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Abstract. The concepts of regular Noetherianity and regular coherence, which
extend the classical notions of Noetherian and coherent rings, have been fun-
damental in the study of algebraic structures. In this paper, we aim to expand
these notions to the realm of module theory. Specifically, we introduce and
explore weak versions of injective, flat, and projective modules, which we term
as reg-injective, reg-flat, and reg-projective modules. We provide analogues of
classical results and establish their properties, offering examples to illustrate
modules that meet these new criteria but not their classical counterparts. Ad-
ditionally, we define and study regularly Noetherian and regularly coherent
modules, characterizing their properties and examining their stability under
various ring constructions. Our results contribute new examples and broaden
the current understanding of these algebraic concepts.
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1. Introduction

All rings considered in this paper are assumed to be commutative with non-zero
identity. We use Nil(R) to denote the set of nilpotent elements of R and Z(R) to
denote the set of zero-divisors of R. The multiplicative subsets S considered in
this paper do not intersect the set of zero-divisors. An R-module M is called a
torsion module if for every x ∈ M , there exists s ∈ R \ Z(R) such that sx = 0. An
R-module M is said to be uniformly torsion (or u-torsion for short) if there exists
s ∈ R \Z(R) such that sM = 0. An R-submodule N of an R-module M is called a
reg-submodule if M/N is a torsion R-module. Recall from [8] that a ring R is said
to be Noetherian (resp., coherent) if every ideal of R is finitely generated (resp.,
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every finitely generated ideal of R is finitely presented). An R-module M is said to
be Noetherian if M is a finitely generated R-module and every submodule of M is
finitely generated. An R-module M is said to be coherent if M is a finitely generated
R-module and every finitely generated submodule of M is finitely presented.

The notion of coherence of rings, which we defined in the first paragraph of
this introduction, generalizes Noetherian rings and other important classes of rings
defined by finiteness conditions. Many algebraists have studied coherent rings in
terms of various modules. In 1960, S. U. Chase [2, Theorem 2.1] showed that a ring
is coherent if and only if the class of flat modules is closed under direct products.
In 1970, B. Stenström [12, Theorem 3.2] demonstrated that a ring is coherent if and
only if every direct limit of absolutely pure modules is absolutely pure. In 1982, E.
Matlis [10, Theorem 1] proved that a ring R is coherent if and only if HomR(M,E)

is flat for any injective modules M and E.
Recall from [6, Definition 2.2.25] that a ring is called regularly Noetherian (or

reg-Noetherian for short) if every regular ideal is finitely generated. Additionally,
according to [16, Definition 3.1], a ring is termed regularly coherent (or reg-coherent
for short) if every finitely generated regular ideal is finitely presented. Later, M.
Chhiti and S. E. Mahdou [4,5] further studied these two notions. Specifically, they
investigated the stability of these properties under localization and homomorphic
images, as well as their transfer through various ring constructions such as trivial
ring extensions, pullbacks, and amalgamated duplication along an ideal. Their re-
sults produced examples that contribute new and original families of rings satisfying
these properties, thereby enriching the existing literature.

To advance this study, Section 2 introduces and examines the weak versions
of injective, flat, and projective modules, defined as follows: An R-module E is
called reg-injective if E satisfies the definition of injective modules for inclusions
0 → A → B, where A is a reg-submodule of B. We then establish an analogue
of the Bear criterion using regular ideals to characterize reg-injective modules. An
example of a reg-injective module that is not injective is given in Example 2.12.

An R-module M is called reg-flat if the functor −⊗RM preserves exact sequences
0 → A → B, where A is a reg-submodule of B. Theorem 2.16 characterizes reg-flat
modules similarly to the classical case. Example 2.21 provides an example of a
reg-flat module that is not flat.

Reg-projective modules are defined as those M satisfying Ext1R(M,N) = 0 for
every u-torsion R-module N . Theorems 2.25 and 2.26 establish that reg-projective
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modules are reg-flat, and that finitely presented reg-flat modules are reg-projective.
Remark 2.27 gives an example of a reg-projective module that is not projective.

In Sections 3 and 4, we introduce and study two new classes of modules called reg-
Noetherian and reg-coherent. An R-module M is said to be reg-Noetherian if M is
finitely generated and every reg-submodule of M is finitely generated. An R-module
M is said to be reg-coherent if M is finitely generated and each finitely generated
reg-submodule of M is finitely presented. In these sections, we provide properties
that characterize these modules and explore their relationships and implications.

2. On reg-specific modules

We begin this section with the following definition.

Definition 2.1. Let R be a ring and M be an R-module. An R-submodule N of
M is said to be a reg-submodule of M if M/N is a torsion R-module. This means
that for every x ∈ M , there exists s ∈ R \ Z(R) such that sx ∈ N .

Recall from [17] that an R-module is said to be a uniformly S-torsion R-module,
where S is a multiplicative subset of R, if sM = 0 for some s ∈ S. In particular,
when S = R \ Z(R), a u-S-torsion R-module will be referred to as a u-torsion
R-module in this paper.

Proposition 2.2. Let R and T be rings, M be an (R-T )-bimodule, and N be a
T -module. If M is a u-torsion R-module, then so is HomT (M,N).

Proof. We can immediately establish that the following map

φ :
R× HomT (M,N) −→ HomT (M,N)

(s, f) 7−→ sf

such that sf(x) = f(sx) for every x ∈ M , is a modulation of HomT (M,N) over
R. Since M is a u-torsion R-module, there exists some s ∈ R \ Z(R) such that
sM = 0, and therefore sHomT (M,N) = 0, as desired. □

Denote M+ := HomZ(M,Q/Z) as the character module of a module M .

Corollary 2.3. Let R be a ring and M be an R-module. If M is a u-torsion
R-module, then so is M+.

Proof. This follows immediately from Proposition 2.2. □

Example 2.4. For every regular ideal I of a ring R, the R-module R
I is a u-torsion

R-module.
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A weak version of injectivity is defined as follows:

Definition 2.5. An R-module E is said to be reg-injective if given R-modules
A ⊂ B, where A is a reg-submodule of B, and a homomorphism f : A → E, there
exists a homomorphism g : B → E such that g|A = f , that is, such that

0 A B

E

g

f
g

is a commutative diagram.

Remark 2.6. (1) It is easy to see that every injective module is reg-injective.
We will see in Example 2.12 below that the converse is not true in general.

(2) The concept of reg-injective modules was first introduced in [15] as follows:
An R-module E is called reg-injective if Ext1R(N,M) = 0 for every torsion
R-module N .

The following Theorem 2.7 is an analogue of the well-known Baer’s Criterion.
This is actually the definition of reg-injective modules as given in [11, Definition
2.1].

