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Abstract. A constellation is a set with a partially-defined binary operation

and a unary operation satisfying certain conditions, which, loosely speaking,

provides a ‘one-sided’ analogue of a category, where we have a notion of ‘do-

main’ but not of ‘range’. Upon the introduction of an ordering, we may define

so-called inductive constellations. These prove to be a significant tool in the

study of an important class of semigroups, termed left restriction semigroups,

which arise from the study of systems of partial transformations. In this paper,

we study the defining conditions for (inductive) constellations and determine

that certain of the original conditions from previous papers are redundant.

Having weeded out this redundancy, we show, by the construction of suitable

counterexamples, that the remaining conditions are independent.
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1. Introduction

The study of certain semigroups via related types of ordered categories is a well-

established technique in semigroup theory; perhaps the most famous example is that

of inverse semigroups, which may be studied from the viewpoint of so-called induc-

tive groupoids: a special type of ordered category in which all arrows are invertible.

The correspondence between inverse semigroups and inductive groupoids may be

cast in technical category-theoretic terms (by saying that a certain category of in-

verse semigroups is isomorphic to a certain category of inductive groupoids) but, at

a practical level, this correspondence simply means that we may always construct

an inductive groupoid from any given inverse semigroup in a very straightforward

manner, and vice versa. This has proved to be a particularly useful technique in

the study of inverse semigroups, and forms the core of the book [12].

This work was carried out when the author was a post-doctoral researcher at the Centro de

Álgebra da Universidade de Lisboa (CAUL) and was supported by the Fundação para a Ciência

e a Tecnologia (FCT) through the project ISFL-1-143, as well as through FCT post-doctoral

research grant SFRH/BPD/34698/2007.



2 CHRISTOPHER HOLLINGS

Inverse semigroups arise from the consideration of systems of injective partial

transformations of a set, but we may extend the ‘inductive groupoid’-type tech-

niques to the study of semigroups which arise from systems of arbitrary partial

transformations. In particular, so-called two-sided restriction semigroups may be

connected with inductive categories (essentially, inductive groupoids in which we

drop the insistence upon arrows being invertible) in a manner entirely analogous

to that between inverse semigroups and inductive groupoids. For further details

and references on two-sided restriction semigroups, and on their connection with

inductive categories, see [9] and [10], respectively.

As their name suggests, two-sided restriction semigroups are not the only class of

‘restriction semigroups’ which may be considered: left restriction semigroups have

seen much study — see, for example, [5,9].1 Moreover, given the proven utility of

‘inductive groupoid/category’-type techniques in the study of inverse semigroups

and two-sided restriction semigroups, it is desirable to have similar techniques at

our disposal in the one-sided case of left restriction semigroups. In this instance,

(inductive) categories are not the appropriate objects to consider, since these are

inherently ‘two-sided’ (owing to the presence of both the ‘domain’ and ‘range’ op-

erations). Instead, we must use what is essentially a ‘one-sided’ analogue of a

category, where we have a notion of ‘domain’ but not of ‘range’. Such an object

was introduced in [6] and is termed a constellation; this is a set together with a

partially-defined binary operation · and a unary operation + which satisfy certain

conditions — these conditions were chosen to be as ‘category-like’ as possible, to

emphasize the fact that a constellation is ‘half a category’. The particular con-

stellations which correspond to left restriction semigroups in the required manner

are so-called inductive constellations: partially ordered constellations with certain

additional properties. The ‘partial actions’ of inductive constellations have already

been considered in [7], as a means of informing the study of those of left restriction

semigroups [5].

We reiterate the fact that a constellation possesses an analogue of the ‘domain’

in a category, in the form of the + operation (see Definition 2.1), but that it has no

analogue of ‘range’. Thus a constellation is essentially ‘half a category’. It is in fact

possible to construct a full category from a left restriction semigroup, as Jackson

and Stokes [11] have shown. However, we have reasons to prefer the ‘constellation

approach’: see [6, p. 263 and §4]. Furthermore, see [6, pp. 262–263] for a brief

1With regard to the title of [5], we note that left restriction semigroups were formerly known as

‘weakly left E-ample semigroups’. Indeed, these semigroups have appeared in the literature under

a range of different names — see [9] for more details.
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discussion of some other ways in which a category may be constructed from a left

restriction semigroup, and for comments on other attempts to generalise a category

by modelling domain but not range.

An inductive constellation is defined by a rather lengthy list of conditions. First,

we have four conditions defining the basic constellation (i.e., the underlying struc-

ture of the constellation, before any ordering is applied), followed by six conditions

defining the ordering, and then one final condition for ‘inductivity’. Moreover, in

the special cases of replete and right cancellative constellations, further conditions

are added. The purpose of this paper is to contribute to the development of the

theory of constellations by studying the defining conditions and removing any re-

dundancy therein. Once all such redundancy has been removed, we will show that

the remaining conditions are independent by constructing suitable counterexam-

ples.

We note that this will be the study of the conditions for constellations as they

stand, i.e., the study of the conditions employed in [6,7]. As we will point out in the

relevant places, the conditions for inductive constellations were designed, first of all

to mimic the conditions used to define an inductive category, and secondly to echo

the definition of a left restriction semigroup (in the formulation employed by the

‘York school’ — see [9]). We make no claim that the conditions for constellations

used in [6,7] give the best possible representation of a constellation. They were

developed in the first place as the most practical set of conditions — a set of con-

ditions which best evokes those for both categories and left restriction semigroups

and which may therefore be easily grasped by those researchers who are accustomed

to handling inductive categories, inductive groupoids, inverse semigroups and left

restriction semigroups in the manner of [12] or, more recently, [10]. Thus, other

than removing redundancies, we make little effort to improve the conditions under

consideration — we hope to make this the subject of future work.

