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Abstract. If K ⊂ L is an infinite-dimensional algebraic field extension and

the (infinite) cardinal number ℵ := [L : K] (the K-vector space dimension of

L), then there exists an infinite maximal chain, C, consisting of fields contained

between K and L, such that the cardinality of C is at most ℵ. If K ⊂ L is a

J-extension, then every maximal chain of intermediate fields has cardinality

ℵ0. However, an example is given where K ⊂ L has maximal chains, D and

E, of intermediate fields such that the cardinalities of D and E are ℵ and 2ℵ,

respectively.
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1. Introduction

If K ⊆ L is a field extension, we view [L : K], the K-vector space dimension of

L, as a cardinal number. Our main interest here is in the case where this cardinal

number is infinite. It is clear that a relevant concept is that of an intermediate field

of the given field extension, that is, a field F such that K ⊆ F ⊆ L. Following

[3], we let S(L/K) denote the set of intermediate fields of K ⊆ L. With respect to

inclusion, S(L/K) is a partially ordered set (in fact, a complete lattice). One way

to measure the size of S(L/K) is an invariant λ(L/K), which was defined in [3] as

follows: λ(L/K) denotes the supremum of the lengths of chains in S(L/K) (that

is, of chains of intermediate fields of K ⊆ L). Note that if at least one of these

chains is infinite, then λ(L/K) is also the supremum of the cardinalities of chains

in S(L/K). (As usual, it will be convenient to let |T | denote the cardinal number

of a set T .)

Note that if [L : K] is finite (that is, if K ⊆ L is a finite-dimensional, necessarily

algebraic, field extension), then S(L/K) may have little structure. For instance,

if [L : K] is a prime number, then K ⊆ L is a minimal field extension (in the
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sense of [5]). Whenever this occurs, S(L/K) = {K,L}; λ(L/K) = 1; and there

is a unique maximal chain in S(L/K), namely, {K,L}. Of course, this can occur

for field extensions that are intuitively quite “large” because there are arbitrarily

large prime numbers. There exist finite-dimensional field extensions K ⊆ L where

S(L/K) admits more than one maximal chain. In this situation, S(L/K) may still

exhibit a kind of catenarian behavior, in the sense that all such chains have the

same length. This happens, for instance, for the purely inseparable field extension

Fp(X
p, Y p) ⊂ Fp(X,Y ) (for any prime number p), but it also happens whenever

K ⊆ L is a finite-dimensional Galois extension with Abelian Galois group [3, Propo-

sition 2.2 (a)]. However, there exist finite-dimensional field extensions K ⊆ L where

S(L/K) exhibits non-catenarian behavior, in that S(L/K) admits maximal chains

of different lengths. This can occur when K ⊆ L is intuitively rather “small”.

Indeed, [3, Proposition 2.5 (c)] gives an example of a 12-dimensional non-Abelian

Galois field extension K ⊆ L where S(L/K) admits maximal chains having lengths

2 and 3. This naturally leads to the question whether infinite-dimensional algebraic

extensions K ⊆ L support such varied behavior (where some of the corresponding

S(L/K) might behave in a catenarian way while others might not). Our main ex-

amples, Example 2.5 and Proposition 2.7, answer this question in the affirmative.

Our main result, Theorem 2.3, shows that for every infinite-dimensional algebraic

extension K ⊆ L, S(L/K) contains an infinite maximal chain, C, such that |C| ≤ ℵ,
where the infinite cardinal number ℵ is simply [L : K].

Some of the techniques of proof used in Example 2.5 come from the proof of

a realization result [3, Theorem 3.2], where it was shown that if ℵ is any infinite

cardinal number, then there exists an (infinite-dimensional) algebraic field extension

K ⊆ L such that S(L/K) has a chain D of cardinality 2ℵ. In Example 2.5, we

present another realization result, showing that if ℵ is any infinite cardinal number,

then there exists an (infinite-dimensional) algebraic field extensionK ⊂ L such that

S(L/K) admits infinite maximal chains having cardinalities that are, respectively,

ℵ and 2ℵ. On the other hand, Proposition 2.7 (b) shows that if K ⊂ L is any J-

extension (in the sense of [6]), then all maximal chains in S(L/K) have cardinality

ℵ0. Finally, Example 2.8 exhibits non-catenarian behavior, in the sense of Example

2.5, for certain non-algebraic infinite-dimensional field extensions.

