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Abstract. Combining the definition of 0-Hecke monoids with that of Kisel-

man semigroups, we define what we call Kiselman quotients of 0-Hecke monoids

associated with simply laced Dynkin diagrams. We classify these monoids up

to isomorphism, determine their idempotents and show that they are J -trivial.

For type A we show that Catalan numbers appear as the maximal cardinality

of our monoids, in which case the corresponding monoid is isomorphic to the

monoid of all order-preserving and order-decreasing total transformations on

a finite chain. We construct various representations of these monoids by ma-

trices, total transformations and binary relations. Motivated by these results,

with a mixed graph we associate a monoid, which we call a Hecke-Kiselman

monoid, and classify such monoids up to isomorphism. Both Kiselman semi-

groups and Kiselman quotients of 0-Hecke monoids are natural examples of

Hecke-Kiselman monoids.
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1. Definitions and description of the results

Let Γ be a simply laced Dynkin diagram (or a disjoint union of simply laced

Dynkin diagrams). Then the 0-Hecke monoid HΓ associated with Γ is the monoid

generated by idempotents εi, where i runs through the set Γ0 of all vertexes of Γ,

subject to the usual braid relations, namely, εiεj = εjεi in the case when i and j are

not connected in Γ, and εiεjεi = εjεiεj in the case when i and j are connected in Γ

(see e.g. [23]). Elements of HΓ are in a natural bijection with elements of the Weyl

group WΓ of Γ. The latter follows e.g. from [20, Theorem 1.13] as the semigroup

algebra of the monoid HΓ is canonically isomorphic to the specialization of the

Hecke algebra Hq(WΓ) at q = 0, which also explains the name. This specialization

was studied by several authors, see [22,4,21,6,14,24] and references therein. The

monoid HΓ appears for example in [7,15,16]. One has to note that HΓ appears in
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articles where the emphasis is made on its semigroup algebra and not its structure

as a monoid. Therefore semigroup properties of HΓ are not really spelled out

in the above papers. However, with some efforts one can derive from the above

literature that the monoid HΓ is J -trivial (we will show this in Subsection 2.1) and

has 2n idempotents, where n is the number of vertexes in Γ (we will show this in

Subsection 2.2).

Another example of an idempotent generated J -trivial monoid with 2n idempo-

tents (where n is the number of generators) is Kiselman’s semigroup Kn, defined as

follows: it is generated by idempotents ei, i = 1, 2, . . . , n, subject to the relations

eiejei = ejeiej = eiej for all i > j (see [12]). This semigroup was studied in [18,1].

In particular, in [18] it was shown that Kn has a faithful representation by n × n

matrices with non-negative integer coefficients.

The primary aim of this paper is to study natural mixtures of these two semi-

groups, which we call Kiselman quotients of HΓ. These are defined as follows:

choose any orientation Γ⃗ of Γ and define the semigroup KHΓ⃗ as the quotient of HΓ

obtained by imposing the additional relations εiεjεi = εjεiεj = εiεj in all cases

when Γ⃗ contains the arrow i // j . These relations are natural combinations

of the relations defining HΓ and Kn. Our first result is the following theorem:

Theorem 1. (i) The semigroup KHΓ⃗ is J -trivial.

(ii) The set E := {εi : i ∈ Γ0} is the unique irreducible generating system for

KHΓ⃗.

(iii) The semigroup KHΓ⃗ contains 2n idempotents, where n is the number of ver-

texes in Γ.

(iv) The semigroups KHΓ⃗ and KHΛ⃗ are isomorphic if and only if the directed

graphs Γ and Λ are isomorphic.

(v) The semigroups KHΓ⃗ and KHΛ⃗ are anti-isomorphic if and only if the directed

graphs Γ and Λ are anti-isomorphic.

(vi) If Γ is a Dynkin diagram of type An, then |KHΓ⃗| ≤ Cn+1, where Cn :=
1

n+1

(
2n
n

)
is the n-th Catalan number.

(vii) If Γ is a Dynkin diagram of type An, then |KHΓ⃗| = Cn+1 if and only if Γ⃗ is

isomorphic to the graph

• // • // • // . . . // • // • .

(viii) If Γ⃗ is as in (vii), then the semigroup KHΓ⃗ is isomorphic to the semigroup

Cn+1 of all order-preserving and order-decreasing total transformations of

{1, 2, . . . , n, n+ 1} (see [10, Chapter 14]).
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The semigroup Cn+1 appears in various disguises in [26,25,17,10]. Its presentation

can be derived from [26], however, in the present paper this semigroup appears in a

different context and our proof is much less technical. In [26] it is also observed that

the cardinality of the semigroup with this presentation is given by Catalan numbers.