Theorem 2.7. (Reg-Baer’s Criterion) Let R be a ring. An R-module E is reg-
injective if and only if for all regular ideals I of R, every homomorphism f : I → E

can be extended to R.

Proof. The necessity follows immediately from Example 2.4 and Definition 2.5.
We now prove the sufficiency. Let A ⊂ B be R-modules such that B/A is a torsion
R-module, and let f : A → E be a homomorphism.

Consider the collection C of all pairs (C, g), where A ⊂ C ⊂ B, C is a reg-
submodule of B, and g : C → E extends f , i.e., g|A = f . This collection is
nonempty since (A, f) ∈ C . We partially order C by (C, g) ≤ (C ′, g′) if C ⊂ C ′

and g′|C = g. By Zorn’s Lemma, C has a maximal element (C0, g0).
Suppose C0 6= B. Choose x ∈ B \ C0 and define I = {r ∈ R : rx ∈ C0}. Since

B/C0 is a torsion R-module, there exists s ∈ R \ Z(R) such that sx ∈ C0. Thus,
s ∈ I, and I is a regular ideal of R.

Define a map h : I → E by h(r) = g0(rx). Since h is a homomorphism, it can be
extended to a homomorphism h′ : R → E by assumption and Example 2.4. Now,
define ḡ : C0 +Rx → E by

ḡ(c0 + rx) = g0(c0) + h′(r).
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To show that ḡ is well-defined, suppose c0+rx = c′0+r′x. Then c0−c′0 = (r′−r)x,
and since r′ − r ∈ I, we obtain

g0(c0 − c′0) = g0((r
′ − r)x) = h(r′ − r) = h′(r′ − r).

Thus, g0(c0) + h′(r) = g0(c
′
0) + h′(r′), proving that ḡ is well-defined.

Furthermore, ḡ(a) = g0(a) = f(a) for all a ∈ A, so (C0 + Rx, ḡ) ∈ C . This
contradicts the maximality of (C0, g0) since C0 & C0 + Rx. Hence, we conclude
that C0 = B. □

From Definition 2.5 and Theorem 2.7, we can easily state the following corollaries.

Corollary 2.8. An R-module E is reg-injective if and only if Ext1R
(
R
I , E

)
= 0 for

every regular ideal I of R.

Proof. This follows directly from the short exact sequence 0 → I → R → R
I →

0. □

Corollary 2.9. Let R be a ring and {Ei}i∈Γ be a family of R-modules. Then∏
i∈Γ Ei is a reg-injective R-module if and only if for every i ∈ Γ, Ei is a reg-

injective R-module.

Proof. This follows straightforwardly from Corollary 2.8 and the natural isomor-
phism

Ext1R(R/I,
∏
i∈Γ

Ei) ∼=
∏
i∈Γ

Ext1R(R/I,Ei),

for every regular ideal I of R. □

Recall that in classical homology, every injective module is divisible. The fol-
lowing Theorem 2.10 provides an analogue of the well-known relationship between
reg-injectivity and the divisibility of modules.

Theorem 2.10. Let R be a ring and E be an R-module. If E is reg-injective, then
E is a divisible R-module.

Proof. Let E be a reg-injective module and let r be a non-zero-divisor in R. If
r ∈ U(R), then clearly E = rE. Suppose instead that r /∈ U(R). In this case, Rr

is a proper regular ideal of R. Since E is reg-injective, we have

Ext1R
(

R

Rr
,E

)
= 0.

By [14, Exercise 3.2 (1)], it follows that E = rE, which shows that E is a divisible
module, as desired. □
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Recall from [6, Definition 2.2.19] that a ring R is said to be a reg-principal ideal
ring if every regular ideal of R is principal.

In classical homology, if R is a principal ideal domain, then every divisible module
is injective. The following Theorem 2.11 establishes the analog of this result.

Theorem 2.11. Let R be a reg-principal ideal ring. Then the following statements
are equivalent for an R-module E:

(1) E is a reg-injective module.
(2) E is a divisible module.

Proof. (1) ⇒ (2) This follows directly from Theorem 2.10.
(2) ⇒ (1) Let I be a regular ideal of R. Then we can write I = Rr for some

regular element r ∈ R. Since E is divisible, we have E/rE = 0, which implies

Ext1R(R/Rr,E) = 0

by [14, Exercise 3.2 (1)]. Hence, E is reg-injective. □

Let R be a ring and M an R-module. We denote by R ∝ M the trivial extension
(or idealization) of M over R.

Now, we present an example of a reg-injective module that is not injective.

Example 2.12. If R = Z ∝ Q, then the nilradical of R, given by Nil(R) := 0 ∝ Q,
provides an example of a reg-injective module that is not injective.

Proof. It is straightforward to see that R is a reg-principal ideal ring with Nil(R) =

Z(R), which forms a divisible ideal of R. Consequently, Nil(R) is a divisible R-
module and, by Theorem 2.11, it follows that Nil(R) is reg-injective.

Suppose, for contradiction, that Nil(R) is an injective module. Then the exact
sequence

0 → Nil(R) → R → Z → 0

would split, implying that Nil(R) is a projective ideal. However, this contradicts [14,
Proposition 6.7.12]. Thus, Nil(R) is not injective. □

It is worth mentioning that X. Zhang provided a complete characterization of
rings over which every reg-injective module is injective (see [18, Theorem 4.3]).

Now, we introduce a new generalization of the classical flatness.

Definition 2.13. Let R be a ring. An R-module F is said to be reg-flat if given
any exact sequence 0 → A → B of R-modules such that B/A is a torsion R-module,
the tensored sequence 0 → A⊗R F → B ⊗R F is exact.



ON REGULARLY COHERENT MODULES AND REGULARLY NOETHERIAN MODULES 7

Remark 2.14. (1) It is easy to see that every flat module is reg-flat.
(2) The concept of reg-flat modules was first introduced in [16] as follows: An

R-module F is called reg-flat if for any regular ideal I of R, the sequence
0 → F ⊗R I → F ⊗R I is exact. Equivalently, TorR1 (F,R/I) = 0.

The following Theorem 2.15 generalizes [14, Theorem 2.5.5] and characterizes
reg-flatness by reg-injectivity.

Theorem 2.15. Let R and T be rings, and let M be an (R, T )-bimodule. Then M

is a reg-flat R-module if and only if HomT (M,E) is a reg-injective R-module for
every injective T -module E.

Proof. The sufficiency is established in [16, Theorem 2.11], but we provide a proof
for completeness.

