# **ON SEMIPERFECT F-INJECTIVE RINGS**

Truong Cong Quynh

Received: 12 June 2006; Revised: 26 October 2006 Communicated by W. K. Nicholson

ABSTRACT. A ring R is called right F-injective if every right R-homomorphism from a finitely generated right ideal of R to R extends to an endomorphism of R. R is called a right FSE-ring if R is a right F-injective semiperfect ring with essential right socle. The class of right FSE-rings is broader than that of right PF-rings. In this paper, we study and provide some characterizations of this class of rings. We prove that if R is left perfect, right F-injective, then R is QF if and only if R/S is left finitely cogenerated where  $S = S_r = S_l$  if and only if R is left semiartinian,  $Soc_2(R)$  is left finitely generated. It is also proved that R is QF if and only if R is left perfect, mininjective and  $J^2 = r(I)$ for a finite subset I of R. Some known results are obtained as corollaries.

Mathematics Subject Classification (2000): 16D50, 16D70, 16D80 Keywords: F(P)-injective ring, miniplective ring, finitely continuous ring, min-CS, QF-ring, PF-ring, FSE-ring, uniform module

# 1. Introduction

Throughout the paper, R represents an associative ring with identity  $1 \neq 0$ and all modules are unitary R-modules. We write  $M_R$  (resp.,  $_RM$ ) to indicate that M is a right (resp., left) R-module. We also write J (resp.,  $Z_r, S_r$ ) for the Jacobson radical (resp., the right singular ideal, the right socle of R) and  $E(M_R)$ for the injective hull of  $M_R$ . If X is a subset of R, the right (resp., left) annihilator of X in R is denoted by  $r_R(X)$  (resp.,  $l_R(X)$ ) or simply r(X) (resp., l(X)) if no confusion appears. If N is a submodule of M (resp., proper submodule) we denote by  $N \leq M$  (resp., N < M). Moreover, we write  $N \leq^e M$ ,  $N \leq^{\oplus} M$  and  $N \leq^{max} M$  to indicate that N is an essential submodule, a direct summand and a maximal submodule of M, respectively. A module M is called uniform if  $M \neq 0$ and every non-zero submodule of M is essential in M.

The work was supported by the Natural Science Council of Vietnam.

A ring R is called right F-injective (resp., P-injective) if every homomorphism from a finitely generated (resp., principal) right ideal to R is given by left multiplication by an element of R. R is called right mininjective if every homomorphism from a minimal right ideal to R is given by left multiplication by an element of R. R is called right Kasch if every simple right R-module embeds in R; or equivalently,  $l(I) \neq 0$  for every maximal right ideal I of R. A ring R is called a QF-ring if it is right (or left) artinian and right (or left) self-injective. R is said to be a right PF-ring if the right  $R_R$  is an injective cogenerator in the category of right R-modules.

We refer to the following conditions on a module  $M_R$ :

- C1: Every submodule of M is essential in a direct summand of M.
- C2: Every submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M.
- C3:  $M_1 \oplus M_2$  is a direct summand of M for any two direct summand  $M_1$ ,  $M_2$  of M with  $M_1 \cap M_2 = 0$ .

Module  $M_R$  is called extending (or CS) (resp., continuous) if it satisfies C1 (resp., both C1 and C2). R is called right CS (resp., continuous) if  $R_R$  is a CS-module (resp., continuous). A module M is called finitely continuous if it satisfies C2 and every finitely generated submodule is essential in a summand of M. R is called right finitely continuous if  $R_R$  is a finitely continuous module. A module M is called min-CS if every simple submodule is essential in a summand of M (see [24]). R is called right min-CS if  $R_R$  is a min-CS module. R is called a right IN-ring if  $l(A \cap B) = l(A) + l(B)$  for all right ideals A and B of R.

General background material can be found in [1], [6], [7] and [24].