Classically, Catalan numbers appear in semigroup theory as the cardinality of the

so-called Temperley-Lieb semigroup TLn, see [27, 6.25(g)]. That Catalan numbers

appear as the cardinality of Cn+1 was first observed in [13] (with an unnecessarily

difficult proof, see [27, 6.19(u)] for a straightforward argument). In [8] it was

shown that Catalan numbers also appear as the maximal cardinality of a nilpotent

subsemigroup in the semigroup IOn of all partial order-preserving injections on

{1, 2, . . . , n} (see also [9] for an alternative argument).

Motivated by both Kiselman semigroups and Kiselman quotients of 0-Hecke

monoids, we propose the notion of Hecke-Kiselman semigroups associated with an

arbitrary mixed (finite) graph. A mixed graph is a simple graph in which edges can

be both oriented and unoriented. Such graph is naturally given by an anti-reflexive

binary relation Θ on a finite set (see Subsection 5.1). The corresponding Hecke-

Kiselman semigroup HKΘ is generated by idempotents ei indexed by vertexes of

the graph, subject to the following relations:

• if i and j are not connected by any edge, then eiej = ejei;

• if i and j are connected by an unoriented edge, then eiejei = ejeiej ;

• if i and j are connected by an oriented edge i → j, then eiejei = ejeiej =

eiej .

Our second result is:

Theorem 2. Let Θ and Φ be two anti-reflexive binary relations on finite sets. Then

HKΘ
∼= HKΦ if and only if the corresponding mixed graphs are isomorphic.

The paper is organized as follows: Theorem 1 is proved in Section 2. In Sec-

tion 3 we construct representations of KHΓ⃗ by total transformations, matrices

with non-negative integral coefficients and binary relations. We also describe sim-

ple and indecomposable projective linear representations of KHΓ⃗ over any field. In

Section 4 we give an application of our results to combinatorial interpretations of

Catalan numbers. Finally, in Section 5 we present a general definition of Hecke-

Kiselman semigroups and prove Theorem 2. As a corollary, we obtain a formula

for the number of isomorphism classes of Hecke-Kiselman semigroups on a given

set. We complete the paper with a short list of open problems on Hecke-Kiselman

semigroups.
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2. Proof of Theorem 1

As usual, we denote by Γ0 the set of vertexes of the graph Γ and set n =

|Γ0|. Consider the free monoid Wn generated by a1, . . . , an and the canonical

epimorphism φ : Wn → KHΓ⃗, defined by φ(ai) = εi, i ∈ Γ0. We identify KHΓ⃗

with the quotient of Wn by Ker(φ).

For w ∈ Wn the content c(w) is defined as the set of indexes for which the

corresponding generators appear in w. For any relation v = w used in the definition

of KHΓ⃗ we have c(v) = c(w). This implies that for any α ∈ KHΓ⃗ (which we

interpret as an equivalence class in Ker(φ)) and any v, w ∈ α we have c(v) = c(w).

Hence we may define c(α) as c(v) for any v ∈ α.

2.1. Proof of statement (i). We start with the following statement, which we

could not find any explicit reference to.

Lemma 3. The monoid HΓ is J -trivial.

Proof. For w ∈ WΓ denote by Hw ∈ HΓ the corresponding element (if w =

si1si2 · · · sik is a reduced decomposition of w into a product of simple reflections,

then Hw = εi1εi2 · · · εik). Let l : WΓ → {0, 1, . . . } denote the classical length

function. Then the usual multiplication properties of the Hecke algebra ([20,

Lemma 1.12]) read as follows:

εiHw =

Hsiw l(siw) > l(w);

Hw otherwise;
Hwεi =

Hwsi l(wsi) > l(w);

Hw otherwise.
(1)

Hence for any w ∈WΓ the two-sided idealHΓHwHΓ consists ofHw and, possibly,

some elements of strictly bigger length. In particular, for any x ∈ HΓHwHΓ such

that x ̸= Hw we have HΓHwHΓ ̸= HΓxHΓ. The claim follows. �

As any quotient of a finite J -trivial semigroup is J -trivial (see e.g. [19, Chap-

ter VI, Section 5]), statement (i) follows from Lemma 3.

2.2. Proof of statement (ii). The set E generates KHΓ⃗ by definition. We claim

that this generating system is irreducible. Indeed, if we can write ei as a product w

of generators, then c(w) = {i}, implying w = ei. Hence E is irreducible. Further,

we know that KHΓ⃗ is J -trivial from statement (i). Uniqueness of the irreducible

generating system in a J -trivial monoid was established in [5, Theorem 2]. This

implies statement (ii).
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2.3. Proof of statement (iii). Identify Γ0 with {1, 2, . . . , n} such that i // j

implies i > j for all i and j. Then the mapping ei 7→ εi, i ∈ {1, 2, . . . , n}, extends to
an epimorphism ψ : Kn � KHΓ⃗ (as all relations for generators of Kn are satisfied

by the corresponding generators of KHΓ⃗).