Assume that M is a reg-flat R-module, and let A ⊂ B be a submodule of an
R-module B such that B/A is torsion. Since M is reg-flat, the sequence

0 → A⊗R M → B ⊗R M

is exact. Consider the following commutative diagram:

HomT (B ⊗R M,E) HomT (A⊗R M,E) 0

HomR(B,HomT (M,E)) HomR(A,HomT (M,E)) 0.

∼= ∼=

Since E is an injective T -module, the top row is exact, implying that HomT (M,E)

is a reg-injective R-module.
Conversely, assume that HomT (M,E) is reg-injective for every injective T -module

E. Let A ⊂ B be a submodule such that B/A is torsion. Define K = Ker(A⊗RM →
B ⊗R M). Then we have the exact sequence

0 → K → A⊗R M → B ⊗R M.

Consider the following commutative diagram:

HomR(B ⊗R M,E) //

∼=
��

HomR(A⊗R M,E) //

∼=
��

HomR(K,E) //

��

0

HomR(B,HomT (M,E)) // HomR(A,HomT (M,E)) // 0 // 0.

Since E is an injective T -module, the top row is exact. By assumption, HomR(M,E)

is reg-injective, ensuring that the bottom row is also exact. Consequently, HomR(K,E) =

0, which implies K = 0. Thus, the sequence

0 → A⊗R M → B ⊗R M
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is exact, proving that M is reg-flat. □

The following Theorem 2.16 completely characterizes reg-flatness.

Theorem 2.16. Let R be a ring. The following conditions are equivalent for an
R-module M :

(1) M is reg-flat.
(2) TorR1 (P,M) = 0 for every torsion R-module P .
(3) TorR1 (R/I,M) = 0 for every regular ideal I of R.
(4) 0 → I ⊗R M → R ⊗R M is an exact sequence for every regular ideal I of

R.
(5) I ⊗R M ∼= IM for every regular ideal I of R.
(6) −⊗R M is exact for every exact R-sequence 0 → N → F → C → 0 where

N,F,C are finitely generated, C is a torsion R-module, and F is free.
(7) −⊗R M is exact for every exact R-sequence 0 → N → F → C → 0 where

C is a torsion R-module, and F is free.
(8) TorR1 (R/I,M) = 0 for every finitely generated regular ideal I of R.
(9) 0 → I ⊗R M → R ⊗R M is an exact sequence for every finitely generated

regular ideal I of R.
(10) I ⊗R M ∼= IM for every finitely generated regular ideal I of R.
(11) Ext1R(R/I,M+) = 0 for every regular ideal I of R.
(12) Let 0 → K → F

g→ M → 0 be an exact sequence of R-modules, where F is
free. Then K ∩ FI = IK for every regular ideal I of R.

(13) Let 0 → K → F
g→ M → 0 be an exact sequence of R-modules, where F is

free. Then K ∩ FI = IK for every finitely generated regular ideal I of R.
(14) Let ξ : 0 → A → B → M → 0 be an exact sequence. Then, for any regular

ideal I of R, the sequence R/I ⊗ ξ remains exact.
(15) There exists an exact sequence ξ : 0 → A → P → M → 0, where P is a

projective R-module, such that for any regular ideal I of R, the sequence
R/I ⊗ ξ remains exact.

Proof. (1) ⇒ (2) Assume that M is a reg-flat module, and let P be a torsion
R-module. Then there exists a short exact sequence of R-modules

0 → A → F → P → 0,

where F is a free R-module. Since M is reg-flat, the sequence

0 → A⊗R M → F ⊗R M
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is exact. Applying the Tor functor to 0 → A → F → P → 0 gives

0 → TorR1 (P,M) → A⊗R M → F ⊗R M.

By [14, Theorem 1.9.9 (Five Lemma)], it follows that TorR1 (P,M) = 0.
(2) ⇒ (3), (3) ⇔ (4), and (4) ⇔ (5) follow similarly to the classical case.
(4) ⇒ (1) For any injective R-module E, consider the following commutative

diagram:

HomR(R⊗R M,E) HomR(I ⊗R M,E) 0

HomR(B,HomT (M,E)) HomR(A,HomT (M,E)) 0.

∼= ∼=

By assumption, the top row is exact, implying that the bottom row is exact. By
Theorem 2.7, HomR(M,E) is an injective module. By Theorem 2.15, M is reg-flat.

(2) ⇔ (7) and (7) ⇒ (6) follow similarly to the classical case.
(6) ⇒ (8) Let I be a finitely generated regular ideal of R, and consider the short

exact sequence

0 → I → R → R

I
→ 0.

Applying the Tor functor to the above sequence and using the hypothesis, we obtain
the exact sequences

0 → TorR1 (
R

I
,M) → I ⊗R M → R⊗R M

and

0 → I ⊗R M → R⊗R M.

By [14, Theorem 1.9.9 (Five Lemma)], it follows that (8) holds.
(8) ⇔ (9) and (9) ⇔ (10) follow similarly to the classical case.
(10) ⇒ (5) Let I be a regular ideal, and consider the natural R-epimorphism

σI : I ⊗R M → IM

given by σI(a ⊗ x) = ax for all (a, x) ∈ I × M . To show that σI is an R-
monomorphism, let

∑n
i=1 ai⊗xi ∈ ker(σI), and consider a finitely generated regular

ideal J containing the ai as generators for all 1 ≤ i ≤ n. Then the restriction of σI

over J is an R-monomorphism by assumption, implying that
n∑

i=1

ai ⊗ xi = 0,

which shows that σI is an R-monomorphism. Therefore, (5) holds.
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(11) ⇔ (3) This follows from the natural isomorphism

TorR1 (
R

I
,M)+ ∼= Ext1R(

R

I
,M+).

(3) ⇔ (12) and (12) ⇔ (13) follow similarly to the classical case.
(4) ⇔ (14) ⇔ (15) See [16, Proposition 2.12]. □

We remark that the equivalences of (1), (2), (3), (4), (5), (8), (10), and (11) in
Theorem 2.16 are proved in [16, Proposition 2.12].

Corollary 2.17. Let R be a ring with a multiplicative subset S. If M is a reg-flat
R-module, then S−1M is a reg-flat S−1R-module.

Proof. First, it is easy to verify that an ideal I of R is regular if and only if S−1I

is a regular ideal of S−1R. The proof of this corollary then follows immediately
from Theorem 2.16 and [14, Theorem 3.4.12]. □

Remark 2.18. It is easy to see that a ring R satisfies Z(R) = Nil(R) if and only
if (R \ p) ∩ Z(R) = ∅ for all p ∈ Spec(R).