With regard to the style in which we present the conditions, we retain the largely

English formulation of [6,7] and eschew any form of logic of partial terms, such as

that of Beeson [1]. We do this for reasons of accessibility (and for uniformity with

previous work), though, again, such a reformulation may be made the subject of

future work. 2

2I am grateful to the referee for making the observation that the use of a logic of partial terms

may improve the presentation of the conditions. It is worth noting that such a reformulation

(and an improvement to the constellation conditions) has been considered by Robin Cockett in

his unpublished Notes on Constellations (April 2010). Cockett’s recasting of the conditions helps



4 CHRISTOPHER HOLLINGS

We begin the paper with Section 2, where we consider unordered constellations.

This section is divided into three subsections. In the first (2.1), we define the

notion of a constellation and show that the four conditions defining this object

are in fact independent. In the remaining two subsections, we consider the special

cases of replete (2.2) and right cancellative (2.3) constellations; we show that some

simplification of conditions is possible in the latter case, but not in the former.

In Section 3, we introduce an ordering onto the constellations and consider the

defining conditions for an inductive constellation. We show that some slight simpli-

fication is possible, and then show that the remaining conditions are independent.

We then go on to consider the special cases of inductive replete constellations and

inductive right cancellative constellations. Throughout Sections 2 and 3, we provide

examples of the objects under consideration. However, we omit the (in most cases,

easy) verification that these examples do indeed have the required properties.

Although all of the examples in this paper were computer-generated, it is still

useful to have techniques available for the manual verification of their various prop-

erties. We therefore conclude the paper with an appendix which sketches some such

techniques.

Certain conventions will be adopted throughout this paper. To begin with, since

we will be considering such examples in our independence proofs, we will use the

term quasi-constellation to refer to an object which satisfies all but one of the

required conditions for a constellation. The examples C2.3(a), C2.3(b), C2.3(c) and

C2.3(d) in the proof of Theorem 2.3 are all quasi-constellations, for instance. In

the ordered case, we will use the term quasi-inductive to refer to a constellation

which satisfies all of the ordering/inductivity conditions but one. For both quasi-

constellations and quasi-inductive constellations, the particular condition which is

not satisfied in each instance will always be clear from the context.

We will also adopt some conventions for the presentation of the (counter)examples

which follow. The elements of the (quasi-)constellations under consideration will be

denoted by a, b, c, . . ., depending on the number of elements. We therefore omit the

labels from multiplication tables, with the understanding that the elements appear

in alphabetical order. Thus, for example, the multiplication table for C2.3(b) is

a b

a a b

b b ×

to emphasize the fact that a constellation is ‘half a category’ and so he adopts a new name: left

category.
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but we will write it simply as

a b

b ×

A ‘×’ will indicate an undefined product. Note that the product a · b is obtained

from the a-row and the b-column.

Similar ‘ordering’ conventions will be applied to the descriptions of other features

of (inductive) constellations. For example, again in the description of C2.3(b), we

specify the unary operation + (see Definition 2.1) by

+ : a, a,

which is our shorthand for

a+ = a, b+ = a.

Later on, when we come to ordered constellations, we will have reason to work

with so-called restrictions and corestrictions (particular partially defined functions

of two variables — see Definition 3.1); these will be denoted by x|y, where x, y are

elements of the constellation satisfying certain conditions. In order to describe these

functions, we introduce some more shorthand. For example, we find the following

a|• : a, b, c, ×
d|• : d, d, d, d

in (3.1), as the restrictions for C2.10; this indicates that

a|a = a, a|b = b, a|c = c, but a|d is undefined

d|a = d|b = d|c = d|d = d.

One final convention will be that if X denotes a set of conditions and (X) is a

condition in X , then

X(X) := X \ {(X)}.

2. Unordered constellations

2.1. Constellations with no extra conditions. Let C be a set and let · be
a partial binary operation on C, i.e., a binary operation which is not necessarily

defined for every pair of elements from C. If, for x, y ∈ C, the product x · y is

defined, we denote the fact by ‘∃x · y’. In expressions such as ‘∃x · (y · z)’, we

implicitly assume that ∃y · z. An idempotent in C (with respect to ·) is an element

e ∈ C such that ∃e · e and e · e = e. The set of idempotents in C will be denoted

by E(C). An idempotent e ∈ C is termed a left identity for an element x ∈ C if
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∃e · x and e · x = x. A unary operation + on C will be called image idempotent if

its image is contained in E(C); in this case, the set

E = {x+ : x ∈ C} ⊆ E(C)

is the distinguished subset (of the unary operation +). (Observe that this set-up

is designed to mimic that of a left restriction semigroup, which, in the formulation

of the ‘York school’ [9], is defined in terms of a distinguished subsemilattice E.

The parallel between (inductive) constellations and left restriction semigroups then

suggests that certain semigroup properties may have analogues for constellations

— see [6, Lemma 3.6], for example.)

Definition 2.1. [6] Let C be a set and · be a partial binary operation on C. Suppose

further that + is an image idempotent unary operation on C with distinguished

subset E. We call (C, ·,+ ) a constellation (with distinguished subset E) if the

following conditions hold:

(C1) if ∃x · (y · z), then ∃(x · y) · z, in which case, x · (y · z) = (x · y) · z;
(C2) ∃x · (y · z) if and only if ∃x · y and ∃y · z;
(C3) for each x ∈ C, x+ is the unique left identity for x in E;

(C4) if ∃a · g, for a ∈ C and g ∈ E, then a · g = a.