By [18], the semigroup Kn has exactly 2n idempotents, all having different con-

tents. As ψ preserves the content, we obtain 2n different idempotents in KHΓ⃗. As

any epimorphism of finite semigroups induces an epimorphism on the corresponding

sets of idempotents, the statement (iii) follows.

For completeness, we include the following statement which describes idempo-

tents in HΓ in terms of longest elements for parabolic subgroups of WΓ (this claim

can also be deduced from [22, Lemma 2.2]).

Lemma 4. For any X ⊂ Γ0 left wX denote the longest element in the parabolic

subgroup of WΓ associated with X (w∅ = e). Then HwX
∈ HΓ is an idempotent,

and every idempotent of HΓ has the form HwX
for some X as above. In particular,

HΓ has 2n idempotents.

Proof. Let w ∈ WΓ. Assume that Hw is an idempotent. From (1) it follows that

HwHw = Hw implies that εiHw = Hwεi = Hw for any i ∈ c(Hw). In particular,

for any i ∈ c(Hw) we have l(siw) < l(w) and l(wsi) < l(w), in other words, both

the left and the right descent sets of w contain all simple reflections appearing in

any reduced decomposition of w. From [3, 2.3] it now follows that w is the longest

element of the parabolic subgroup of WΓ, generated by all si, i ∈ c(Hw).

On the other hand, if w is the longest element from some parabolic subgroup of

WΓ, then the same arguments imply εiHw = Hwεi = Hw for any i ∈ c(Hw) and

hence HwHw = Hw. The claim follows. �

2.4. Proof of statement (iv). This statement follows from a more general state-

ment of Theorem 16, which will be proved in Subsection 5.3.

2.5. Proof of statement (v). By Proposition 13, which will be proved in a

more general situation in Subsection 5.1, the semigroups KHΓ⃗ and KHΛ⃗ are anti-

isomorphic if and only if KHΓ⃗ and KHΛ⃗op are isomorphic. By statement (iv), the

latter is the case if and only if Γ⃗ and Λ⃗op are isomorphic, which implies statement

(v).

2.6. Proof of statement (vi). Since Γ is now of type An, the groupWΓ is isomor-

phic to the symmetric group Sn+1. Consider the canonical projection HΓ � KHΓ⃗.

Then any equivalence class of the kernel of this projection contains some element
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of minimal possible length (maybe not unique). Let Hw be such an element and

w = si1si2 . . . sik be a reduced decomposition inWΓ. Then this reduced decomposi-

tion cannot contain any subword of the form sisjsi (where i and j are connected in

Γ), in other words, w is a short-braid avoiding permutation. Indeed, otherwise Hw

would be equivalent to Hw′ , where w′ is a shorter word obtained from w by chang-

ing sisjsi to either sisj or sjsi depending on the direction of the arrow between i

and j in Γ⃗, which would contradict our choice of w.

Therefore the cardinality of KHΓ⃗ does not exceed the number of short-braid

avoiding elements in Sn+1. These are known to correspond to 321-avoiding permu-

tations (see e.g. [2, Theorem 2.1]). The number of 321-avoiding permutations in

Sn+1 is known to be Cn+1 (see e.g. [27, 6.19(ee)]). Statement (vi) follows.

2.7. Proof of statement (vii). Assume first that Γ⃗ coincides with

1 2oo 3oo . . .oo noo . (2)

From (vi) we already know that |KHΓ⃗| ≤ Cn+1. For i = 1, 2, . . . , n denote by Ti

the following transformation of {1, 2, . . . , n+ 1}:(
1 2 . . . i− 1 i i+ 1 i+ 2 . . . n n+ 1

1 2 . . . i− 1 i i i+ 2 . . . n n+ 1

)
. (3)

The semigroup Cn+1, generated by the Ti’s is the semigroup of all order-decreasing

and order-preserving total transformations on the set {1, 2, . . . , n + 1}, see [10,

Chapter 14]. One easily checks that the Ti’s are idempotent, that TiTj = TjTi if

|i − j| > 1 and that TiTi+1Ti = Ti+1TiTi+1 = TiTi+1 for all i = 1, 2, . . . , n − 1.

Therefore, sending εi to Tn+1−i for all i defines an epimorphism from KHΓ⃗ to

Cn+1. As |Cn+1| = Cn+1 by [27, 6.25(g)], we obtain that |KHΓ⃗| ≥ Cn+1 and hence

|KHΓ⃗| = Cn+1.