Corollary 2.19. Let R be a ring with Nil(R) = Z(R) and M be an R-module. The
following statements are equivalent:

(1) M is reg-flat.
(2) Mp is reg-flat over Rp for every prime ideal p of R.
(3) Mm is reg-flat over Rm for every maximal ideal m of R.

Proof. By Corollary 2.17, it suffices to prove that (3) ⇒ (2). Let I be a regular
ideal of R, and let m be a maximal ideal of R. Since R is assumed to be a ring with
Nil(R) = Z(R), it follows that Im remains a regular ideal in Rm. Consequently, we
obtain the following short exact sequence:

0 → Im ⊗Rm
Mm → Rm ⊗Rm

Mm →
(
R

I

)
m

⊗Rm
Mm → 0.

By [14, Theorem 1.5.21], this short exact sequence induces the exact sequence

0 → I ⊗R M → R⊗R M → R

I
⊗R M → 0.

Thus, M is a reg-flat R-module, as required. □

Theorem 2.20. Let f : R → T be a surjective ring homomorphism such that
f(Z(R)) ⊂ Z(T ), and let M be a T -module. If M is a reg-flat R-module, then
M ⊗R T is a reg-flat T -module.
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Proof. Let X be a torsion T -module and let x ∈ X. Then there exists s ∈ T \Z(T )

such that sx = 0. Since the surjectivity of f implies that f(n) = s for some n ∈ R,
and f(Z(R)) ⊂ Z(T ), we have n ∈ R \ Z(R) and so nx = 0, which means X is a
torsion R-module.

Let 0 → A → B → X → 0 be a short exact sequence of T -modules. This induces
the short exact sequence of R-modules:

0 → A⊗T T → B ⊗T T → X ⊗T T → 0.

Since X ⊗T T is a torsion R-module and M is a reg-flat R-module, from Theorem
2.16 we get:

0 → A⊗T T ⊗R M → B ⊗T T ⊗R M → X ⊗T T ⊗R M → 0,

which is exact as a sequence of T -modules. This implies that M ⊗R T is a reg-flat
T -module. □

Now, we provide an example of a reg-flat module that is not flat. In [16, Remark
2.14], an example of a reg-flat module that is not flat is provided implicitly.

Example 2.21. Let K be a field. Then Nil(K ∝ K) = 0 ∝ K is an example of a
reg-flat (K ∝ K)-module that is not flat. In fact, the only regular ideal of K ∝ K

is K ∝ K itself. Thus, Nil(K ∝ K) is trivially reg-flat. However, K ∝ K is a
Noetherian ring. Therefore, Nil(K ∝ K) is a finitely presented module. If Nil(K ∝
K) were flat, then it would be projective, which contradicts [14, Proposition 6.7.12].

Definition 2.22. Let R be a ring. An R-module P is said to be reg-projective if
Ext1R(P,N) = 0 for every u-torsion R-module N . In particular, every projective
module is reg-projective.

Proposition 2.23. Let R be a ring and {Pi}i∈I be a family of R-modules. Then⊕
i∈I Pi is reg-projective if and only if every Pi is reg-projective.

Proof. Let N be a u-torsion module. We have the following R-isomorphism:

Ext1R(
⊕
i∈I

Pi, N) ∼=
∏
i∈I

Ext1R(Pi, N).

Therefore,
⊕

i∈I Pi is reg-projective if and only if every Pi is reg-projective. □

Next, Theorem 2.24 provides an analogue of the well-known characterization of
projective modules by short exact sequences [14, Theorem 2.3.3].

Theorem 2.24. Let R be a ring. Then the following statements hold for an R-
module P :



12 YOUNES EL HADDAOUI, HWANKOO KIM AND NAJIB MAHDOU

(1) If P is reg-projective, then every exact sequence 0 → A → B
g−→ P → 0 is

split for every u-torsion R-module A.
(2) P is reg-projective if and only if every exact sequence 0 → A → B → C → 0,

where A is a u-torsion R-module, induces the exact sequence

0 → HomR(P,A) → HomR(P,B) → HomR(P,C) → 0.

Proof. (1) Let 0 → A → B → P → 0 be an exact sequence where A is u-torsion.
Since P is reg-projective, Ext1R(P,A) = 0. Hence, we have the exact sequence

0 → HomR(P,A) → HomR(P,B) −−→ HomR(P, P ) → 0,

showing that the sequence is split.
(2) Assume P is reg-projective. Then Ext1R(P,A) = 0 for any u-torsion module

A, giving us the exact sequence

0 → HomR(P,A) → HomR(P,B) → HomR(P,C) → 0.

Conversely, assume that every short exact sequence 0 → A → B → C → 0,
where A is u-torsion, induces the exact sequence

0 → HomR(P,A) → HomR(P,B) → HomR(P,C) → 0.

We claim P is reg-projective. Let A be a u-torsion module and E an injective
module containing A. By hypothesis, the short exact sequence 0 → A → E →
E/A → 0 induces

0 → HomR(P,A) → HomR(P,E) → HomR(P,E/A) → 0.

The commutative diagram with exact rows

HomR(P,E) HomR(P,E/A) Ext1R(P,A) 0

HomR(P,E) HomR(P,E/A) 0 0

∼=

implies Ext1R(P,A) = 0, hence P is reg-projective. □

In classical homology, every projective module is flat. The following Theorem
2.25 shows the same result in the context of reg-projective modules.

Theorem 2.25. Let R be a ring and P be an R-module. If P is a reg-projective
module, then P is reg-flat.
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Proof. Let P be a reg-projective module and I be a regular ideal of R. By
Corollary 2.3 and Example 2.4, we get (R/I)+ is a u-torsion R-module and so
Ext1R(P, (R/I)+) = 0. Using the duality formula Ext1R(P, (R/I)+) ∼= TorR1 (P,R/I)+,
we immediately get TorR1 (P,R/I) = 0, as desired. Thus, P is reg-flat by Theorem
2.16. □

In classical homology, every finitely presented flat module is projective. The
following Theorem 2.26 shows the dual of this result.

Theorem 2.26. Let R be a ring. Then every finitely presented reg-flat module is
reg-projective.

Proof. Let F be a finitely presented reg-flat R-module, and consider an exact
sequence of R-modules

B → C → 0,

where K = ker(B → C) is u-torsion. We aim to show that the sequence

HomR(F,B) → HomR(F,C) → 0

is exact, or equivalently, by [7, Lemma 3.2.8], that the sequence

0 → HomR(F,C)+ → HomR(F,B)+

is exact. Consider the following commutative diagram:

0 // F ⊗R C+ //

∼=
��

F ⊗R B+

∼=
��

0 // HomR(F,C)+ // HomR(F,B)+.