As was the case in [3], some of our proofs will make use of the fact that if S

is an infinite set, with ℵ := |S|, then there is a chain C, consisting of subsets of

S, such that |C| = 2ℵ. (Since the power set of S has cardinality 2ℵ, it follows

from the Schroeder-Bernstein Theorem that we can assume that C is maximal,
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the point being that Zorn’s Lemma can be used to show in this context that any

chain can be extended to a maximal chain.) A correct explanation of which set-

theoretic principles justify the above fact can be found in [2, Remark 2.2]; suffice it

to note here that to justify this fact, it is enough to assume the GCH (Generalized

Continuum Hypothesis). For our other proofs, it will be enough to assume the

usual Zermelo-Frankel set theory with the Axiom of Choice (to ensure the usual

laws of arithmetic for infinite cardinal numbers).

In addition to the notation for cardinality mentioned above, we let ⊂ and N
denote proper inclusion and the set of positive integers, respectively. For the appro-

priate background on cardinal numbers, ordinal numbers and transfinite induction,

we recommend [7].

2. Results

For the sake of completeness, we begin with an easy proposition that treats the

case of finite maximal chains.

Proposition 2.1. Let K ⊆ L be fields. Then the following conditions are equiva-

lent:

(1) Every chain in S(L/K) (that is, every chain of intermediate fields of K ⊆ L)

is finite;

(2) Every maximal chain in S(L/K) is finite;

(3) There exists a finite maximal chain in S(L/K);

(4) [L : K] < ∞.

Proof. (3) ⇒ (4) Assume (3). Choose a maximal chain of fields, K = F0 ⊂ . . . ⊂
Fn = L, whose length, n, is finite. Then Fi−1 ⊂ Fi is a minimal field extension,

for each i = 1, . . . , n. Note that [Fi : Fi−1] < ∞ for all i, since any minimal

field extension must be algebraic and, hence, necessarily finite-dimensional (cf. [5,

Lemme 1.2]). Thus, [L : K] =
∏n

i=1[Fi : Fi−1] < ∞.

(4) ⇒ (1) Assume (4). Then there is a positive integer n such that [L : K] ≤ 2n.

If K = F0 ⊂ . . . ⊂ Fm = L is a finite chain in S(L/K) of length m, it follows, as

in the proof of [3, Proposition 2.1 (b)] (or as in the above reasoning), that

[L : K] =

m∏
i=1

[Fi : Fi−1] ≥
m∏
i=1

2 = 2m,

and so n ≥ m. Hence, every chain in S(L/K) has length at most n.

(1) ⇒ (2) Trivial.
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(2) ⇒ (3) By Zorn’s Lemma, every chain in S(L/K) can be extended to a

maximal chain in S(L/K). By extending the chain {K,L} in this way, we infer the

desired implication. �

Remark 2.2. One could obtain the above proposition as a corollary of recent

characterizations of the integral extensions of commutative unital rings each of

whose chains of unital intermediate rings is finite [4, Theorem 4.2 ]. However, the

above proof is much more elementary and direct.

We next present our main result.

Theorem 2.3. Let K ⊂ L be an infinite-dimensional algebraic field extension, with

ℵ := [L : K]. Then there exists an infinite maximal chain, C, in S(L/K) (that is,

an infinite maximal chain consisting of intermediate fields of K ⊆ L), such that

|C| ≤ ℵ.

Proof. Let S = {uα | α ∈ A} = {uα} be a fixed K-vector space basis of L. Assume

that the indexing is efficient, in the sense that if α1 ̸= α2 in A, then uα1
̸= uα2

.

Consider the cardinal numbers λ := |{α | α ∈ A}| = |{α}| = |A| and ℵ := [L : K].

Then λ and ℵ are infinite. In fact, λ = |{α}| = |{uα}| = |S| = [L : K] = ℵ.
Well-order L. Of course, there is an induced well-ordering on S. It will be

convenient to view the set {α} of indices as an initial segment of ordinal numbers.