Assume now that Γ⃗ is not isomorphic to (2). Then either Γ⃗ or Γ⃗op must contain

the following full subgraph:

i // j koo . (4)

Using (v) and the fact that |KHΓ⃗| = |KHop

Γ⃗
|, without loss of generality we may

assume that Γ⃗ contains (4). It is easy to see that the element sjsisksj ∈ WΓ is

short-braid avoiding. On the other hand, because of the arrows i // j and

k // j we have

εjεiεkεj = εjεiεjεkεj = εjεiεjεk = εjεiεk.
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Note that sjsisk is again short-braid avoiding. It follows that in this case some

different short-braid avoiding permutations correspond to equal elements of KHΓ⃗.

Hence |KHΓ⃗| is strictly smaller than the total number of short-braid avoiding per-

mutations, implying statement (vii).

2.8. Proof of statement (viii). Statement (viii) follows from the observation

that the epimorphism from KHΓ⃗ to Cn+1, constructed in the first part of our proof

of statement (vii), is in fact an isomorphism as |KHΓ⃗| = |Cn+1| = Cn+1.

3. Representations of KHΓ⃗

In this section Γ is a disjoint union of Dynkin diagrams and Γ⃗ is obtained from

Γ by orienting all edges in some way.

3.1. Representations by total transformations. In this subsection we gener-

alize the action described in Subsection 2.8. In order to minimize the cardinality of

the set our transformations operate on, we assume that Γ⃗ is such that the indegree

of the triple point of Γ⃗ (if such a point exists) is at most one. This is always satis-

fied either by Γ⃗ or by Γ⃗op. In type A we have no restrictions. Using the results of

Subsection 2.5, we thus construct either a left or a right action of KHΓ⃗ for every

Γ⃗.

Consider the set M defined as the disjoint union of the following sets: the set

Γ⃗1 of all edges in Γ⃗, the set Γ⃗0
0 of all sinks in Γ⃗ (i.e. vertexes of outdegree zero),

the set Γ⃗1
0 of all sinks in Γ⃗ of indegree two, and the set Γ⃗2

0 of all sources in Γ⃗ (i.e.

vertexes of indegree zero). Fix some injection g : Γ⃗0
0∪ Γ⃗1

0 → Γ⃗1 which maps a vertex

to some edge terminating in this vertex (this is uniquely defined if the indegree of

our vertex is one, but there is a choice involved if this indegree is two). Note that

under our assumptions any vertex which is not a sink has indegree at most one.

For i ∈ Γ0 define the total transformation τi of M as follows:

τi(x) =



y, y // i x // ;

i, i x // and i is a source;

g(i), x = i is a sink;

x, otherwise.

(5)

Proposition 5. Formulae (5) define a representation of KHΓ⃗ by total transforma-

tions on M .

Proof. To prove the claim we have to check that the τi’s satisfy the defining rela-

tions for KHΓ⃗. Relations τ
2
i = τi and τiτj = τjτi if i and j are not connected follow



ON KISELMAN QUOTIENTS OF 0-HECKE MONOIDS 181

directly from the definitions. So, we are left to check that τiτjτi = τjτiτj = τiτj if

we have

Λ i // j Λ′ .

Every point in M coming from Λ or Λ′ is invariant under both τi or τj , so on such

elements the relations are obviously satisfied.

The above reduces checking of our relation to the elements coming from the

following local situations:

i //oo j // ,

// i // j oo ,

// i // j // .

In all these cases all relations are easy to check (and the nontrivial ones reduce

to the corresponding relations for the representation considered in Subsection 2.8).

This completes the proof. �

Question 6. Is the representation constructed above faithful?

If Γ⃗ is given by (2), then M contains n + 1 elements and it is easy to see that

it is equivalent to the representation considered in Subsection 2.8. In particular,

as was shown there, this representation is faithful. So in this case the answer to

Question 6 is positive.

3.2. Linear integral representations. Let V denote the free abelian group gen-

erated by vi, i ∈ Γ0. For i ∈ Γ0 define the homomorphism θi of V as follows:

θi(vj) =


vj , i ̸= j;∑
k→i

vk, i = j.

Proposition 7. Mapping εi to θi extends uniquely to a homomorphism from KHΓ⃗

to the semigroup EndZ(V ).

Proof. To prove the claim we have to check that the θi’s satisfy the defining

relations for KHΓ⃗. We do this below.