The top row is exact since F is reg-flat and K+ is u-torsion by Corollary 2.3. The
vertical maps are isomorphisms by [7, Theorem 3.2.11], since F is finitely presented.
Consequently, the bottom row is also exact, completing the proof. □

Remark 2.27. The module in Example 2.21 is reg-projective but not projective.

3. On reg-Noetherian rings and reg-Noetherian modules

It is straightforward to see that every Noetherian ring is reg-Noetherian. The
converse is not true in general, as shown in [4, Example 2.9].

To properly study the concept of reg-Noetherianity, we begin by introducing the
notion of reg-Noetherianity for modules, which is defined as follows.
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Definition 3.1. Let R be a ring and M be an R-module. Then M is said to be
reg-Noetherian if M is a finitely generated R-module and every reg-submodule of
M is a finitely generated R-module.

In particular, every Noetherian R-module is reg-Noetherian.

Remark 3.2. (1) Note that for a torsion R-module M , we have

M is reg-Noetherian ⇔ M is Noetherian.

(2) From Example 2.4, it is clear that a ring R is reg-Noetherian if and only if
R itself is a reg-Noetherian R-module.

Theorem 3.3. Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence. If M ′ and M ′′

are reg-Noetherian modules, then so is M . Additionally, if M ′ is a reg-submodule
of M , then the converse holds.

Proof. Assume that M ′ and M ′′ are reg-Noetherian. Let N be a reg-submodule
of M . Then g(N) is a reg-submodule of M ′′. Indeed, for any x ∈ M ′′, there exists
m ∈ M such that g(m) = x. Since N is a reg-submodule, there exists s ∈ R \Z(R)

such that sm ∈ N . Applying g, we obtain sx ∈ g(N), proving that g(N) is a
reg-submodule of M ′′. Since M ′′ is reg-Noetherian, g(N) is finitely generated, say

g(N) =

t∑
i=1

Rg(ni),

where each ni ∈ N . For any n ∈ N , we can write

g(n) =

t∑
i=1

rig(ni), where ri ∈ R.

Rearranging, we get

n−
t∑

i=1

rini ∈ ker(g) ∩N.

Thus, there exists y ∈ ker(g) ∩N such that

n = f(y) +

t∑
i=1

rini.

Since N is a reg-submodule of M , it follows that ker(g) ∩N is a reg-submodule of
M ′. As M ′ is reg-Noetherian, ker(g) ∩N is finitely generated, say

ker(g) ∩N =

t+l∑
i=t+1

Rni,
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for some nt+1, . . . , nt+l ∈ ker(g)∩N . Moreover, there exist rt+1, . . . , rt+l ∈ R such
that

f(y) =

t+l∑
i=t+1

rini.

Thus, we conclude that

n =

t+l∑
i=1

rini.

Therefore, N is finitely generated, proving that M is a reg-Noetherian module.
Now assume that M is reg-Noetherian, and consider a reg-submodule M ′ of M .

Let X be a reg-submodule of M ′. The exact sequence

0 → M ′/X → M/X → M ′′ → 0

shows that both M ′/X and M ′′ are torsion. It follows that X is a reg-submodule
of M . Since M is reg-Noetherian, X is finitely generated, proving that M ′ is
reg-Noetherian.

Next, let N be a submodule of M containing M ′ such that N/M ′ is a reg-
submodule of M ′′ ∼= M/M ′. We claim that N is a reg-submodule of M . Indeed,
for any x ∈ M , since M/M ′ is torsion, there exists s ∈ R \ Z(R) such that

s(x+M ′) = M ′,

which implies that sx ∈ M ′ ⊂ N . Thus, N is a reg-submodule of M , and since M is
reg-Noetherian, N is finitely generated. Consequently, N/M ′ is a finitely generated
submodule of M ′′, showing that M ′′ is reg-Noetherian. □

Corollary 3.4. Let R be a ring and M be a reg-Noetherian R-module. Then every
reg-submodule of M is reg-Noetherian.

Proof. This follows immediately from Theorem 3.3. □

Corollary 3.5. Let R be a ring and {Mi}1≤i≤n be a family of reg-Noetherian
modules. Then

⊕n
i=1 Mi is a reg-Noetherian module.

Proof. We proceed by induction on n. Consider the exact sequence

0 → M1 →
n⊕

i=1

Mi →
n⊕

i=2

Mi → 0,

and apply Theorem 3.3 to complete the proof. □

Corollary 3.6. If R is a reg-Noetherian ring, then every finitely generated torsion
module is reg-Noetherian (and so is Noetherian).
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Proof. If M is a finitely generated torsion R-module, then there exists an isomor-
phism M ∼= R(n)/N, where n ∈ N and N is a submodule of R(n). Since M is
torsion, it follows that N is a reg-submodule of R(n). By considering the exact
sequence

0 → N → R(n) → M → 0,

and applying Theorem 3.3, we conclude that M is reg-Noetherian. □

Corollary 3.7. Let R be a ring and I be a finitely generated regular ideal of
R. Then R is a reg-Noetherian ring if and only if I and R/I are reg-Noetherian
R-modules.

Proof. This follows immediately from Theorem 3.3. □

Theorem 3.8. Let R be a ring. If M is a reg-Noetherian R-module, then every
factor module of M is reg-Noetherian.

Proof. Let M be a reg-Noetherian module and N be a submodule of M . We
claim that M/N is a reg-Noetherian module. Let P/N be a reg-submodule of
M/N , where P is a submodule of M containing N . Since M/N

P/N
∼= M

P is a torsion
R-module, P is finitely generated, and so P/N is a finitely generated submodule of
M/N . Therefore, M/N is reg-Noetherian. □

Corollary 3.9. If R is a reg-Noetherian ring and I is an ideal of R, then R/I is
a reg-Noetherian R-module.

Proof. This follows immediately from Theorem 3.8. □

Corollary 3.10. Let R be a reg-Noetherian ring and M be an R-module. Then M

is a reg-Noetherian module if and only if M is a finitely generated R-module.

Proof. If M is a reg-Noetherian module, then it is easy to see that M is a finitely
generated module.

Conversely, if M is a finitely generated module, then M is a factor of R(n),
where n ∈ N. Since R(n) is a reg-Noetherian module by Corollary 3.5, M is a
reg-Noetherian module by Theorem 3.8. □

Corollary 3.11. A ring R is reg-Noetherian if and only if every reg-submodule of
a finitely generated R-module is finitely generated.

Proof. Straightforward. □

Theorem 3.12 establishes that every finitely generated torsion module over a
reg-Noetherian ring is finitely presented.
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Theorem 3.12. Let R be a reg-Noetherian ring and M be a finitely generated
torsion R-module. Then M is finitely presented.