Observe the similarity between this definition and that of a category found in [12,

p. 78] or [10, Definition 3.1]. Conditions (C1)–(C3) are straightforward analogues

(though with range deleted from (C3)). Condition (C4), on the other hand, does

not appear in the definition of a category but it is easy to show that a category

does indeed satisfy an analogue of this condition. Our mimicry of the definition of

a category also explains the presence of the two conditions (C1) and (C2), which

might just as well be combined into a single condition. We will retain (C1) and

(C2) as separate conditions for most of the paper, for the reasons outlined in the

introduction, though we hope to develop a new, combined condition in future work.3

We note that, strictly speaking, the object defined in Definition 2.1 should be

termed a left constellation, since it is also possible to define its left-right dual. How-

ever, since we will be dealing only with constellations as defined in Definition 2.1,

we will omit the ‘left’ (but see footnote 2 on page 3). In addition, we will usu-

ally discard the phrase ‘with distinguished subset E’, reinstating it only when it is

needed to aid clarity. Finally, we note that since, in most cases, the operations · and

3Such a combined condition has in fact already been considered by Cockett — see footnote 2 on

page 3.
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+ will be clear, we will refer to ‘the constellation C’, rather than the longer-winded

‘the constellation (C, ·,+ )’.

Example 2.2. The following multiplication table defines a constellation C2.2:
4

a c c a

× × × ×
c a a c

× b × d

+ : a, d, a, d

Let C denote the set of conditions given in Definition 2.1:

C := {(C1), (C2), (C3), (C4)}.

Theorem 2.3. C forms a set of independent defining conditions for a constellation.

Proof. We present four counterexamples:

C(C1) 0 (C1). Let C2.3(a) be the following quasi-constellation:

c a a

b c b

a b c

+ : c, c, c

(C1) fails: ∃a · (b · a) and ∃(a · b) · a but a · (b · a) ̸= (a · b) · a.
C(C2) 0 (C2). Let C2.3(b) be the following quasi-constellation:

a b

b ×
+ : a, a

(C2) fails: ∃b · a and ∃a · b, but @b · (a · b).
C(C3) 0 (C3). Let C2.3(c) be the following quasi-constellation:

× × × ×
c b c ×
× × × ×
d d d d

+ : b, b, b, d

(C3) fails: a+ is not a left identity for a.

4Note that here, and also in subsequent theorems, there are smaller examples that we may choose.

The examples presented here, however, have been selected because they may be reused later on.
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C(C4) 0 (C4). Let C2.3(d) be the following quasi-constellation:

a × × × ×
c × × × ×
c × × × ×
d b c d ×
e e e e e

+ : a, d, d, d, e

(C4) fails: ∃b · a but b · a ̸= b. �

Notice that we may characterise E as the set of all idempotents e in C such that

e+ = e. In general, we will not have E = E(C).

2.2. Replete constellations.

Definition 2.4. [6] A constellation (C, ·,+ ) is called replete if

(C5) E = E(C).

The significance of replete constellations comes from the fact that, under the

correspondence of inductive constellations to left restriction semigroups, induc-

tive replete constellations correspond to full left restriction semigroups: those left

restriction semigroups whose distinguished subsemilattice E is in fact the whole

subset of idempotents of the semigroup [6, Corollary 5.1].

The following demonstrates that not every constellation is replete:

Example 2.5. The constellation C2.2 is replete. On the other hand, let C2.5 be the

following constellation:

a a

a b

+ : b, b

Observe that C2.5 is not replete, since E(C2.5) = C2.5 but E = {b}.

Let R denote the set of conditions which define a replete constellation:

R := C ∪ {(C5)}.

Theorem 2.6. R forms a set of independent defining conditions for a replete

constellation.

Proof. We present five counterexamples:

R(C1) 0 (C1). The quasi-constellation C2.3(a) is replete but does not satisfy (C1).

R(C2) 0 (C2). The quasi-constellation C2.3(b) is replete but does not satisfy

(C2).

R(C3) 0 (C3). The quasi-constellation C2.3(c) is replete but does not satisfy (C3).
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R(C4) 0 (C4). The quasi-constellation C2.3(d) is replete but does not satisfy

(C4).

R(C5) 0 (C5). The constellation C2.5 is not replete. �

2.3. Right cancellative constellations.

Definition 2.7. [6] A constellation (C, ·,+ ) is called right cancellative if it satisfies

the following additional condition:

(C6) if ∃x · z, ∃y · z and x · z = y · z, then x = y.

The significance of right cancellative constellations comes from the fact that,

under the correspondence of inductive constellations to left restriction semigroups,

inductive right cancellative constellations correspond to a special case of left restric-

tion semigroups, termed left ample semigroups [6, Corollary 5.3]. These semigroups

have been studied extensively by Fountain [3,4], amongst others — see [9].

Example 2.8. The constellation C2.2 is right cancellative.

Recall that C2.2 is also replete. Indeed, in general, we have the following:

Lemma 2.9. [8, Lemma 9.1.6] Every right cancellative constellation is replete.

Proof. We know that E ⊆ E(C); we need to show the reverse inclusion. Suppose

that e ∈ E(C), i.e., ∃e · e and e · e = e. But ∃e+ · e and e+ · e = e, whence e+ = e,

by right cancellation. Thus e ∈ E, as required. �

Thus, since not every constellation is replete (Example 2.5), we conclude that

not every constellation is right cancellative. The following example demonstrates

further that not every replete constellation is right cancellative:

Example 2.10. Let C2.10 be the following constellation:

a b c ×
b a c ×
× × × ×
d d d d

+ : a, a, a, d

Then C2.10 is replete but not right cancellative, since ∃a ·c and ∃b ·c with a ·c = b ·c.