In this paper, we consider a generalization of right PF, namely the class of semiperfect right F-injective rings with essential right socle (called right FSE). We provide example of right FSE which are not right PF. Several characterizations of right FSE rings are provided. For instance, it is shown that R is right FSE if and only if R is left min-CS, right Kasch and right F-injective if and only if R is right finitely continuous, right finitely cogenerated, and right F-injective. In [5], Chen, Ding and Yousif proved that if R is left perfect, left and right F-injective then R is QF if and only if R/S is left finitely cogenerated where  $S = S_r = S_l$  if and only if Ris right perfect,  $Soc_2(R)$  is left finitely generated. In this paper, we will prove that R is left perfect, right F-injective then R is QF if and only if R/S is left finitely cogenerated where  $S = S_r = S_l$  if and  $Soc_2(R)$  is left finitely constrained.

### 2. On semiperfect F-injective rings.

Lemma 2.1. Let R be a right Kasch, right F-injective ring. Then

- (1) rl(I) = I for every right finitely generated ideal I of R. In particular, R is left P-injective.
- (2)  $S_r = S_l$  is essential in <sub>R</sub>R.
- (3) l(J) is an essential left ideal.
- (4) J = r(S) = rl(J), where  $S = S_r = S_l$ .
- (5)  $Z_r = Z_l = J$ .
- (6) xR is minimal if and only if Rx is minimal, for every  $x \in R$ .
- (7) Minimal left and right ideal are annihilators.
- (8) The map K → r(K) gives a bijection from the set of all minimal left ideals of R onto the set of all maximal right ideals of R. The inverse map is defined by I → l(I).
- (9) If l(T) = l(S), where T and S are right ideals, with T is finitely generated, then T = S.
- (10) If  $T_R$  is a finitely generated right ideal, and l(T) is small in  $_RR$ , then  $T_R$  is essential in  $R_R$ .
- (11)  $r(Rb \cap l(T)) = r(b) + T$  for every finitely generated right ideal T of R and every  $b \in R$ .

**Proof.** (2), (3), (4), (5), (6) by [4, Theorem 2.3].

(1). Let T be a right finitely generated ideal of R. Always  $T \leq rl(T)$ . If  $b \in rl(T) \setminus T$ let  $T \leq I \leq^{max} (bR + T)$ . Since R is right Kasch, we can find a monomorphism  $\sigma : (bR + T)/I \to R$ , and then define  $\gamma : bR + T \to R$  via  $\gamma(x) = \sigma(x + I)$ . Since bR + I is a right finitely generated ideal of R and R is right F-injective, it follows that  $\gamma = c$ , where  $c \in R$ . Hence  $cb = \sigma(b+I) \neq 0$  because  $b \notin I$ . But if  $t \in T$  then  $ct = \sigma(t+I) = 0$  because  $T \leq I$ , so  $c \in l(I)$ . Since  $b \in rl(T)$  this gives cb = 0, a contradiction. Thus T = rl(T). It is clearly that R is left P-injective.

(7). Obvious because  ${\cal R}$  is left and right mininjective.

(8). Let K = Ra be a minimal left ideal. Then aR is a minimal right ideal, and so r(K) = r(a) is a maximal right ideal. Clearly, K = lr(K) since K is an annihilator. Note that R is right Kasch and right F-injective. Thus for all maximal right ideal T, T = rl(T). So (8) follows.

(9). First  $S \leq rl(S) = rl(T) = T$  by (1). If S < T, by the same argument as in (1), we receive the contradiction. Thus T = S.

(10). Let  $T \cap aR = 0$ , where  $a \in R$ . Since R is right F-injective,  $R = l(T \cap aR) =$ 

l(T) + l(a). Thus l(a) = R by hypothesis, so a = 0. (11). Clear from (1).

Recall that if M is a module, the submodules  $Soc_1(M) \leq Soc_2(M) \leq ...$  are defined by setting  $Soc_1(M) = Soc(M)$  and, if  $Soc_n(M)$  has been specified, by  $Soc_{n+1}(M)/Soc_n(M) = Soc(M/Soc_n(M))$ .