Relation θ2i = θi. If j ̸= i, then θ2i (vj) = θi(vj) = vj by definition. As Γ contains

no loops, we also have

θ2i (vi) = θi(
∑
k→i

vk) =
∑
k→i

θi(vk)
k ̸=i
=
∑
k→i

vk = θi(vi).
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Relation θiθj = θjθi if i and j are not connected. If k ̸= i, j, then θiθj(vk) =

θjθi(vk) = vk by definition. By symmetry, it is left to show that θiθj(vi) = θjθi(vi).

We have

θiθj(vi)
j ̸=i
= θi(vi) =

∑
k→i

vk
k ̸=j
=
∑
k→i

θj(vk) = θj(
∑
k→i

vk) = θjθi(vi).

Relation θiθjθi = θjθiθj = θiθj if we have i // j . If k ̸= i, j, then θiθj(vk) =

θjθi(vk) = vk by definition and our relation is satisfied. Further we have

θiθjθi(vi) =
∑
k→i

θiθj(vk)
k ̸=i,j
=

∑
k→i

vk

ans similarly both θjθiθj(vi) and θiθj(vi) equal
∑

k→i vk as well. Finally, we have

θiθjθi(vj)
i ̸=j
= θiθj(vj) = θi(

∑
k→j

vk) =
∑
k→j

θi(vk) =

= θi(vi) +
∑

k→j,k ̸=i

θi(vk) =
∑
k→i

vk +
∑

k→j,k ̸=i

vk.

As Γ contains no loops, the result is obviously preserved by θj giving the desired

relation. This completes the proof. �

The representation given by Proposition 7 is a generalization of Kiselman’s rep-

resentation for Kn, see [18, Section 5]. Using the canonical anti-involution (trans-

position) for linear operators and Subsection 2.5, from the above we also obtain a

representation for KHop

Γ⃗
.

Question 8. Is the representation constructed above faithful (as semigroup repre-

sentation)?

If Γ⃗ is given by (2), then the linear representation of KHΓ⃗ given by Proposi-

tion 7 is just a linearization of the representation from Subsection 3.1. Hence from

Subsection 2.8 it follows that the answer to Question 8 is positive in this case.

If we identify linear operators on V with n× n integral matrices with respect to

the basis {vi : i ∈ Γ0}, we obtain a representation of KHΓ⃗ by n× n matrices with

non-negative integral coefficients. Call this representation Θ.

Lemma 9. The representation Θ is a representation of KHΓ⃗ by (0, 1)-matrices

(i.e. matrices with coefficients 0 or 1).

Proof. For α ∈ KHΓ⃗ we show that Θ(α) is a (0, 1)-matrix by induction on the

length of α (that is the length of the shortest decomposition of α into a product of

canonical generators). If α = ε, the claim is obvious. If α is a generator, the claim

follows from the definition of Θ (as Γ is a simple graph).
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Let θα denote the homomorphism of V corresponding to α. To prove the in-

duction step we consider some shortest decomposition α = εi1εi2 · · · εip and set

β = εi1εi2 · · · εip−1 . Then for any j ̸= ip we have θα(vj) = θβθip(vj) = θβ(vj),

which is a (0, 1)-linear combination of the vk’s by the inductive assumption.

For vip we use induction on p to show that θα(vip) is a (0, 1)-linear combination

of vk such that there is a path from k to ip in Γ⃗. In the case p = 1 this follows

from the definition of Θ. For the induction step, the part that θα(vip) is a linear

combination of vk such that there is a path from k to ip in Γ⃗ follows from the

definition of Θ. The part that coefficients are only 0 or 1 follows from the fact that

Γ contains no loops. This completes the proof. �

3.3. Representations by binary relations. Consider the semigroup B(Γ0) of

all binary relations on Γ0. Fixing some bijection between Γ0 and {1, 2, . . . , n}, we
may identify B(Γ0) with the semigroup of all n× n-matrices with coefficients 0 or

1 under the natural multiplication (the usual matrix multiplication after which all

nonzero entries are treated as 1). This identifies B(Γ0) with the quotient of the

semigroup Matn×n(N0) (here N0 = {0, 1, 2, . . . }) modulo the congruence for which

two matrices are equivalent if and only if they have the same zero entries.

As the image of the linear representation Θ (and also of its transpose) constructed

in Subsection 3.2 belongs to Matn×n(N0), composing it with the natural projection

Matn×n(N0) � B(Γ0) we obtain a representation Θ′ of KHΓ⃗ by binary relations on

Γ0. As matrices appearing in the image of Θ are (0, 1)-matrices, the representation

Θ′ is faithful if and only if Θ is.