A simplification to the conditions for a right cancellative constellation has already

been noted in [8]:

Lemma 2.11. [8, Lemma 9.1.7] {(C1), (C2), (C6)} ⊢ (C4).
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Proof. Let a ∈ C and g ∈ E be such that ∃a ·g. Then, since ∃g ·g, we deduce that
∃a · (g · g), by (C2). Further, ∃(a · g) · g and (a · g) · g = a · (g · g), by (C1). Thus

(a · g) · g = a · g, since g is idempotent, and a · g = a, by (C6). �

Moreover, a further simplification is possible if we introduce the following weak-

ened version of condition (C3), where we drop uniqueness:

(C3′) for each x ∈ C, x+ is a left identity for x.

(We note that the dropping of uniqueness from (C3) seems to be appropriate

since uniqueness is not an algebraic property.)

Lemma 2.12. {(C3′), (C6)} ⊢ (C3).

Proof. Suppose that x ∈ C has a second left identity y, i.e., ∃y · x and y · x = x.

But we know that ∃x+ · x and x+ · x = x = y · x. It therefore follows from right

cancellation that y = x+. �

Thus, conditions (C1), (C2), (C3′) and (C6) suffice to define a right cancellative

constellation. Let us denote this set of conditions by RC.

Theorem 2.13. RC forms a set of independent defining conditions for a right

cancellative constellation.

Proof. We present four counterexamples:

RC(C1) 0 (C1). The quasi-constellation C2.3(a) is right cancellative but does not

satisfy (C1).

RC(C2) 0 (C2). The quasi-constellation C2.3(b) is right cancellative but does not

satisfy (C2).

RC(C3′) 0 (C3′). The quasi-constellation C2.3(c) is right cancellative but does

not satisfy (C3′).

RC(C6) 0 (C6). The constellation C2.10 is not right cancellative. �

3. Ordered and inductive constellations

We now investigate the introduction of a partial order to the various types of

constellations considered in the previous section.

3.1. Inductive constellations.

Definition 3.1. [6] Let (C, ·,+ ) be a constellation and let C be partially ordered

by ≤. We call (C, ·,+ ,≤) an ordered constellation if the following conditions hold:

(O1) if a ≤ c, b ≤ d, ∃a · b and ∃c · d, then a · b ≤ c · d;
(O2) if a ≤ b, then a+ ≤ b+;
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(O3) for e ∈ E and a ∈ C such that e ≤ a+, there exists a restriction e|a which

is the unique element x with the properties x ≤ a and x+ = e;

(O4) for all e ∈ E and all a ∈ C, there exists a corestriction a|e which is the

maximum element x with the properties x ≤ a and ∃x · e;
(O5) for x, y ∈ C and e ∈ E, if ∃x · y, then ((x · y)|e)+ = (x|(y|e)+)+;
(O6) if e, f ∈ E, then, whenever the restriction e|f is defined, it coincides with

the corresponding corestriction.

Ordered replete constellations and ordered right cancellative constellations are sim-

ply replete constellations and right cancellative constellations, respectively, which

possess a partial order satisfying (O1)–(O6).

As with the conditions given in Definition 2.1, the above conditions for the

ordering of a constellation, as well as the inductive condition of Definition 3.3 below,

are designed to mimic the definition of the ordering on an inductive groupoid given

in [12, p. 108], which may also be applied more generally to an inductive category

— see, for example, [10, Definition 3.2]. In particular, the presence of the restriction

and corestriction operations is intended to emphasis the parallel between inductive

constellations and inductive categories for those who are used to working with

the latter. It also suggests constellation analogues of certain results for inductive

categories and groupoids — compare [6, Lemma 3.4] with [12, Lemma 4.1.3], for

example.

We will denote by ι the equality relation on a set.

Example 3.2. If we endow the constellation C2.10 with the following ordering

≤ = ι ∪ {(d, a), (d, b), (d, c)}

a|• : a, b, c, ×
d|• : d, d, d, d

•|a : a, b, d, d

•|d : d, d, d, d

(3.1)

then it becomes an ordered constellation.

As indicated in the introduction, it is so-called inductive constellations that we

are most interested in, given their fundamental connection with left restriction

semigroups. These are a special type of ordered constellation. Let (C, ·,+ ,≤) be

an ordered constellation, and let e, f ∈ E; if the greatest lower bound of e and f

exists (with respect to ≤), we denote it by e ∧ f .

Definition 3.3. Let (C, ·,+ ,≤) be an ordered constellation. We call (C, ·,+ ,≤) an

inductive constellation if it satisfies the following additional condition:
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(I) e ∧ f exists in E for all e, f ∈ E and is equal to e|f .

Inductive replete constellations and inductive right cancellative constellations are

simply replete constellations and right cancellative constellations, respectively, which

possess a partial order satisfying (O1)–(O6) and (I).

Example 3.4. The constellation C2.10 with the ordering of (3.1) is inductive with

a ∧ d = d.

In subsequent examples, we will not specify ∧, since it can easily be read off

from the description of the ordering. It is clear that if C is an ordered constellation

with |E| = 1, then C is necessarily inductive. Observe also that if D is an ordered

constellation with |E| > 1 and ≤ = ι, then D cannot be inductive, since e, f ∈ E

will not have any common lower bounds.

The following demonstrates that not every ordered constellation is inductive:

Example 3.5. Let C3.5 be the following constellation:

a a

b b

+ : a, b

We endow C3.5 with the following ordering:

≤ = ι ∪ {(b, a)}
a|• : a, ×
b|• : b, b

•|a : a, b

•|b : a, b
(3.2)

But C3.5 is not inductive under this ordering, since a ∧ b = b ̸= a|b.

In earlier papers [6,7], we have started by considering ordered constellations and

then added (I) to study inductive constellations. In the present paper, however,

we will not take the intermediate step of studying ordered constellations, but will

move straight to the inductive case.

Lemma 3.6. {(O3), (O4), (I)} ⊢ (O6).