Proof. Let M be a finitely generated torsion R-module. There exist n ∈ N and
a sequence 0 → N → R(n) → M → 0. Since R(n) is a reg-Noetherian R-module
by Corollary 3.5 and M is a torsion module, N is a finitely generated module.
Therefore, M is a finitely presented module. □

Theorem 3.13 establishes that the class of reg-Noetherian modules is closed under
localizations.

Theorem 3.13. Let R be a ring and S be a multiplicative subset of R. If M is a
reg-Noetherian R-module, then S−1M is a reg-Noetherian (S−1R)-module.

Proof. Let M be a reg-Noetherian R-module and S−1N be a reg-submodule of
S−1M , where N is a submodule of M . Then N is a reg-submodule of M , and so N is
a finitely generated R-module. Thus, S−1N is a finitely generated (S−1R)-module.
Therefore, S−1M is a reg-Noetherian (S−1R)-module. □

Corollary 3.14. If R is a reg-Noetherian ring and S is a multiplicative subset of
R, then S−1R is a reg-Noetherian ring.

Proof. This follows immediately from Theorem 3.13. □

Let M be an R-module. We say that M satisfies the reg-condition if every reg-
submodule N of M contains a finitely generated reg-submodule of M . Note that
every ring R satisfies the reg-condition. Indeed, if I is a regular ideal of R, then
there exists s ∈ I ∩ (R \ Z(R)). Taking J = sR ⊂ I makes J a finitely generated
regular ideal of R and hence R satisfies the reg-condition.

Remark 3.15. It is easy to see from Theorem 3.3 that every reg-Noetherian module
satisfies the reg-condition.

Definition 3.16. Let R be a ring and M be an R-module. An ascending chain of
submodules of M : M1 ⊆ M2 ⊆ · · · ⊆ Mn ⊆ · · · is said to be a reg-ascending chain
if the following condition holds: Mi is a reg-submodule of M , for every positive
integer i.

Based on Remark 3.15 above, we can characterize reg-Noetherian modules in a
similar way to characterizing Noetherian modules.

Theorem 3.17. Let R be a ring and M be an R-module. Then the following are
equivalent:
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(1) M is a reg-Noetherian module.
(2) M satisfies both the reg-condition and the reg-ascending chain condition

(reg-ACC) on submodules of M . That is, if

M1 ⊆ M2 ⊆ · · · ⊆ Mn ⊆ · · ·

is a reg-ascending chain of submodules of M , then there exists a positive
integer m such that if n ≥ m, then Mn = Mm.

(3) M satisfies both the reg-condition and the reg-maximal condition. That is,
every nonempty set of reg-submodules of M possesses a maximal element.

Proof. (1) ⇒ (2) First, observe by Remark 3.15 that M satisfies the reg-condition.
Let M1 ⊆ M2 ⊆ · · · ⊆ Mn ⊆ · · · be a reg-ascending chain of submodules of M . Set
N =

∪
Mi. By the hypothesis, N is finitely generated since it is a reg-submodule

of M . Write N = Rx1 + · · · + Rxk. Then, there exists m such that xi ∈ Mm for
all i. This makes N = Mm and hence Mn = Mm for all n ≥ m.

(2) ⇒ (3) Let Γ be a nonempty set of reg-submodules of M . Suppose that Γ

has no maximal elements. If we take any M1 ∈ Γ, then M1 is not a maximal
element and hence there is M2 ∈ Γ such that M1 ⊂ M2. Since M2 is not a maximal
element, we can find M3 ∈ Γ such that M2 ⊂ M3. As a result, we obtain a reg-
ascending chain M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ · · · of submodules of M . This chain is
not stationary, contradicting the reg-ACC condition.

(3) ⇒ (1) Let N be a reg-submodule of M . Set

Γ = {A ⊆ N | A is a finitely generated reg-submodule of M}.

Observe that Γ is nonempty as M satisfies the reg-condition. Furthermore, Γ has
a maximal element A. If A 6= N , then there exists x ∈ N \ A such that the
module A+ Rx is a finitely generated reg-submodule of M , which contradicts the
maximality of A. Therefore, N = A is finitely generated. □

We can now derive the following corollary, which recovers [6, Exercise 2.6.5].

Corollary 3.18. Let R be a commutative ring. Then the following are equivalent:

(1) R is a reg-Noetherian ring.
(2) R satisfies the ascending chain condition on regular ideals.
(3) Every nonempty set of regular ideals in R has a maximal element.

Proof. This follows immediately from Remark 3.15 and Theorem 3.17. □
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4. On reg-coherent modules and reg-coherent rings

Following [16], a commutative ring R is called reg-coherent if every finitely gener-
ated regular ideal is finitely presented. It is obviously seen that every coherent ring
is reg-coherent. But the converse is not true in general, as shown in [5, Example
2.9].

To properly study the concept of reg-coherence, we begin by introducing the
notion of reg-coherent modules, defined as follows.

Definition 4.1. Let R be a ring. An R-module M is said to be reg-coherent if
M is finitely generated and every finitely generated reg-submodule of M is finitely
presented.

In particular, every coherent module is reg-coherent.

Remark 4.2. Note that for a torsion R-module M , we have

M is reg-coherent ⇔ M is coherent.

Now we are able to give a new characterization of reg-coherent rings.

Theorem 4.3. The following are equivalent for a ring R:

(1) R is a reg-coherent ring.
(2) R is a reg-coherent R-module.
(3) Every finitely generated free R-module is reg-coherent.
(4) Every finitely presented module is reg-coherent.
(5) Every finitely generated reg-submodule of a finitely presented R-module is

finitely presented.
(6) Every direct product of reg-flat R-modules is reg-flat.
(7) RI is reg-flat for any index set I.
(8) For any injective R-module E, the module HomR(R

+, E) is reg-flat.

Proof. (1) ⇔ (2) This is straightforward.
(1) ⇒ (6) Let {Nα}α∈Γ be a family of reg-flat modules, and let I be a finitely

generated reg-ideal of R. By [3, Lemma 2.10], we have

TorRn

(∏
α∈Γ

Nα, R/I

)
∼=
∏
α∈Γ

TorRn (Nα, R/I) = 0

for every n ≥ 1. Hence,
∏

α∈Γ Nα is reg-flat, as required.
(6) ⇒ (7) This is obvious.
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(7) ⇒ (1) Let I be a finitely generated regular ideal of R, and consider the short
exact sequence

0 → I → R → R/I → 0.