3.4. Regular actions of Cn+1. The semigroup Cn+1 (which is isomorphic to the

semigroup KHΓ⃗ in the case Γ⃗ is of the form (2)) admits natural regular actions on

some classical sets of cardinality Cn+1. For example, consider the setM1 consisting

of all sequences 1 ≤ x1 ≤ x2 ≤ · · · ≤ xn+1 of integers such that xi ≤ i for all i (see

[27, 6.19(s)]). For j = 1, . . . , n define the action of Ti (see (3)) on such a sequence

as follows:

Ti(x1, x2, . . . , xn+1) = (x1, . . . , xi−1, xi, xi, xi+2, . . . , xn+1).

It is easy to check that this indeed defines an action of Cn+1 on M1 by total trans-

formations and that this action is equivalent to the regular action of Cn+1.

As another example consider the set M2 of sequences of 1’s and −1’s, each

appearing n+1 times, such that every partial sum is nonnegative (see [27, 6.19(r)]).

For j = 1, . . . , n define the action of Ti on such a sequence as follows: Ti moves the

i+ 1-st occurrence of 1 to the left and places it right after the i-th occurrence, for



184 OLEXANDR GANYUSHKIN AND VOLODYMYR MAZORCHUK

example,

T3(11− 1−−11−−) = 11− 11−−1−−

(here −1 is denoted simply by − and the element which is moved is given in bold).

It is easy to check that this indeed defines an action of Cn+1 on M2 by total trans-

formations and that this action is equivalent to the regular action of Cn+1.

3.5. Projective and simple linear representations. As KHΓ⃗ is a finite J -

trivial monoid, the classical representation theory of finite semigroups (see e.g. [11]

or [10, Chapter 11]) applies in a straightforward way. Thus, from statement (iii)

it follows that KHΓ⃗ has exactly 2n (isomorphism classes of) simple modules over

any field k. These are constructed as follows: for X ⊂ Γ0 the corresponding simple

module LX = k and for i ∈ Γ0 the element εi acts on LX as the identity if i ∈ X

and as zero otherwise.

The indecomposable projective cover PX of LX is combinatorial in the sense

that it is the linear span of the set

PX := {β ∈ KHΓ⃗ : for all i ∈ Γ0 the equality βεi = β implies i ∈ X}

with the action of KHΓ⃗ given, for α ∈ KHΓ⃗ and β ∈ PX , by

α · β =

αβ, αβ ∈ PX ;

0, otherwise.

Remark 10. Both Theorem 1(i)-(v) and Subsections 3.2, 3.3 and 3.5 generalize

mutatis mutandis to the case of an arbitrary forest Γ (the corresponding Coxeter

group WΓ is infinite in general). To prove Theorem 1(i) in the general case one

should rather consider KHΓ⃗ as a quotient of Kn (via the epimorphism ψ from

Subsection 2.4).

4. Catalan numbers via enumeration of special words

The above results suggest the following interpretation for short-braid avoiding

permutations. For n ∈ N consider the alphabet {a1, a2, . . . , an} and the set Wn of

all finite words in this alphabet. Let ∼ denote the minimal equivalence relation on

Wn such that for any i, j ∈ {1, 2, . . . , n} satisfying |i − j| > 1 and any v, w ∈ Wn

we have vaiajw ∼ vajaiw.

A word v ∈ Wn will be called strongly special if the following condition is satis-

fied: whenever v = v1aiv2aiv3 for some i, the word v2 contains both ai+1 and ai−1.

In particular, both a1 and an occur at most once in any strongly special word. It
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is easy to check that the equivalence class of a strongly special word consists of

strongly special words.

Proposition 11. The number of equivalence classes of strongly special words in

Wn equals Cn+1.

Proof. We show that equivalence classes of strongly special words correspond ex-

actly to short-braid avoiding permutations in Sn+1. After that the proof is com-

pleted by applying arguments from Subsection 2.6.

If v = ai1ai2 . . . aik is a strongly special word, then the corresponding permuta-

tion si1si2 . . . sik ∈ Sn+1 is obviously short-braid avoiding.

On the other hand, any reduced expression of a short-braid avoiding permutation

corresponds to a strongly special word. Indeed, assume that this is not the case.

Let si1si2 . . . sik ∈ Sn+1 be a reduced expression for a short-braid avoiding element

and assume that the corresponding word v = ai1ai2 . . . aik is not strongly special.

Then we may assume that k is minimal possible, which yields that we can write

v = aiwai such that w contains neither ai nor one of the elements ai±1. Without

loss of generality we may assume that w does not contain ai+1.

First we observe that w must contain ai−1, for otherwise si would commute with

all other appearing simple reflections and hence, using s2i = e we would obtain that

our expression above is not reduced, a contradiction. Further, we claim that ai−1

occurs in w exactly once, for w does not contain ai and hence any two occurrences of

ai−1 would bound a proper subword of v that is not strongly special, contradicting

the minimality of k.