Proof. Suppose that e ≤ f , for e, f ∈ E, so that the restriction e|f is defined.

Notice that e also satisfies the defining conditions of this restriction (e ≤ f and

e+ = e), so, by uniqueness of restrictions, we have that e|f = e, as a restriction.

We now consider e|f as a corestriction. We have e|f = e ∧ f = e, using (I),

together with the fact that e ≤ f . We see then that the restriction and corestriction

e|f coincide. �

Thus, in the presence of (I), we may discard condition (O6).

Note that (O5) depends on (O4): we cannot make statements about the core-

striction without first defining it. This is somewhat problematic when it comes to
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showing the independence of these conditions: for example, how can we verify (O5)

in the case where we negate (O4)? To get around this problem, we replace (O5) by

the following slightly reworded condition:

(O5′) for x, y ∈ C and e ∈ E, if ∃x · y and if the appropriate corestrictions are

defined, then ((x · y)|e)+ = (x|(y|e)+)+.

It is clear that in the presence of (O4), (O5′) implies (O5). In fact, we must make

a similar replacement in the case of condition (I):

(I′) e ∧ f exists in E for all e, f ∈ E and is equal to the corestriction e|f ,
whenever the latter is defined.

Lemma 3.7. {(C2), (C3′), (O4), (I)} ⊢ (C3).

Proof. Suppose that ∃y · x with y · x = x and y ∈ E. We will show that y = x+.

First of all, note that since ∃y · x and y · x = y · (x+ · x), we have ∃y · x+, by

(C2). This, together with the fact that y ≤ y, gives us y ≤ y|x+, by maximality of

corestrictions. But then

y ≤ y|x+ = y ∧ x+ ≤ y,

so that y ∧ x+ = y. We conclude that y ≤ x+.

For the reverse inequality, we first note that since y · x = x and ∃x+ · x, we have

∃x+ · (y · x). It follows from (C2) that ∃x+ · y, and so x+ ≤ x+|y, by maximality

of the corestriction x+|y. But then, as above,

x+ ≤ x+|y = x+ ∧ y ≤ x+,

whence x+ ≤ y and so x+ = y, as required. �

Let O denote the following set of conditions

O = {(O1), (O2), (O3), (O4), (O5′), (I′)}

and let C′ denote the set C with (C3) replaced by (C3′). We put I = C′ ∪ O; the

conditions in I suffice to define an inductive constellation.

Theorem 3.8. I forms a set of independent defining conditions for an inductive

constellation.

Proof. We present ten counterexamples:

I(C1) 0 (C1). We endow the quasi-constellation C2.3(a) with the ordering

≤ = ι c|• : a, b, c • |c : a, b, c (3.3)

Then C2.3(a) is inductive but does not satisfy (C1).
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I(C2) 0 (C2). We endow the quasi-constellation C2.3(b) with the ordering

≤ = ι a|• : a, b • |a : a, b (3.4)

Then C2.3(b) is inductive but does not satisfy (C2).

I(C3′) 0 (C3′). We endow the quasi-constellation C2.3(c) with the ordering:

≤ = ι ∪ {(d, a), (d, b), (d, c)}

b|• : a, b, c, ×
d|• : d, d, d, d

•|b : d, b, d, d

•|d : d, d, d, d

(3.5)

Then C2.3(c) is inductive but does not satisfy (C3′).

I(C4) 0 (C4). We endow the quasi-constellation C2.3(d) with the ordering:

≤ = ι ∪ {(d, a), (e, a), (e, b), (e, c), (e, d)}

a|• : a, ×, ×, ×, ×
d|• : d, b, c, d, ×
e|• : e, e, e, e, e

•|a : a, b, c, d, e

•|d : d, e, e, d, e

•|e : e, e, e, e, e

(3.6)

Then C2.3(d) is inductive but does not satisfy (C4).

I(O1) 0 (O1). We endow the constellation C2.2 with the ordering:

≤ = ι ∪ {(a, b), (a, d)}
a|• : a, a, c, a

d|• : ×, b, ×, d

•|a : a, a, c, d

•|d : a, a, c, d
(3.7)

(O1) fails: a ≤ a, a ≤ b, ∃a · a and ∃a · b, but (a · a, a · b) /∈ ≤.

I(O2) 0 (O2). Let C3.8(a) be the following constellation:

a × × × e

b × × × c

× b c × ×
d d d d d

× a e × ×

+ : a, c, c, d, a

We endow C3.8(a) with the ordering:

≤ = ι ∪ {(a, b), (d, a), (d, b), (d, c), (d, e), (e, c)}

a|• : a, ×, ×, ×, e

c|• : ×, b, c, ×, ×
d|• : d, d, d, d, d

•|a : a, b, d, d, d

•|c : d, d, c, d, e

•|d : d, d, d, d, d

(3.8)

(O2) fails: a ≤ b but (a+, b+) /∈ ≤.
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I(O3) 0 (O3). Let C3.8(b) be the following constellation:

× ×
a b

+ : b, b

We endow C3.8(b) with the ordering

≤ = ι ∪ {(b, a)} • |b : b, b (3.9)

(O3) fails: there is no unique restriction b|a, since both a and b possess the required

properties.

