=1

Λj(x1 ⊗ 1, . . . , xp ⊗ 1)⊗ sj −
m∑
j=1

dµj(x1, . . . , xp)⊗ sj = 0.

Then Θ+ B(g⊗ S;V ⊗ S) belongs to Q and H(g⊗ S;V ⊗ S) = Q. □
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