Lemma 2.2. Let R be a semilocal, right Kasch, right F-injective ring. Then

- (1) R is left and right Kasch.
- (2) R is left and right finitely cogenerated.
- (3)  $Soc_n(R_R) = Soc_n(R_R) = l(J^n) = r(J^n)$  for all  $n \ge 1$ .

**Proof.** By Lemma 2.1, R is left and right P-injective. Then by [15, Lemma 5.49], R is right and left Kasch. Thus by [4, Theorem 2.8], R is left and right finitely cogenerated. Thus (3) follows from [15, Lemma 3.36].

**Corollary 2.3.** Assume that R is a semiperfect, right F-injective ring in which  $Soc(eR) \neq 0$  for every local idempotent e of R. Then

- (1) rl(I) = I for every right finitely generated ideal I of R.
- (2)  $S_r = S_l = S$  is essential in  $R_R$  and in  $_RR$ .
- (3) Soc(eR) = eS and Soc(Re) = Se are simple for every local idempotent  $e \in R$ .
- (4) If e<sub>1</sub>,..., e<sub>n</sub> are basic local idempotents, then {e<sub>1</sub>S..., e<sub>n</sub>S} and {Se<sub>1</sub>..., Se<sub>n</sub>} are systems of distinct representatives of the simple right and left R-modules, respectively.
- (5)  $Z_r = Z_l = J$ .
- (6) R is left and right finite dimensional.

**Proof.** By the hypothesis R is right minfull (i.e., R is a semiperfect, right mininjective ring in which  $Soc(eR) \neq 0$  for every local idempotent e of R), and then it is a right Kasch ring by [17, Theorem 3.7]. Hence by Lemma 2.1 and Lemma 2.2 we have (1), (2), (5) and (6). Thus R is also left minfull. It implies that Soc(Re) = Se and Soc(eR) = eS are simple for every local idempotent  $e \in R$  by [17, Theorem 3.7], proving (3).

(4) follows from [17, Theorem 3.7 (7), (8)].

Corollary 2.4. The following conditions are equivalent for a ring R.

- (1) R is left finitely cogenerated, right Kasch and right F-injective.
- (2) R is left finite dimensional, right Kasch and right F-injective.

#### TRUONG CONG QUYNH

- (3) R is right Kasch, right F-injective and  $S_l$  is left finitely generated.
- (4) R is semilocal, right Kasch and right F-injective.
- (5) R is semilocal, right F-injective and  $J = r(k_1, ..., k_n)$ , where  $k_i \in R$ , i = 1, ..., n.
- (6) R is right finitely cogenerated, right Kasch and right F-injective.
- (7) R is right finite dimensional, right Kasch and right F-injective.
- (8) R is right Kasch, right F-injective and  $S_r$  is a finitely generated left ideal.

**Proof.**  $(1) \Rightarrow (2)$  and  $(2) \Rightarrow (3)$ . Obvious.

(3)  $\Rightarrow$  (4). By the hypothesis and Lemma 2.1,  $S_r = S_l$ , say  $S_r = Ra_1 \oplus ... \oplus Ra_n$ where  $Ra_i$  is a minimal left ideal of R, so  $a_iR$  is a minimal right ideal of R by Lemma 2.1(6) i.e.,  $r(a_i)$  is a maximal right ideal of R for all i = 1, 2, ..., n. Since Ris right Kasch,  $J = r(S_r) = \bigcap_{i=1}^{n} r(a_i)$ . We construct a homomorphism

is right Kasch,  $J = r(S_r) = \bigcap_{i=1}^n r(a_i)$ . We construct a homomorphism  $\varphi: R/J = R/\bigcap_{i=1}^n r(a_i) \longrightarrow \bigoplus_{i=1}^n R/r(a_i)$  defined by  $\varphi(r + \bigcap_{i=1}^n r(a_i)) = (r + r(a_i))_{i=1}^n$  for all  $r \in R$ . Then  $\varphi$  is a monomorphism. Hence R/J is semisimple or R is semilocal. (4)  $\Rightarrow$  (1), (6) and (8) by Lemma 2.2.