I(O4) 0 (O4). Let C3.8(c) be the following constellation:

a b

× ×
+ : a, a

We endow C3.8(c) with the following ordering:

≤ = ι a|• : a, b (3.10)

(O4) fails: there is no element x with x ≤ b and ∃x · a, i.e., no corestriction b|a.
I(O5′) 0 (O5′). Let C3.8(d) be the following constellation:

a e a × e

× c b × ×
× b c × ×
d d d d d

× a e × ×

+ : a, c, c, d, a

We endow C3.8(d) with the following ordering:

≤ = ι ∪ {(a, c), (d, a), (d, b), (d, c), (d, e), (e, b)}

a|• : a, e, a, ×, e

c|• : ×, b, c, ×, ×
d|• : d, d, d, d, d

•|a : a, d, a, d, d

•|c : a, b, c, d, e

•|d : d, d, d, d, d

(3.11)

(O5′) fails: ∃b · b but (b · b|a)+ ̸= (b|(b|a)+)+.
I(I) 0 (I). The constellation C3.5 is ordered by (3.2) but is not inductive. �

3.2. Inductive replete constellations. Let R′ denote the set R with (C3) re-

placed by (C3′), and put IR := R′ ∪ O. Note that we may apply Lemma 3.7 to

deduce (C3) from the conditions in IR. Thus, the conditions in IR suffice to define

an inductive replete constellation.
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Theorem 3.9. IR forms a set of independent defining conditions for an inductive

replete constellation.

Proof. We present eleven counterexamples:

IR(C1) 0 (C1). The quasi-constellation C2.3(a) with the ordering of (3.3) is both

replete and inductive, but does not satisfy (C1).

IR(C2) 0 (C2). The quasi-constellation C2.3(b) with the ordering of (3.4) is both

replete and inductive, but does not satisfy (C2).

IR(C3′) 0 (C3′). The quasi-constellation C2.3(c) with the ordering of (3.5) is

both replete and inductive, but does not satisfy (C3′).

IR(C4) 0 (C4). The quasi-constellation C2.3(d) with the ordering of (3.6) is both

replete and inductive, but does not satisfy (C4).

IR(C5) 0 (C5). We endow the constellation C2.5 with the ordering

≤ = ι b|• : a, b • |b : a, b

Then C2.5 is inductive but not replete.

IR(O1) 0 (O1). The constellation C2.2 with the ordering of (3.7) is replete and

quasi-inductive, but does not satisfy (O1).

IR(O2) 0 (O2). The constellation C3.8(a) with the ordering of (3.8) is replete

and quasi-inductive, but does not satisfy (O2).

IR(O3) 0 (O3). The constellation C3.8(b) with the ordering of (3.9) is replete

and quasi-inductive, but does not satisfy (O3).

IR(O4) 0 (O4). The constellation C3.8(c) with the ordering (3.10) is replete and

quasi-inductive, but does not satisfy (O4).

IR(O5′) 0 (O5′). The constellation C3.8(d) with the ordering of (3.11) is replete

and quasi-inductive, but does not satisfy (O5′).

IR(I) 0 (I). The constellation C3.5 with the ordering of (3.2) is replete and

quasi-inductive, but does not satisfy (I). �

3.3. Inductive right cancellative constellations. Recall that the set RC is a

set of independent defining conditions for a right cancellative constellation. We put

IRC := RC ∪O, so that the conditions in IRC suffice to define an inductive right

cancellative constellation.

Theorem 3.10. IRC forms a set of independent defining conditions for an induc-

tive right cancellative constellation.

Proof. We present ten counterexamples:
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IRC(C1) 0 (C1). The quasi-constellation C2.3(a) with the ordering of (3.3) is

both right cancellative and inductive, but does not satisfy (C1).

IRC(C2) 0 (C2). The quasi-constellation C2.3(b) with the ordering of (3.4) is

both right cancellative and inductive, but does not satisfy (C2).

IRC(C3′) 0 (C3′). The quasi-constellation C2.3(c) with the ordering of (3.5) is

both right cancellative and inductive, but does not satisfy (C3′).

IRC(C6) 0 (C6). The constellation C2.10 with the ordering of (3.1) is inductive,

but not right cancellative.

IRC(O1) 0 (O1). The constellation C2.2 with the ordering of (3.7) is right

cancellative and quasi-inductive, but does not satisfy (O1).

IRC(O2) 0 (O2). The constellation C3.8(a) with the ordering of (3.8) is right

cancellative and quasi-inductive, but does not satisfy (O2).

IRC(O3) 0 (O3). The constellation C3.8(b) with the ordering of (3.9) is right

cancellative and quasi-inductive, but does not satisfy (O3).

IRC(O4) 0 (O4). The constellation C3.8(c) with the ordering (3.10) is right

cancellative and quasi-inductive, but does not satisfy (O4).

IRC(O5′) 0 (O5′). The constellation C3.8(d) with the ordering of (3.11) is right

cancellative and quasi-inductive, but does not satisfy (O5′).

IRC(I) 0 (I). The constellation C3.5 with the ordering of (3.2) is right cancella-

tive and quasi-inductive, but does not satisfy (I). �

Appendix A. Techniques for handling constellations

Although the counterexamples presented here are all computer-generated, it is

still useful for us to have in hand some manual techniques for verifying the condi-

tions for constellations. This appendix summarises some of these methods.

A.1. Unordered constellations.

A.1.1. A generalised Light’s associativity test. In [2], Clifford and Preston pre-

sented a method, Light’s associativity test, for verifying the associativity of a bi-

nary operation given by a small Cayley table. We can apply a generalised version

of this test in the case of constellations. Suppose that we are given the following
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multiplication table for a finite constellation C = {a, b, c, . . .}:

· a b c · · ·
a x11 x12 x13 · · ·
b x21 x22 x23 · · ·
c x31 x32 x33 · · ·
...

...
...

...
. . .

The entries xij are drawn from the set C ∪ {×}, where, as usual, the symbol ‘×’

will indicate an undefined product. For each x ∈ C, we define two new operations:

u ∗ v = u · (x · v) and u ◦ v = (u · x) · v.