Since si commutes with all simple reflections appearing in our product but si−1,

which, in turn, appears only once, we can compute that siasi−1bsi = asisi−1sib,

which contradicts our assumption of short-braid avoidance. The claim of the propo-

sition follows. �

This interpretation is closely connected with Kn. A word v ∈ Wn is called

special provided that the following condition is satisfied: whenever v = v1aiv2aiv3

for some i, then v2 contains both some aj with j > i and some aj with j < i.

In particular, every strongly special word is special. The number of special words

equals the cardinality of Kn (see [18]). So far there is no formula for this number.

5. Hecke-Kiselman semigroups

5.1. Definitions. Kiselman quotients of 0-Hecke monoids suggest the following

general construction. For simplicity, for every n ∈ N we fix the set Nn := {1, 2, . . . , n}
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with n elements. Let Mn denote the set of all simple digraphs on Nn. For Θ ∈ Mn

define the corresponding Hecke-Kiselman semigroup HKΘ (or an HK-semigroup

for short) as follows: HKΘ is the monoid generated by idempotents ei, i ∈ Nn,

subject to the following relations (for any i, j ∈ Nn, i ̸= j):

Relations Edge between i and j

eiej = ejei i j

eiejei = ejeiej i
((
jhh

eiejei = ejeiej = eiej i // j

eiejei = ejeiej = ejei i joo

(6)

The elements e1, e2, . . . , en will be called the canonical generators of HKΘ.

Example 12. (a) If Θ has no edges, the semigroup HKΘ is a commutative band

isomorphic to the semigroup (2Nn ,∪) via the map ei 7→ {i}.
(b) Let Θ ∈ Mn be such that for every i, j ∈ Nn, i > j, the graph Θ contains

the edge i // j . Then the semigroup HKΘ coincides with the Kiselman

semigroup Kn as defined in [18]. This semigroup appeared first in [12] and was

also studied in [1].

(c) Let Γ be a simply laced Dynkin diagram. Interpret every edge of Γ as a pair of

oriented edges in different directions and let Θ denote the corresponding simple

digraph. Then HKΘ is isomorphic to the 0-Hecke monoid HΓ as defined in

Section 1.

(d) Let Γ be an oriented simply laced Dynkin diagram and Θ the corresponding

mixed graph. Then HKΘ is isomorphic to the Kiselman quotient KHΓ of the

0-Hecke monoid as defined in Section 1.

For Θ ∈ Mn define the opposite graph Θop ∈ Mn as the graph obtained from

Θ ∈ Mn by reversing the directions of all oriented arrows.

Proposition 13. For any Θ ∈ Mn, mapping ei to ei extends uniquely to an

isomorphism from HKop
Θ to HKΘop .

Proof. This follows from (6) and the easy observation that the two last lines of

(6) are swapped by changing the orientation of the arrows and reading all words in

the relations from the right to the left. �
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5.2. Canonical maps.

Proposition 14. Let Θ,Φ ∈ Mn and assume that Φ is obtained from Θ by deleting

some edges. Then mapping ei to ei extends uniquely to an epimorphism from HKΘ

to HKΦ.

Proof. Note that for two arbitrary idempotents x and y of any semigroup the

commutativity xy = yx implies the braid relation

xyx = x(yx) = x(xy) = (xx)y = xy = x(yy) = (xy)y = (yx)y = yxy.

Therefore, by (6), in the situation as described above all relations satisfied by canon-

ical generators of HKΘ are also satisfied by the corresponding canonical generators

of HKΦ. This implies that mapping ei to ei extends uniquely to an homomorphism

from HKΘ to HKΦ. This homomorphism is surjective as its image contains all

generators of HKΦ. �

We call the epimorphism constructed in Proposition 14 the canonical projection

and denote it by pΘ,Φ.

For Θ and Φ as above we will write Θ ≥ Φ. Then ≥ is a partial order on

Mn and it defines on Mn the structure of a distributive lattice. The maximum

element of Mn is the full unoriented graph on Nn, which we denote by max. The

minimum element of Mn is the empty graph (the graph with no edges), which we

denote by min. By Example 12(a), the semigroup HKmin is a commutative band

isomorphic to (2Nn ,∪). Further, for any Θ ∈ Mn we have the canonical projections

pmax,Θ : HKmax � HKΘ and pΘ,min : HKΘ � HKmin.

For w ∈ HKΘ we define the content of w as c(w) := pΘ,min(w). This should

be understood as the set of canonical generators of HKΘ appearing in any decom-

position of w into a product of canonical generators. Under the identification of

HKmin and (2Nn ,∪), by |c(w)| we understand the number of generators used to

obtain w. In particular, |c(e)| = 0 and |c(ei)| = 1 for all i.