We will next use this well ordering to transfinitely construct the required chain

C = {Cβ | β ∈ B} = {Cβ} as an increasing chain of intermediate fields. In

Remark 2.4 (b), we address some of the logical foundations that are relevant for

such constructions.

At each step in the transfinite induction to construct C, we will augment the

collection of chain members that has already been built by adjoining at least one

and at most finitely many more members to C. Of course, we start with C0 := K.

If β is an ordinal number and the ith step of the construction has been done for

each ordinal number i ≤ β, with Dβ denoting the union of the members of C that

have been constructed by the end of the βth step, then, for the (β + 1)
th

step,

use the implication (4) ⇒ (3) in Proposition 2.1 to augment the existing chain

members with a chosen finite maximal chain going from Dβ to Dβ(uαβ+1
), where

uαβ+1
denotes the least element of S that is not inDβ . Note that the smallest “new”

member of C constructed during the (β + 1)
th

step is either Dβ or the smallest field

in this “finite maximal chain” that properly contains Dβ , according as to whether

Dβ has not been constructed by the end of the βth step. Similarly, the largest “new”

member of C constructed during the (β + 1)
th

step is Dβ(uαβ+1
). If γ is a limit
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ordinal, let Eγ denote the union of the members of C that have been constructed in

the δth step, as δ runs over the set of ordinal numbers such that δ < γ; then for the

γth step, use the implication (4) ⇒ (3) in Proposition 2.1 to augment the existing

chain members with a chosen finite maximal chain going from Eγ to Eγ(uαγ ), where

uαγ denotes the least element of S that is not in Eγ . The smallest and the largest

of the “new” members of C constructed during the γth step can be identified in the

above manner.

Now that we have constructed C := {Cβ}, it is easy to see that it is a chain in

S(L/K). Indeed, note first that it is a chain, the point being that if Ci and Cj

were adjoined during the βth and γth steps, respectively, for some ordinal numbers

β < γ, then Ci ⊂ Cj . Next, note that this chain “reaches” L, since each uα belongs

to some element of C.
We show next that C is maximal among chains in S(L/K). Suppose not. Then

some field k ∈ S(L/K)\C is such that C∪{k} is a chain (with respect to inclusion).

If k contains each Ci, then k contains ∪Ci = L, whence k = L, a contradiction.

Thus, by the fundamental well-ordering property of the ordinals, there exists a least

ordinal, say δ, such that k ̸⊇ Cδ. Then, since C ∪ {k} is a chain, we have k ⊂ Cδ.

There are two cases, each of which has two subcases.

Suppose first that Cδ was adjoined during the (ρ+ 1)
th

step, for some ordinal

number ρ. This means that Cδ is one of the members of the “chosen finite maximal

chain” in S(Dρ(uαρ+1)/Dρ); in particular, Dρ ⊆ Cδ ⊆ Dρ(uαρ+1). Note that Dρ

must be of the form Cµ for some ordinal number µ ≤ δ. There are now two subcases.

In the first subcase, µ = δ. Then Dρ = Cδ, and Dρ was adjoined during the

(ρ+ 1)
th

step. Also, k ⊂ Dρ. However, since the minimality of δ ensures that k

contains Cξ for each ordinal number ξ < δ, the above construction yields that k

contains the union that defines Dρ; that is, k ⊇ Dρ, the desired contradiction.

In the second subcase, µ < δ. Then, by the minimality of δ, we have k ⊇ Cµ;

and, in fact, k ⊃ Cµ. We have Dρ ⊂ k ⊂ Cδ ⊆ Dρ(uαρ+1). This contradicts the

maximality of the “chosen finite maximal chain” in S(Dρ(uαρ+1)/Dρ).