The operation · is then associative if and only if the two operations ∗ and ◦ coincide

for all x ∈ C. The ∗-table is obtained from the ·-table by replacing the y-column

by the x · y-column, for each y ∈ C (if @x · y, we replace the y-column by a column

of ×s). Similarly, the ◦-table is obtained from the ·-table by replacing the z-row

by the z · x-row, for each x ∈ C (if @z · x, we replace the z-row by a row of ×s).

In fact, we need not write down the ◦-table: we need only compare the z-row of

the ∗-table with the z · x-row of the ·-table. If these agree (modulo the comments

which follow), then ∗ and ◦ coincide for that value of x.

The fact that our operation · is partial, together with the fact that the implication

in (C1) goes only one way, means that there is an extra complication for us to watch

out for when applying this generalised associativity test. When we compare the

z-row of the ∗-table for x with the z · x-row of the ·-table, we are comparing the

products z ∗ v = z · (x · v) and z ◦ v = (z · x) · v, for each v ∈ C. The existence

of the product z · (x · v) implies that of the product (z · x) · v, but not vice versa.

This means that (z · x) · v may be defined when z · (x · v) is not, but not vice versa.

Thus, we may have an element from C in a particular position in the z · x-row of

the ·-table, but only a ‘×’ in the corresponding position in the z-row of the ∗-table.
The converse situation, however, may not occur: if an element of C appears in the

∗-table, then it must also appear in the appropriate position in the ·-table.
We illustrate this generalised associativity test with an example. Consider C2.2:

· a b c d

a a c c a

b × × × ×
c c a a c

d × b × d
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We draw the ∗-table for x = a:

∗ a b c d

a a c c a

b × × × ×
c c a a c

d × × × ×

Observe that the a-row of this second table coincides with the a · a = a-row of

the ·-table. Similarly, the c-row of the ∗-table agrees with the c · a = c-row of the

·-table. The b- and d-rows of the ∗-table are rows of ×s because @b · a and @d · a.
Continuing in this way for x = b, c, d, we may verify condition (C1). In fact, we

may also use the ∗-tables to verify (C2). The entry in the s-row and t-column of

the ∗-table for x = a, for example, represents the value s · (a · t). If a ‘×’ appears

in this position, then the product s · (a · t) is undefined; we should then be able to

glance at the ·-table and see that one or both of s · a and a · t is undefined, thereby
checking (C2).

We can also use C2.2 to illustrate the phenomenon described two paragraphs ago

by drawing the ∗-table for x = b:

∗ a b c d

a × × × ×
b × × × ×
c × × × ×
d × × × ×

The d-row of this ∗-table coincides with the d · b = b-row of the ·-table, whilst

the b-row of the ∗-table consists entirely of ×s because @b · b. The a- and c-rows,

however, illustrate our earlier point: the a-row of the ∗-table should agree with the

a · b = c-row of the ·-table, but it instead contains only ×s. This is because, for

example, ∃(a · b) · a, but @a · (b · a).

A.1.2. Further comments. When verifying the conditions for unordered constella-

tions, we can often make our work easier by spotting certain tricks. For instance,

observe that condition (C2) is an ‘existence’ condition and has nothing to say about

the values of products. Thus, when checking the conditions for a constellation such

as C2.5, in which all products are defined, (C2) is immediate.

Conditions (C3) and (C4), which relate to the behaviour of the ‘distinguished

idempotents’ in E are easily read off from the multiplication table, as is (C5) for

replete constellations: we simply identify the idempotents of the constellation by
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reading down the leading diagonal of the multiplication table and then compare

these with the elements appearing as images of the unary operation +.

As in the case of multiplication tables for right cancellative semigroups, we can

check condition (C6) for right cancellative constellations by examining the table

and checking that no column contains any repetitions (other than ×).

A.2. Inductive constellations. The verification that the ordering on a constel-

lation satisfies the required properties can be rather longer than that of conditions

(C1)–(C4) (and perhaps (C5) and (C6)). We suggest some methods for tackling

this.

A.2.1. Partial ordering. The way in which we have presented the ordering, in the

form ≤ = ι ∪ κ (κ ⊆ C × C and ι ∩ κ = ∅), for each ordered constellation makes it

very easy to check that this is indeed a partial order. First of all, it is clear that

the ordering is reflexive, since we have explicitly stated that the equality relation ι

is contained in it. To verify anti-symmetry, we simply examine κ and check that if

(x, y) ∈ κ (where, of course, x ̸= y, because all pairs (x, x) are contained in ι), then

(y, x) /∈ κ. For transitivity, we again examine κ and ensure that if (x, y), (y, z) ∈ κ,

then (x, z) ∈ κ. When checking transitivity, we may ignore ι, since it is clear that

the transitivity property holds for (x, x), (x, y) ∈ ≤, or indeed, (x, y), (y, y) ∈ ≤.

A.2.2. (O1). Depending upon the particular ordering under consideration, the

verification of (O1) can be rather lengthy. In order to reduce the effort that this

takes, if not the time, we suggest the following systematic method. Suppose that

(C, ·,+ ,≤) is an ordered constellation, with ≤ given in the form ≤ = ι∪κ. We agree

upon some order in which to list the relations in ≤; the order chosen is immaterial

— it simply allows us to be systematic. Suppose that the list begins s ≤ t, u ≤ v,

w ≤ x, y ≤ z, . . . We then draw up a table of the following form:

Relation 1 Relation 2 Reading left → right Reading right → left

s ≤ t u ≤ v

” w ≤ x

” y ≤ z
...

...

u ≤ v w ≤ x

” y ≤ z
...

...

That is, we take each relation on our list and pair it up in turn with every other

relation that appears after it on the list. Then, working row by row, we try to
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compare the two relations in the row, first reading from left to right, and then from

right to left. Suppose that both s ·u and t · v are defined. Then we must check that

s · u ≤ t · v; we put our verifications in the appropriate row of the table, under the

column ‘Reading left → right’:

Relation 1 Relation 2 Reading left → right Reading right → left

s ≤ t u ≤ v s · u ≤ t · v
” w ≤ x

” y ≤ z
...