Let m,n ∈ N, Θ ∈ Mm and Φ ∈ Mn. Assume that f : Θ → Φ is a full

embedding of graphs, meaning that it is an injection on vertexes and edges and its

image in Φ is a full subgraph of Φ.

Proposition 15. In the situation above mapping ei to ef(i) induces a monomor-

phism from HKΘ to HKΦ.

Proof. From (6) and our assumptions on f it follows that ef(i)’s satisfy all the

corresponding defining relations satisfied by ei’s. This implies that mapping ei to

ef(i) induces a homomorphism φ from HKΘ to HKΦ.
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To prove that this homomorphism is injective it is enough to construct a left

inverse. Similarly to the previous paragraph, from (6) and our assumptions on f

it follows that mapping ef(i) to ei and all other canonical generators of HKΦ to

e induces a homomorphism ψ from HKΦ to HKΘ. It is straightforward to verify

that ψ ◦φ acts as the identity on all generators of HKΘ. Therefore ψ ◦φ coincides

with the identity. The injectivity of φ follows. �

We call the monomorphism constructed in Proposition 15 the canonical injection

and denote it by if .

5.3. Classification up to isomorphism. The main result of this subsection is

the following classification of Hecke-Kiselman semigroups up to isomorphism in

terms of the underlying mixed graphs.

Theorem 16. Let m,n ∈ N, Θ ∈ Mm and Φ ∈ Mn. Then the semigroups HKΘ

and HKΦ are isomorphic if and only if the graphs Θ and Φ are isomorphic. In

particular, if HKΘ and HKΦ are isomorphic, then m = n.

Proof. Let f : Θ → Φ be an isomorphism of graphs with inverse g. By Propo-

sition 15 we have the corresponding natural injections if : HKΘ → HKΦ and

ig : HKΦ → HKΘ. By definition, both ig ◦ if and if ◦ ig act as identities on the

generators of HKΘ and HKΦ, respectively. Hence if and ig are mutually inverse

isomorphisms. This proves the “if” part of the first claim of the theorem.

Lemma 17. We have Irr(HKΦ) = {e1, e2, . . . , en} = {w ∈ HKΦ : |c(w)| = 1}.

Proof. From the definitions we see that Irr(HKΦ) is contained in any generating

system for HKΦ, in particular, in {w ∈ HKΦ : |c(w)| = 1}.
Since all canonical generators of HKΦ are idempotents, it follows that {w ∈

HKΦ : |c(w)| ≤ 1} ⊂ {e, e1, e2, . . . , en}. It is straightforward to verify that

{e1, e2, . . . , en} ⊂ Irr(HKΦ), which completes the proof. �

Assume that φ : HKΘ → HKΦ is an isomorphism. Then φ induces a bijection

from Irr(HKΘ) to Irr(HKΦ), which implies m = n by comparing the cardinalities

of these sets (see Lemma 17). This proves the second claim of the theorem.

Let ei and ej be two different canonical generators of HKΘ. By (6), in the case

when the graph Θ contains no edge between i and j the elements ei and ej commute

in HKΘ. As φ is an isomorphism, we get that φ(ei) = es and φ(ej) = et commute

in HKΦ. Using (6) again we obtain that the graph Φ contains no edge between s

and t.
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Similarly, comparing the subsemigroup of HKΘ generated by ei and ej with the

subsemigroup of HKΦ generated by φ(ei) and φ(ej) for all other possibilities for

edges between i and j, we obtain that φ induces a graph isomorphism from Θ to Φ.

This proves the “only if” part of the first claim of the theorem and thus completes

the proof. �

Corollary 18. For Φ ∈ Mn the set {e1, e2, . . . , en} is the unique irreducible gen-

erating system of HKΦ.

Proof. That {e1, e2, . . . , en} is an irreducible generating system of HKΦ follows

from the definitions. On the other hand, that any generating system of HKΦ

contains {e1, e2, . . . , en} follows from the proof of Lemma 17. This implies the

claim. �

From the above it follows that the number of isomorphism classes of semigroups

HKΘ, Θ ∈ Mn, equals the number of simple digraphs. The latter is known as the

sequence A000273 of the On-Line Encyclopedia of Integer Sequences.

5.4. Some open problems. Here is a short list of some natural questions on

Hecke-Kiselman semigroups:

• For which Θ is HKΘ finite?

• For which Θ is HKΘ J -trivial?

• For a fixed Θ, what is the smallest n for which there is a faithful represen-

tation of HKΘ by n× n matrices (over Z or C)?
• For a fixed Θ, how to construct a faithful representation of HKΘ by (par-

tial) transformations?

• What is a canonical form for an element of HKΘ?
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