In the remaining case, Cδ was adjoined during the νth step, for some limit ordinal

number ν. This means that Cδ is one of the members of the “chosen finite maximal

chain” in S(Eν(uαν )/Eν); in particular, Eν ⊆ Cδ ⊆ Eν(uαν ). As above, Eν must

be of the form Cµ for some ordinal number µ ≤ δ, and there are two subcases:

either µ = δ or µ < δ. These subcases can be handled as above. This completes

the proof that C is maximal. We turn next to the question of its cardinality.
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Let i be the cardinal number of steps in the above transfinite induction con-

struction of C. Observe that every step of that construction “introduced” at least

one “new” element uα of S, in the sense that this was the first step for which

uα belongs to at least one of the new elements that is being adjoined to C dur-

ing that step. By considering the injective function that sends each step to the

least of the new elements of S that are introduced during that step, we see that

i ≤ |{uα}| = |{α}| = λ = ℵ. Moreover, each step introduced at most finitely

many new members of C and, of course, each member of C was introduced in some

(uniquely determined) step of the construction. Thus, by transfinitely adding up

the number of elements of C that were introduced in all the steps, we have

|C| ≤ i · ℵ0 ≤ ℵ · ℵ0 = ℵ.

Finally, note that C is infinite, by the implication (3) ⇒ (4) in Proposition 2.1. �

Remark 2.4. (a) One can show, in the context of Theorem 2.3, that |C| = i, the
number of steps in the transfinite construction. To see this, consider the function g

that sends each member A of C to the step at which A was introduced into C. Since
each step introduced at least one member of C, g is surjective. Also, each preimage

of a step is finite, because each step introduced only finitely many members of C.
Thus, by the “First Isomorphism Theorem for sets”, there is a canonical bijection

between the set of steps and a partition P of C all of whose components are finite.

Note that P must consist of infinitely many components, since C is infinite. Now,

let nx be the number of elements in the xth component of this partition. By

transfinitely adding up the number of elements in those components, we get

i = |P| ≤ |C| =
∑
x∈P

nx ≤
∑
x∈P

ℵ0 = |P| · ℵ0 = |P|.

Hence, |C| = i.
(b) We pause to make a few comments about the logical propriety of the trans-

finite construction of C in the proof of Theorem 2.3. The important entities being

constructed were the Cβ , whereas the Dβ and the Eγ were merely a means to an

end. As possibly more than one Cβ was being added to C at certain steps, one

needs to be careful about such a definition by transfinite induction. In that regard,

the reader may wish to see the Transfinite Recursion Theorem [7, page 70]. Also, to

avoid possible ambiguities, note that we used a “chosen finite maximal chain”. For

readers wondering about possible “choice” issues, note that all such choices could

be regulated by well-ordering the universe at the outset, admittedly a brute-force
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method that is available in, for instance, Gödel’s constructible universe (and hence

consistent with Zermelo-Frankel set theory with the Axiom of Choice).

In the spirit of [3], we next infer a realization result for arbitrary infinite cardinal

numbers. This produces an example of an infinite-dimensional algebraic field ex-

tension whose lattice of intermediate fields exhibits non-catenarian behavior (that

is, not all maximal chains of intermediate fields have the same cardinality).

Example 2.5. Let ℵ be an infinite cardinal number. Let k be any field such that

|k| = ℵ. Let S := {Xi | ∈ I} be a set of commuting, algebraically independent

indeterminates over k such that |S| = (|I| =)ℵ. Set K := k({X2
i | i ∈ I})

and L := k({Xi | i ∈ I}). Then [L : K] = ℵ. Moreover, there exist infinite

maximal chains, C1 and C2, in S(L/K) (that is, infinite maximal chains consisting

of intermediate fields of K ⊆ L) such that |C1| = ℵ and |C2| = 2ℵ.

Proof. It seems only fitting to use the above specific construction of the field

extension K ⊂ L that figured in the proof of the motivating realization result [3,

Theorem 3.2]. It was shown in [3, page 4496] that for any ℵ as above, a suitable

field k can be constructed so as to contain any preassigned field k0 of arbitrary

characteristic, provided that |k0| ≤ ℵ. Note also that other constructions could be

given for a field extension K ⊂ L whose vector space dimension is ℵ.
We claim that the elements of S are linearly independent over K. Otherwise,

by clearing denominators in any alleged equation of linear dependence, we would

obtain an equation of the form
n∑

j=1

Xijfj(X
2
i1 , . . . , X

2
in) = 0,

for some finitely many distinct indeterminates Xi1 , . . . , Xin , where f1, . . . , fn are

polynomials with, possibly after relabeling, f1 ̸= 0. In the displayed equation, only

the first summand on the left-hand side (namely, Xi1f1(X
2
i1
, . . . , X2

in
)) has nonzero

terms of odd degree when viewed as a polynomial in (k[Xi2 , . . . , Xin ])[Xi1 ], and

so that left-hand side cannot be the zero polynomial, a contradiction, thus proving

the above claim. Hence, ℵ = |S| ≤ [L : K].