- $(4) \Rightarrow (5)$ . By Lemma 2.2 and R is semilocal.
- $(5) \Rightarrow (4)$ . By [5, Corollary 3.2].
- $(6) \Rightarrow (7)$ . Clearly.

 $(7) \Rightarrow (4)$  follows because a right P-injective and right finite dimensional is semilocal by [16, Theorem 3.3].

(8) 
$$\Rightarrow$$
 (4). By the same an argument as (3)  $\Rightarrow$  (4).

Next we consider ring which is semiperfect, right F-injective with essential right socle.

**Theorem 2.5.** The following conditions are equivalent for a ring R.

- (1) R is semiperfect, right Kasch and right F-injective.
- (2) R is semiperfect, right F-injective and  $S_r \leq^e R_R$ .
- (3) R is semiperfect, right F-injective and  $S_r \leq^e {}_R R$ .
- (4) R is right finitely continuous, right finitely cogenerated and right F-injective.
- (5) R is right min-CS, right finitely cogenerated and right F-injective.
- (6) R is left min-CS, right Kasch and right F-injective.

**Proof.** (1)  $\Leftrightarrow$  (2)  $\Leftrightarrow$  (3)  $\Leftrightarrow$  (5)  $\Leftrightarrow$  (6). By the same argument as in [5, Theorem 3.3].

 $(3) \Rightarrow (4)$ . By [15, Theorem 1.48], R is right Kasch, and so by Lemma 2.1 and

Lemma 2.2,  $S_l \leq^e R_R$  and  $S_r \leq^e RR$ . Hence rl(I) is essential in a summand of  $R_R$  for every right ideal I of R by [15, Lemma 4.2]. Furthermore, every right finitely generated ideal is a right annihilator by Lemma 2.1. Thus R is right finitely continuous.

 $(4) \Rightarrow (5)$  is clearly.

**Definition 2.6.** A ring R is called a right FSE-ring if it satisfies the equivalent conditions in Theorem 2.5.

**Remark 2.7.** If R is right PF (i.e., R is semiperfect, right self-injective and  $S_r \leq e R_R$ ), then R is right FSE, however the converse is not true in general. There is a commutative FSE-ring which is not PF ([15, Example 5.45]): Let  $R = F[x_1, x_2...]$ , where F is a field and  $x_i$  are commuting indeterminants satisfying the relations:  $x_i^3 = 0$  for all  $i, x_i x_j = 0$  for all  $i \neq j$ , and  $x_i^2 = x_j^2$  for all i and j. Then R is a commutative, semiprimary F-injective ring. But R is not a self-injective ring.

A right R-module M is said to be F-injective if each R-momorphism  $f: I \longrightarrow M$ from a right finitely generated ideal I into M extends to R; equivalently, f = m., for some  $m \in M$ .

It is well-known that R is a right PF-ring iff  $R = \bigoplus_{i=1}^{n} e_i R$  where  $e_i^2 = e_i \in R$  and each  $e_i R$  is indecomposable injective with essential simple socle. We also have:

**Theorem 2.8.** The following conditions are equivalent for ring R.

- (i) R is right FSE.
- (ii)  $R_R$  is finite direct sum  $R = \bigoplus_{i=1}^n e_i R$  where  $e_i^2 = e_i \in R$  and each  $e_i R$  is indecomposable F-injective with essential simple socle.

**Proof.** (i)  $\Rightarrow$  (ii). Since R is right FSE,  $R = e_1 R \oplus ... \oplus e_n R$  where  $\{e_1, e_2, ..., e_n\}$  is a set of orthogonal local idempotents in R and each  $e_i R$  is indecomposable. But Ris right finitely continuous, each  $e_i R$  is uniform. Hence  $Soc(e_i R)$  is essential simple in  $e_i R$  for all i = 1, 2, ..., n (because  $Soc(e_i R) \neq 0$ ). Now we will prove that  $e_i R_R$ is F-injective. In fact, for every  $i \in \{1, 2, ..., n\}$  we consider the following diagram:

$$egin{array}{cccc} I & \stackrel{f}{\longrightarrow} & e_i R & \stackrel{\iota_i}{\overleftarrow{p_i}} & R \ & \searrow & ar{f_i} \uparrow & \swarrow & \ & & f & \ & & R & \ & & & R & \end{array}$$

with  $I_R$  is a finitely generated right ideal of R,  $\iota, \iota_i$  are the canonical inclusions and  $p_i$  is the canonical projection. Since R is right F-injective, there exists  $\bar{f}: R \longrightarrow R$ 

such that  $\overline{f} \circ \iota = \iota_i \circ f$ . Let  $\overline{f}_i = p_i \circ \overline{f}$ . Therefore,  $\overline{f}_i(x) = p_i \circ \overline{f}(x) = p_i \circ \iota_i \circ f(x) = f(x)$  for all  $x \in I$ . Thus  $e_i R_R$  is F-injective for each i = 1, 2, ..., n.

(ii)  $\Rightarrow$  (i). Assume that  $R = \bigoplus_{i=1}^{n} e_i R$  where  $e_i^2 = e_i \in R$  and each  $e_i R$  is indecomposable F-injective with essential simple socle. We consider the following diagram:

with  $I_R$  is a finitely generated right ideal of R,  $\iota$ ,  $\iota_i$  are the canonical inclusions and  $p_i$ is the canonical projection. Since each  $e_i R_R$  is F-injective, there is  $\bar{f}_i: R \longrightarrow e_i R$ with  $\bar{f}_i \circ \iota = p_i \circ f$  for each i = 1, 2, ..., n. Let  $\bar{f} = \bigoplus_{i=1}^n \bar{f}_i : R \longrightarrow R$  via  $\bar{f}(x) = \sum_{i=1}^n \bar{f}_i(x)$ , for all  $x \in R$ . Then for all  $x \in I$ ,  $\bar{f}(x) = \sum_{i=1}^n \bar{f}_i(x) = \sum_{i=1}^n p_i(f(x)) = f(x)$ . Thus R is right F-injective.

Now we will prove that R is semiperfect. In fact, let  $0 \neq K \leq e_i R$ . Since  $Soc(e_i R) \leq^e e_i R$ ,  $K \cap Soc(e_i R) \neq 0$ . Furthermore,  $Soc(e_i R)$  is simple. So  $Soc(e_i R) = K \cap Soc(e_i R)$  i.e.,  $Soc(e_i R) \leq K$ , from this it implies that  $K \leq^e e_i R$ . Hence  $e_i R$  is uniform for all i = 1, 2, ..., n.

Note that R is right C2-ring (since R is right F-injective) and R is finite direct sum of uniform right ideals. Thus, R is semiperfect by [15, Lemma 4.26]. On the other hand,  $Soc(R_R) = \bigoplus_{i=1}^{n} Soc(e_i R) \leq^{e} \bigoplus_{i=1}^{n} e_i R = R$ . Thus R is right FSE by Theorem 2.5.

**Proposition 2.9.** If R is a right FSE ring and  $R/S_r$  is right Goldie, then R is QF.

**Proof.** Since R is right FSE, R is left and right mininjective. Thus by [17, Proposition 4.7] R is QF.

**Corollary 2.10.** If R is a right FSE-ring satisfying ACC on essential right ideals, then R is QF.

**Proof.** Since R has ACC on essential right ideals,  $R/S_r$  is right noetherian by [6, 5.15]. Hence  $R/S_r$  is right Goldie.

**Corollary 2.11.** If R is a right F-injective, right CS ring and  $R/S_r$  is right Goldie, then R is QF.

**Proof.** By the hypothesis, R is right continuous. So R is semiprimary by [22, Theorem]. Therefore, R is a right FSE ring. Thus R is QF.