By hypothesis, RI is a reg-flat R-module. This gives rise to the following commu-
tative diagram with exact rows:

0 RΓ ⊗R I RΓ ⊗R R RΓ ⊗R
R
I

0 IΓ RΓ
(
R
I

)Γ∼= ∼=

By [13, Lemma I.13.2], the right two vertical maps are isomorphisms, implying that
the left vertical arrow is also an isomorphism. Furthermore, [13, Lemma I.13.2]
ensures that I is finitely presented, as required. Therefore, R is a reg-coherent ring.

(4) ⇒ (5) This follows directly.
(5) ⇒ (1) Since every regular ideal of R is a reg-submodule of R, the result

follows immediately.
(6) ⇒ (3) Let F be a finitely generated free R-module, and let N be a finitely

generated reg-submodule of F . Then F and F/N are finitely presented R-modules.
Since RI is a reg-flat module for any index set I, the following commutative diagram
with exact rows holds:

0 N ⊗R RI F ⊗R RI F/N ⊗R RI 0

0 N I F I (F/N)I 0.

∼= ∼=

By [13, Lemma I.13.2], the two rightmost vertical arrows are isomorphisms, yielding
N ⊗R RI ∼= N I . By [13, Lemma I.13.2], it follows that N is a finitely presented
R-module. Hence, F is a reg-coherent R-module.

(3) ⇒ (4) Let M be a finitely presented R-module. Then there exists an iso-
morphism M ∼= F/N, where F is a finitely generated free R-module, and N is a
finitely generated submodule of F . Let X be a finitely generated reg-submodule of
M . Then X ∼= L/N for some finitely generated submodule L of F with N ⊂ L.
Since F is a reg-coherent module and M/X ∼= F/L is torsion, it follows that L is a
finitely presented R-module. By [9, (4.54) Lemma], X is finitely presented. Hence,
M is a reg-coherent module.

(1) ⇔ (8) See [16, Theorem 3.5]. □
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We remark that the equivalence of (1), (2), (6), and (7) of Theorem 4.3 are
proved in [16, Theorem 3.2]. Additionally, reg-coherent rings are characterized in
terms of ‘reg-coflat modules’ in [16, Theorem 3.5].

The following theorem characterizes when a finitely generated submodule of a
reg-coherent module is reg-coherent.

Theorem 4.4. Let R be a ring and M be a reg-coherent R-module. If N is a
finitely generated reg-submodule of M , then N is a reg-coherent module.

Proof. Let M be a reg-coherent R-module, and let N be a finitely generated reg-
submodule of M . We claim that N is also a reg-coherent R-module.

Let X be a finitely generated reg-submodule of N . Consider the exact sequence

0 → N/X → M/X → M/N → 0.

Since M/N and N/X are torsion modules, it follows that M/X is also torsion. Con-
sequently, X is finitely presented, which implies that N is a reg-coherent module,
as required. □

Corollary 4.5. If R is a reg-coherent ring, then every finitely generated regular
ideal of R is a reg-coherent R-module.

Proof. This follows from Theorem 4.4. □

Theorem 4.6. Let R be a ring and 0 → P → N → M → 0 be an exact sequence
of R-modules and R-homomorphisms, where P is a finitely generated R-module. If
N is a reg-coherent module, then so is M .

Proof. We can set M = N/P . Let X/P be a finitely generated reg-submodule of
M . Since N is a reg-coherent module and X is a finitely generated reg-submodule
of N , it follows that X is finitely presented. We claim that X/P is a finitely
presented R-module. Actually, it follows from [9, (4.54) Lemma] that X/P is finitely
presented, and so M is a reg-coherent module. □

Corollary 4.7 is a consequence of Theorem 4.6.

Corollary 4.7. Every factor module M/N of a reg-coherent module M by a finitely
generated submodule N is also a reg-coherent module. In particular, every factor of
a reg-coherent ring R by a finitely generated ideal I of R is a reg-coherent R-module.

Proof. Straightforward. □

Corollary 4.8. Let R be a ring and M,N be reg-coherent modules. Let f : M → N

be an R-homomorphism.
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(1) If im(f) is a torsion R-module and ker(f) is finitely generated, then ker(f)

is a reg-coherent module.
(2) If ker(f) is finitely generated, then im(f) is a reg-coherent module.
(3) If coker(f) is a torsion R-module and im(f) is finitely generated, then im(f)

is a reg-coherent module.
(4) If im(f) is finitely generated, then coker(f) is a reg-coherent module.

Proof. Consider the exact sequences

0 → ker(f) → M → im(f) → 0

and
0 → im(f) → N → coker(f) → 0.

Applying Theorems 4.4 and 4.6 to these sequences completes the proof. □

Theorem 4.9. Let R be a ring and 0 → P
f→ N

g→ M → 0 be an exact sequence
of R-modules and R-homomorphisms. If P and M are reg-coherent modules, then
so is N .

Proof. Let X be a finitely generated reg-submodule of N . Then we have the
following commutative diagram with exact rows:

0

��

0

��

0

��
0 // ker(g|X)

f //

i

��

X
g //

j

��

g(X) //

k

��

0

0 // P
f // N

g // M // 0.

Since X is a finitely generated module, so is g(X). Let x ∈ M . Then g(n) = x for
some n ∈ N . Since N/X is a torsion module, sn ∈ X for some s ∈ R\Z(R), and so
sx ∈ g(X). Therefore, M/g(X) is torsion. As M is reg-coherent, g(X) is a finitely
presented R-module. Therefore, ker(g|X) is a finitely generated R-module since X is
finitely generated. Let x ∈ P . Then there exists t ∈ R \Z(R) such that tf(x) ∈ X,
and so tf(x) ∈ ker(g|X) since g(tf(x)) = 0. We can consider f as an embedding,
and so P/ ker(g|X) is a torsion module. Then ker(g|X) is finitely presented since P

is a reg-coherent module, and so X is a finitely presented R-module. Therefore, N
is a reg-coherent module. □

Corollary 4.10. Let R be a ring and {Mi}ni=1 be a family of reg-coherent modules.
Then

⊕n
i=1 Mi is a reg-coherent module.
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Proof. We proceed by induction on n. Consider the exact sequence

0 → M1 →
n⊕

i=1

Mi →
n⊕

i=2

Mi → 0,

and apply Theorem 4.9 to complete the proof. □

Corollary 4.11. Let R be a ring and let M and N be reg-coherent submodules of
a reg-coherent R-module L. If M +N is a torsion R-module and M ∩N is finitely
generated, then M +N and M ∩N are reg-coherent modules.

Proof. Consider the exact sequence

0 → M ∩N → M ⊕N → M +N → 0.