On the other hand, the most natural generating set of L as a module (vector

space) over K is the set, call it T , that consists of 1 and all the elements of the

form Xi1 · · · · ·Xin , where Xi1 , . . . , Xin is a finite list of elements of {Xi}, possibly
listed with repetition. It can be shown that T is a K-basis of L, but we will

reason differently. By the usual laws of arithmetic for infinite cardinal numbers,

|T | = |I| = ℵ. As any generating set of a vector space contains a basis, it follows
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that [L : K] ≤ |T |, and so [L : K] ≤ ℵ. Having proved the reverse inequality

above, we now have that [L : K] = ℵ, as desired. Therefore, an application of

Theorem 2.3 would produce an infinite maximal chain in S(L/K) of cardinality at

most ℵ. However, we will next take advantage of the special data at hand in order

to construct an infinite maximal chain in S(L/K) of cardinality exactly ℵ.
Well order I, and consider the cardinal number ℵ = |I|. Being a cardinal number,

ℵ is also an ordinal number, and so ℵ = {i | i is an ordinal number such that i < ℵ}.
Moreover, it follows from the definition of cardinal numbers that |ℵ| = ℵ. Thus,

there is no problem in replacing the index set I with ℵ. In particular, Xi is defined

for every ordinal number i < ℵ. We will now use transfinite induction to define

a useful increasing chain C := {Ki | i ≤ ℵ}. (Note that the index set is ℵ ∪ {ℵ},
whose cardinal number is still ℵ.) Of course, we begin with K0 := K. At a

successor ordinal i+ 1 < ℵ, we take Ki+1 := Ki(Xi). For a limit ordinal i < ℵ, we
take Ki :=

∪
j<i Kj , where the union takes place inside L. Since ℵ is an infinite

cardinal number, it is a limit ordinal (cf. [7, Exercise, page 100]); we take Kℵ := L.

We claim that if 0 ≤ i1 < i2, then Ki1 ⊆ Ki2 . Indeed, if this failed with i2

minimal, then i1 + 1 < i2 and i2 is not a limit ordinal. Then i2 = λ + 1 for some

ordinal number λ < i2. As i1+1 < i2 = λ+1, we have i1 < λ, and so the minimality

of i2 ensures that Ki1 ⊆ Kλ. Then Ki1 ⊆ Kλ ⊆ Kλ+1 = Ki2 , a contradiction, thus

proving the above claim.

Note that
∪

i≤ℵ Ki = L, since Xi ∈ Ki+1 for all ordinal numbers i < ℵ. It

will also be useful to let K⋆ :=
∪

j<ℵ Kj . We will show that the increasing chain

C1 := C ∪ {K⋆} is a maximal chain in S(L/K) and that its cardinality is ℵ.
If maximality fails for C1, pick a field F ∈ S(L/K) \ C1 such that C1 ∪ {F}

is a chain. Suppose first that Kj ⊆ F for each ordinal number j < ℵ. Then∪
j<ℵ Kj = K⋆ ⊆ F ⊂ L. However, since ℵ is not a successor ordinal, we have that

i + 1 < ℵ for each ordinal i < ℵ, so that Xi ∈ Ki+1 ⊆ K⋆ for all ordinals i < ℵ,
whence K⋆ = L, the desired contradiction.