A right FSE-ring is a left P-injective ring. Rutter ([20, Example 1]) has an example of a left P-injective ring satisfying ACC on left annihilators but not left F-injective, quasi-Frobenius. But the following proposition show that a right FSE-ring satisfying ACC on left annihilators is QF.  $\Box$ 

**Proposition 2.12.** Let R be a right FSE ring satisfying ACC on left annihilators. Then R is QF.

**Proof.** By the hypothesis, R is right and left P-injective. So by [15, Proposition 5.15], R is left artinian. Hence R is QF by [21, Corollary 3] or [19, Theorem 2.7].

A ring R is called left semiartinian if every nonzero right R-module has an essential socle.

Now we consider a right F-injective, left perfect ring in which  $Soc_2(R)$  is left finitely generated or R/S is left finitely cogenerated where  $S = S_r = S_l$ .

**Lemma 2.13.** (Osofsky's Lemma) If R is a left perfect ring in which  $J/J^2$  is right finitely generated, then R is right artinian.

From the Osofsky's Lemma we have the following theorem extends the work in [5, Theorem 3.9 (2), (3)] and [15, Theorem 5.66 (2), (3)]

**Theorem 2.14.** Let R be a left perfect, right F-injective ring. Then

- (1) R is QF if and only if R/S is a finitely cogenerated left R-module where  $S = S_r = S_l$ .
- (2) R is QF if and only if R is left semiartinian and  $Soc_2(R)$  is a finitely generated left R-module.

**Proof.** (1). Clearly R is right FSE, R is left and right Kasch and  $S = S_r = S_l$ . So S = l(J) and  $J = r(S_r) = r(S)$  (because R is semilocal and right Kasch). Hence S = lr(S), then by [15, Lemma 1.40] R/S is torsionless as a left R-module. From this and the hypothesis, there exists a monomorphism  $\phi : R/S \longrightarrow R^n$  for some positive integer n. Let  $\phi(1 + S) = (a_1, ..., a_n)$ , then  $S = l(a_1, ..., a_n)$ .

We have  $J = r(S) = rl(a_1, ..., a_n) = a_1R + ... + a_nR$  by Lemma 2.1(1). Hence  $J_R$  is finitely generated. So is  $J/J^2$ . Therefore, R is right artinian by Lemma 2.13. Thus R is QF by Proposition 2.12.

(2). Since R is left semiartinian, R/S has an essential left socle. Note that  $Soc(R/S) = Soc_2(R)/S$ . If  $Soc_2(R)$  is finitely generated left R-module, so is Soc(R/S). Hence R/S is left finitely cogenerated. Thus by (1) R is QF.

**Corollary 2.15.** [5, Corollary 3.10 (2), (3)] Let R be a left perfect, right P-injective and right IN ring. Then

- (1) R is QF if and only if R/S is a finitely cogenerated left R-module where  $S = S_r = S_l$ .
- (2) R is QF if and only if R is left semiartinian and  $Soc_2(R)$  is a finitely generated left R-module.

The following theorem extends the work in [9, Theorem 2.7].

**Theorem 2.16.** Let R be a left perfect, right F-injective ring. If  $J^2 = r(A)$  for a finite subset A of R, then R is QF.

**Proof.** Since R is semilocal,  $J/J^2$  is a semisimple right R/J-module. Hence  $J/J^2$  is a semisimple right R-module.

Let  $J^2 = r(a_1, ..., a_n)$  where  $a_i \in R, i = 1, 2, ..., n$ . Define

 $\phi: R/J^2 \longrightarrow R^n$ , via  $\phi(a+J^2) = (a_1a, ..., a_na)$  for all  $a \in R$ .

Then  $\phi$  is a monomorphism. Hence way may regard  $J/J^2$  as a submodule of  $\mathbb{R}^n$ .

We have  $J/J^2 = Soc(J/J^2) \leq Soc(R_R^n) = (Soc(R_R))^n = S_r^n$ . On the other hand, R is right FSE,  $S_r$  is right finitely generated, so is  $(S_r)^n$ , as a direct summand of  $(S_r)^n$ ,  $J/J^2$  is right finitely generated. By Lemma 2.13, R is left artinian. Thus Ris QF by Proposition 2.12.