Applying Theorems 4.4 and 4.6 completes the proof. □

Corollary 4.12. Let R be a ring and I be a finitely generated regular ideal of R.
Then R is a reg-coherent ring if and only if I and R/I are reg-coherent R-modules.

Proof. Assume that R is a reg-coherent ring and let I be a finitely generated
regular ideal of R. By Corollary 4.7, R/I is a reg-coherent R-module, and so I is
a reg-coherent R-module by Theorem 4.4.

Conversely, assume that I and R/I are reg-coherent R-modules for any finitely
generated regular ideal I of R. Then R is a reg-coherent ring by Theorem 4.9. □

Next, Theorem 4.13 gives an analog of the well-known behavior in [8, Theorem
2.2.6].

Theorem 4.13. Let R be a ring and S be a multiplicative subset of R. If M is a
reg-coherent R-module, then S−1M is a reg-coherent (S−1R)-module.

Proof. It is clear that S−1M is a finitely generated (S−1R)-module. Let N be
an R-module such that S−1N is a torsion (S−1R)-module. Then N is a torsion
R-module. Let X be a finitely generated (S−1R)-submodule of S−1M such that
S−1M

X is torsion. Then we can set X = S−1K where K is a finitely generated
submodule of M . Therefore, S−1(M/K) is torsion, and so M/K is a torsion R-
module. Hence, K is a finitely presented R-module. Thus, X is a finitely presented
(S−1R)-module. Therefore, S−1M is a reg-coherent (S−1R)-module. □

Next, we turn our attention to the localization of reg-coherent rings. Using
Theorem 4.13, we obtain immediately:

Corollary 4.14. If R is a reg-coherent ring and S is a multiplicative subset of R,
then S−1R is a reg-coherent ring.
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Proof. Straightforward. □

Theorem 4.15. Let f : R → T be a finite surjective ring homomorphism (i.e., T
is a finitely generated R-module). Let M be a finitely generated T -module which is
a reg-coherent R-module. Then M is a reg-coherent T -module.

Proof. Let X be a finitely generated T -submodule of M . Then X is a finitely
generated R-module since f is finite. If M/X is a torsion T -module, then M/X

is a torsion R-module, and so X is a finitely presented R-module. Therefore, X

is a finitely presented T -module since X ∼= T ⊗R X. Hence, M is a reg-coherent
T -module. □

Corollary 4.16. Every factor of a reg-coherent ring by a finitely generated regular
ideal is a reg-coherent ring.

Proof. This follows immediately from Theorem 4.9, Corollary 4.12, and Theorem
4.15. □

To explore additional properties related to the classical notion of coherence, we
recall a class of rings known as Marot rings. A ring R is called a Marot ring if every
regular ideal of R is generated by its set of regular elements.

Definition 4.17. A ring R is called a divisible ring (or div-ring for short) if
sZ(R) = Z(R) for every s ∈ R \ Z(R). We denote by Div the set of all div-rings.

Remark 4.18. If R ∈ Div, then every finitely generated regular ideal is generated
solely by regular elements. Indeed, let I = 〈a1, a2, . . . , an〉 be a regular ideal. Then,
there exists some 1 ≤ i ≤ n such that ai is regular in R. Since aiZ(R) = Z(R),
every zero divisor in the generating set of I belongs to 〈ai〉. Consequently, we can
exclude all elements ak that are zero divisors from the generating set of I, ensuring
that I is generated only by regular elements.

Theorem 4.19. The following are equivalent for a ring R ∈ Div:

(1) R is a reg-coherent ring.
(2) The intersection of two finitely generated regular ideals is finitely generated.

Proof. Assume that R is a reg-coherent ring. Let I and J be finitely generated
regular ideals of R. Then I+J is also a finitely generated regular ideal and, hence,
finitely presented. By [8, Theorem 2.1.2], it follows that I ∩ J is finitely generated.

Conversely, suppose I is a finitely generated regular ideal of R. Write I =

〈x1, . . . , xr〉. We prove the result by induction on r. By Remark 4.18, we may
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assume that each xi is regular in R. For r = 1, we have I = 〈x1〉, which is a free
ideal of R and hence finitely presented.

For r ≥ 2, set I ′ = 〈x1, . . . , xr−1〉, which is a finitely presented regular ideal. We
now show that I = I ′ + 〈xr〉 is finitely presented. Consider the exact sequence

0 −→ I ′ ∩ 〈xr〉 −→ I ′ ⊕ 〈xr〉 −→ I ′ + 〈xr〉 −→ 0.

Since I ′ ∩ 〈xr〉 is the intersection of two finitely generated regular ideals of R, it is
finitely generated. By [8, Theorem 2.1.2], it follows that I = I ′ + 〈xr〉 is a finitely
presented regular ideal of R. □

Recall from [14, Theorem 4.3.6 (Krull’s Intersection Theorem)] that if I is an
ideal of a ring R and M is a Noetherian module, then IB = B, where

B =

∞∩
n=1

InM.

If R is a Noetherian ring and M is a finitely generated R-module, it follows from
the introduction of [1] that for every ideal I of R, we have

∞∩
n=1

InM = {r ∈ R | (1− a)r = 0, for some a ∈ I} .

In particular, if R is a Noetherian domain, then
∩∞

n=1 I
nM = 0.

Moreover, it is known from [14, Theorem 4.2.20] that any proper submodule
of a Noetherian module admits a primary decomposition. The following theorem
provides a regular-version of Krull’s Intersection Theorem.

Theorem 4.20. (Reg-Krull’s Intersection Theorem) Let R be a reg-Noetherian
ring and M be a finitely generated torsion R-module. If I is an ideal of R, then
IB = B, where B =

∩∞
n=1 I

nM .

Proof. If IB = M , then it is clear that B = IB. Thus, we may assume that
IB 6= M . However, M is a Noetherian R-module by Remark 3.2 (1) and Corollary
3.10, and so IB has a primary decomposition. Write

IB = Q1 ∩Q2 ∩ · · · ∩Qs,

where Qi is a pi-primary submodule of M for some prime ideal pi of R. We will
show that B ⊆ Qi, and so B ⊆ Q1 ∩Q2 ∩ · · · ∩Qs = IB. This makes B = IB.

If I ⊆ pi, then, by [14, Theorem 4.2.17], there exists a positive integer m such
that pmi M ⊆ Qi. Thus,

B =

∞∩
n=1

InM ⊆ pmi M ⊆ Qi.
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If I * pi, then there exists an element r ∈ I \ pi. Since rB ⊆ IB ⊆ Qi and Qi is
pi-primary, it follows that B ⊆ Qi. □
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