Hence, the assumed failure of maximality produces a least ordinal number i′ < ℵ
such that Ki′ ̸⊆ F . Necessarily, F ⊂ Ki′ . If i′ is a limit ordinal, then Kj ⊆ F

for all j < i′, and so Ki′ =
∪

j<i′ Kj ⊆ F , a contradiction. Thus, i′ = j′ + 1

for some ordinal number j′; and Kj′ ⊆ F , by the minimality of i′. We now have

Kj′ ⊆ F ⊂ Ki′ = Kj′+1. Since [Kj′+1 : Kj′ ] ≤ 2, it follows that F must be Kj′ ,

whence F ∈ C1, the desired contradiction. This completes the proof that C1 is a

maximal chain in S(L/K).
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It remains to prove that C1 has cardinality ℵ. Note that the indexing set for C1 is

ℵ∪{ℵ, ⋆}, which has cardinality ℵ. Therefore, it will be enough to prove that if we

have ordinal numbers i1 < i2 < ℵ, then Ki1 ⊂ Ki2 . Note that Ki1 ⊆ Ki1+1 ⊆ Ki2

and Xi1 ∈ Ki1+1, Thus, it will be enough to show that Xi1 ̸∈ Ki1 . In fact,

we will show, for any ordinal number i < ℵ, that Xi ̸∈ Ki. To that end, note

first that for each ordinal number j, Kj is obtained by adjoining some subset

of the indeterminates in S to K. Indeed, one sees that Kj = K({Xξ | ξ is an

ordinal number such that ξ < j}). This is intuitively clear, and can be proved

by using two facts: the well-ordering property of the ordinals; and the fact, which

was proved in [3, page 4497], that if 0 ≤ d ≤ n for some positive integer n, then

Xd ̸∈ k(X0, . . . , Xd−1, X
2
d , Xd+1, . . . , Xn). The latter fact now yields thatXi ̸∈ Ki,

and thus completes the proof that |C1| = ℵ.
It remains to find C2 with the asserted properties. It follows from [3, Theorem

3.2] that |K| = |L| = ℵ and there exists a chain, say D, in S(L/K) such that

|D| = 2ℵ. Use Zorn’s Lemma to find a maximal chain, say C2, in S(L/K) such that

D ⊆ C2. Then 2ℵ = |D| ≤ |C2| ≤ 2ℵ, where the last inequality holds since C2 is a

subset of the power set of L. Thus, |C2| = 2ℵ, as desired. �

In the spirit of [3, Corollary 3.8] and [2, Example 2.3], we next extend Example

2.5 to higher Krull dimensions. Recall that if D is an integral domain with quotient

field F , then by an overring of D, we mean a ring E such that D ⊆ E ⊆ F .

Corollary 2.6. Let ℵ be an infinite cardinal number. Let d ∈ N ∪ {0,∞}. Then

there exists an integral domain R of Krull dimension d that has infinite maximal

chains, C∗
1 and C∗

2 , of integral overrings such that |C∗
1 | = ℵ and |C∗

2 | = 2ℵ.

Proof. Let K ⊂ L, C1 and C2 be as in Example 2.5. Let V be a valuation domain

of Krull dimension d such that V = L+M , where M denotes the unique maximal

ideal of V . Then the integral domain R := K + M has the asserted properties.

Indeed, the required chains can be defined by C∗
i := {A+M | A ∈ Ci}, for i = 1, 2.

Note that the assignment A 7→ A+M sets up a bijection Ci → C∗
i , and so |C∗

i | = |Ci|.
All the other assertions, including the fact that V is the integral closure of R (in

its quotient field), follow easily from standard properties of the classical D + M

construction, as summarized in [1, Theorems 2.1 and 3.1]. �

Returning to the context of field extensions, we next note, in the spirit of Exam-

ple 2.5, that there are many other kinds of infinite-dimensional algebraic field ex-

tensions K ⊂ L for which S(L/K) exhibits non-catenarian behavior. For instance,

if K is either a finite field or the field of rational numbers and L is an algebraic
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closure of K, then it is well known that [L : K] = ℵ0 and so, by [3, Proposition 3.5

and Example 3.6], there is a (necessarily maximal) chain in S(L/K) of cardinality

2ℵ0 . On the other hand, Theorem 2.3 shows that, for these choices of K and L,

there also exists a maximal chain in S(L/K) of cardinality ℵ0. Thus, for these K

and L, every possible cardinal number k such that ℵ0 ≤ k ≤ 2ℵ can be realized as

the cardinality of some maximal chain in S(L/K). It would be interesting to know

how pervasive such behavior is. In particular, given cardinal numbers ℵ < k < i
and an infinite-dimensional algebraic field extension K ⊂ L such that S(L/K) ad-

mits maximal chains of cardinality ℵ and i, must S(L/K) also admit a maximal

chain of cardinality k?
Recall from [6] that an infinite-dimensional field extension K ⊂ L is called a

J-extension if [F : K] < ∞ for every intermediate field F distinct from L. We next

show, in contrast to Example 2.5, that each J-extension has a lattice of intermediate

fields that exhibits catenarian behavior (in the sense that all the maximal chains

of intermediate fields have the same cardinality). Proposition 2.7 also shows that

J-extensions form a class of infinite-dimensional algebraic field extensions for which

the inequality in the conclusion of Theorem 2.3 becomes an equality.