**Corollary 2.17.** [9, Theorem 2.7] If R is left perfect, right self-injective, and if  $J^2$  is the right annihilator of a finite subset of R, then R is QF.

A ring R is called a right CPA-ring if every cyclic right R-module is a direct sum of a projective and an artinian module (see [13]).

**Theorem 2.18.** If R is a right P-injective, right CPA-ring, then R is right artinian.

**Proof.** By [13, Theorem 2.1], R has a direct decomposition

$$R_R = A \oplus U^{(1)} \oplus \dots \oplus U^{(n)}$$

where A is an ideal of R such that  $A_R$  is artinian and each  $U^{(i)}$  is a uniform right *R*-module with  $Soc(U_R^{(i)}) = 0$ . We will prove that  $U^{(i)} = 0$  for every *i*. Assume on the contrary that  $U^{(i)} \neq 0$  for some *i*. Take  $0 \neq x \in U^{(i)}$ , then  $xR = P_R \oplus B_R$ where  $P_R$  is projective and  $B_R$  is artinian; however Soc(xR) = 0, it follows that B = 0. i.e., xR is projective. Then by [16, Corollary 1.2], xR is a direct summand of *R*. So  $R = xR \oplus I$  where  $I \leq R_R$ . Therefore

$$U^{(i)} = (xR \oplus I) \cap U^{(i)} = xR \oplus (I \cap U^{(i)}).$$

On the other hand, since  $xR \neq 0$  and  $U^{(i)}$  is uniform,  $I \cap U^{(i)} = 0$ . So  $U^{(i)} = xR$ for each  $0 \neq x \in U^{(i)}$ , showing  $U^{(i)}$  is simple, a contradiction to  $Soc(U^{(i)}) = 0$ . Hence  $U^{(i)} = 0$ , i = 1, 2, ..., n. It implies that R = A i.e., R is right artinian.  $\Box$ 

Corollary 2.19. If R is a right F-injective, right CPA-ring, then R is QF.

Now we provide a generalization of Theorem 2.16 and [5, Corollary 2.10(2)].

**Theorem 2.20.** Let R be a left perfect, left and right mininjective ring in which  $J^2 = r(A)$  for a finite subset A of R, then R is QF.

**Proof.** By using technique of proving Theorem 2.16, we have  $J/J^2 = Soc(J/J^2) \leq Soc(R_R^n) = (Soc(R_R))^n = S_r^n$ . On the other hand, R is right minfull by hypothesis. So  $S_r = S_l \leq^e R_R$ . For each local idempotent  $e \in R$ ,  $Soc(Re) = S_l \cap Re = S_r \cap Re = S_r e \neq 0$  by [15, Theorem 3.12]. Hence R is left minfull. It follows that  $S_r$  is right finitely generated by [15, Proposition 3.17], so is  $(S_r)^n$ , as a direct summand of  $(S_r)^n$ ,  $J/J^2$  is right finitely generated. By Lemma 2.13, R is left artinian. Thus R is QF.

Recall that a ring R is called right pseudo-coherent if r(S) is finitely generated for every finite subset S of R.

**Theorem 2.21.** Assume that R is a left perfect, left and right mininjective ring. If R is right (or left) pseudo-coherent, then R is QF.

**Proof.** If R is left perfect, left and right miniplective ring, then R is right minfull and  $S_r = S_l$ . On the other hand, for each local idempotent  $e \in R$  then Soc(eR) = $S_r \cap eR = S_l \cap eR = eS_l$ . From this and [15, Theorem 3.12], it implies that R is left and right minfull. Thus  $S = S_r = S_l$  is a finitely generated left and right ideal and R is left and right Kasch.