...

Suppose, however, that @u · s. Thus, when we take relation 2 first, the conditions

of (O1) are not satisfied and we therefore have nothing to check. We note this in

the table:

Relation 1 Relation 2 Reading left → right Reading right → left

s ≤ t u ≤ v s · u ≤ t · v @u · s
” w ≤ x

” y ≤ z
...

...

Continuing in this systematic way, we complete the table and thereby verify that

(O1) holds.

We illustrate this method by considering it in the case of C2.3(c). We take the

relations in ≤ in the following order:

a ≤ a, b ≤ b, c ≤ c, d ≤ a, d ≤ b, d ≤ c, d ≤ d.

Then the first few rows of the table will be as follows:

Relation 1 Relation 2 Reading left → right Reading right → left

a ≤ a d ≤ a @a · d @a · a
” d ≤ b ” d · a = d ≤ b · a = c

” d ≤ c ” @c · a
b ≤ b d ≤ a @b · d @a · b
” d ≤ b ” d · b = d ≤ b · b = b
...

...
...

...

Thus, the relations a ≤ a and d ≤ a do not admit any comparison, in either order,

since @a · d and @a · a. Nor may we compare a ≤ a and d ≤ b, in that order, since

@a ·d. However, we may compare them the other way around, and (O1) does indeed

hold in this case, as ∃d · a, ∃b · a and d · a ≤ b · a. Notice that we have not tried

to compare a ≤ a with b ≤ b. In fact, @a · b, but even if it were defined, there
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would be no need to compare these relations. More generally, there is no need for

us to compare relations of the form x ≤ x and y ≤ y, since, if ∃x · y, it follows

immediately from reflexivity that x · y ≤ x · y.

A.2.3. (O2)–(O5) and (I). Condition (O2) is particularly easy to check: we simply

check that if (x, y) ∈ ≤, then (x+, y+) ∈ ≤. Note that we need only check those

pairs in κ — (O2) follows for those in ι by reflexivity.

Unfortunately, in the case of (O3) and (O4), there is nothing to be done but

to verify the properties of the given restrictions and corestrictions, one by one.

However, we note a phenomenon that occurs several times in the examples given in

this paper. In the description of the ordering for C2.10 in (3.1), for instance, we find

the corestriction c|a = d. To verify the maximality of this element, we observe that

it is in fact the only element with the required properties (c|a ≤ c and ∃(c|a) · a)
and is therefore maximal by default.

As with (O1), the verification of condition (O5) can be somewhat laborious, but

the work can be lessened by the spotting of some tricks. One example of this is

in the case of C3.5 (Example 3.5), where we observe that this is in fact a left zero

semigroup, i.e., a semigroup with x ·y = x, for all x, y. Observing also that x|e = x,

for all x ∈ C3.5 and all e ∈ E = C3.5, we have

(x · y|e)+ = (x|e)+ = x+ = (x|y+)+ = (x|(y|e)+)+,

and so there is no need to check each case individually. A similar, though less

dramatic, simplification is possible in the case of C2.3(c) (with the ordering given

in (3.5)), for example, where we observe that all products and all corestrictions

involving d are equal to d. This takes care of all such cases in one go and leaves

only the cases {x = b, y = a, e = b}, {x = y = e = b} and {x = b, y = c, e = b}.
In fact, the second of these is immediate: for any e ∈ E, we will always have e·e = e,

e+ = e and e|e = e, and so (O5) follows for this combination.

Condition (I) is particularly easy to verify. In the case of C3.8(d), for example, we

have E = {a, c, d} and all possible (unordered) pairs of elements from this set appear

in the description of ≤, allowing us to read off that a∧ c = a and a∧ d = c∧ d = d.

Indeed, the only example presented here which is in any way tricky, with regard to

inductivity, is C3.8(a). Again, we have E = {a, c, d}, but this time neither (a, c) nor

(c, a) appears in ≤, so we cannot simply read off a ∧ c. We must instead note that

d is the only common lower bound for a and c, whence a ∧ c = d.
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By the comments following Example 3.4, the inductivity of many of the examples

in this paper is very easy to verify, simply because they have trivial distinguished

subset — C3.8(b), for instance.

A.2.4. Trivial ordering. Note that in the case of C2.3(a) (in the proof of Theo-

rem 3.8), for example, we have ≤ = ι. Indeed, sweeping simplifications take place

in the case of trivial ordering. Observe, first of all, that (O1) and (O2) reduce to

statements about · and + being well-defined, something that we assume anyway,

and so these conditions become redundant. Further, a restriction e|a is defined only

if e = a+, and we necessarily have e|a = a. Similarly, we must have the corestric-

tion a|e = a. Condition (O5), however, requires a little more care. Before we deal

with it, we first note the following lemma:

Lemma A.1. [6, Lemma 2.2] In a constellation C, if ∃a · b, then (a · b)+ = a+.

Then, if ∃x · y, we have, using Lemma A.1,

(x · y|e)+ = (x · y)+ = x+ = (x|y+)+ = (x|(y|e)+.

Therefore, it would seem that (O5) is also immediate in the case of trivial ordering.

However, we must be cautious: the proof of Lemma A.1 uses (C2) and so (O5)

must be checked explicitly in any instance where we do not have (C2) — the case

of C2.3(b) in the proof of Theorem 3.8, for example.

Finally, from our comments following Example 3.4, (I) can only hold in the case

of trivial ordering if |E| = 1.

Acknowledgement Thanks must go to the referee for a number of constructive
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