Clearly,  $J \leq l(S)$ . Let M be any maximal left ideal. Then  $R/M \stackrel{\phi}{\cong} I$  where I is a minimal left ideal since R is left Kasch. If  $x \in l(S)$ , then  $xI \leq xS = 0$ . Thus  $0 = xI = x\phi(R/M) = \phi(x(R/M))$ , and so x(R/M) = 0, whence  $x \in M$ . Therefore it follows that  $l(S) \leq J$ , and hence J = l(S). Similarly, we have J = r(S) because R is right Kasch. By hypothesis, R is left (or right) pseudo-coherent, and so J is a finitely generated left (or right) ideal. If J is a finitely generated right R-module, then  $J/J^2$  is too. Consequently, R is right artinian by Lemma 2.13. If J is a finitely generated left R-module, then J is nilpotent by [15, Lemma 5.64] or [14, Ex. 9, P.305], and hence R is semiprimary. So R is left artinian by Lemma 2.13. Thus R is QF.

**Corollary 2.22.** If R is a left perfect, right F-injective and right (or left) pseudocoherent ring, then R is QF.

**Proof.** By hypothesis, R is right FSE. Therefore R is left and right mininjective. Thus R is QF.

Acknowledgement. The author wishes to thank the Professors Le Van Thuyet and Mohamed F. Yousif for many stimulating discussions and helpful comments. The author also would like to thank the referee for his/her many valuable suggestions and comments.

## References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer Verlag, New York, 1974.
- [2] J. E. Björk, *Rings satisfying certain chain conditions*, J. Reine Angew. Math. 245 (1970), 63-73.
- [3] J. Chen and N. Ding, On generalization of injective rings, In International Symposium on Ring Theory, South Korea, June 28-July 3, 1999.
- [4] J. Chen and N. Ding, On general principally injective rings, Comm. Algebra, 27 (5) (1999), 2097-2116.
- [5] J. Chen, N. Ding and M. F. Yousif, On generalizations of PF-rings, Comm. Algebra, 32 (2) (2004), 521-533.
- [6] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Math. 313, Longman, 1994.
- [7] C. Faith, Algebra II: Ring Theory, Springer-Verlag, Berlin, 1976.
- [8] C. Faith, When self-injective rings are QF: a report on a problem. Centre Recerca Matemtica Institut d'Estudis Catalans (Spain), 1990.
- [9] C. Faith and D. V. Huynh, When self-injective rings are QF: A report on a problem, J. of Algebra and Its Appl. 1(1) (2002), 75-105.
- [10] K.R Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- [11] K.R Goodearl, Ring Theory : Nonsingular Rings and Modules, Monographs Textbooks Pure Appl. Math. 33, 1975.
- [12] K.R Goodearl and R. B. Warfield, An introduction to noncommutative Noetherian rings, Cambridge Uni. Press, 1989.
- [13] D. V. Huynh, P. Dan, On rings with restricted minimum conditions, Arch. Math. 51 (1988), 313-326.
- [14] F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.

- [15] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press., 2003.
- [16] W.K. Nicholson and M.F. Yousif, *Principally injective rings*, J. Algebra 174 (1995), 77-93.
- [17] W.K. Nicholson and M.F. Yousif, *Mininjective rings*, J. Algebra 187 (1997), 548-578.
- [18] W.K. Nicholson and M.F. Yousif, Annihilators and the CS-condition, Glasgow Math. J. 40(2) (1998) 213-222.
- [19] T. C. Quynh and L. V. Thuyet, On rings with ACC on annihilators and having essential socles, to appear in The Proceeding of Bangkok (2006).
- [20] E. A. JR. Rutter, Rings with the principal extension property, Comm. Algebra, 3(3) (1975), 203-212.
- [21] L. D. Thoang and L. V. Thuyet, On semiperfect mininjective rings with essential socles, The Southeast Asian Bulletin of Mathematics, 30 (2006), 555-560.
- [22] L. V. Thuyet, On continuous rings with chain conditions, Vietnam J. Math. 19(1) (1991), 49 - 59.
- [23] L. V. Thuyet and R. Wisbauer, Extending property for finitely generated submodules, Vietnam J. Math. 25(1) (1997), 65 - 73.
- [24] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.

### Truong Cong Quynh

Department of Mathematics, Hue University, Vietnam e-mail: matht2q2004@hotmail.com