Proposition 2.7. Let K ⊆ L be a J-extension (of fields). Then:

(a) [L : K] = ℵ0.

(b) λ(L/K) = ℵ0. In fact, each maximal chain in S(L/K) is denumerable.

Proof. (a) This assertion is surely known, but we include a proof, for lack of a

convenient reference. If the assertion fails, take B to be a K-vector space basis of

L such that ℵ := |B| > ℵ0. Next, pick a proper subset B′ of B such that |B′| = ℵ0.

Consider the set T := {u1 · · · · · un | ui ∈ B′ for all i}; by allowing the degenerate

case n = 0, we also have that 1 ∈ T . The usual arithmetic for infinite cardinal

numbers leads to |T | = |B′| = ℵ0. Since L is algebraic over K, it is clear that T is a

generating set for K(B′) as a module (vector space) over K. Since every generating

set of a vector space contains a basis, [K(B′) : K] ≤ |T | = ℵ0. On the other hand,

since the set B′ is linearly independent over K, we have [K(B′) : K] ≥ |B′| = ℵ0.

Thus, [K(B′) : K] = ℵ0. As K ⊆ L is a J-extension, it follows that K(B′) = L.

Therefore,

ℵ0 = [K(B′) : K] = [L : K] = |B| = ℵ,

the desired contradiction.

(b) An argument that was given in [3, page 4497] while analyzing a specific J-

extension carries over in general. We next repeat that argument, for the convenience
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of the reader. Let C = {Fj} be a maximal chain in S(L/K). Combining (a) and

the implication (3) ⇒ (4) in Proposition 2.1, we have that C is infinite. It remains

only to show that C is countable. This, in turn, follows because the assignment

j 7→ dimK(Fj) determines an injection C → N ∪ {∞}. �

It seems natural to ask if the above non-catenarian phenomenon can arise in

an infinite-dimensional field extension which is not algebraic. The final example

addresses this question. We focus there on finite transcendence degree in order to

avoid some subtleties involving exponentiation of infinite cardinal numbers (which

is an intricate topic, even when one assumes GCH: see the summary in [8, Theorem

6.12.4]). As usual, we will let td(L/K) denote the transcendence degree of a field

extension K ⊆ L.

Example 2.8 examines further a context that was studied in [3, Corollary 3.7].

Note also that Example 2.5 may be viewed as the “degenerate” case n = 0 of

Example 2.8.

Example 2.8. Let ℵ be an infinite cardinal number and let n ∈ N. Then there

exist field extensions E ⊂ E0 ⊂ F = E0(Y1, . . . , Yn), where {Y1, . . . , Yn} is a set

of n commuting, algebraically independent indeterminates over E0, such that E0 is

algebraic over E, |E| = ℵ = [E0 : E] = [F : E], and there exist maximal chains, D1

and D2, in S(F/E) such that |D1| = ℵ and |D2| = 2ℵ. Necessarily, td(F/E) = n.

Proof. Let K,L, C1 and C2 be as in Example 2.5. We will show that it suffices to

take E := K and E0 := L. It was shown in Example 2.5 that K ⊂ L is an algebraic

extension and |K| = |L| = ℵ = [L : K]. It follows, by the usual laws of arithmetic

for infinite cardinal numbers, that |F | = ℵ. Thus, [F : E0] ≤ |F | = ℵ and

ℵ = [E0 : E] ≤ [F : E] = [E0 : E][F : E0] ≤ [L : K] · ℵ = ℵ · ℵ = ℵ,

whence [F : E] = ℵ. Of course, td(F/E) = td(E0/E) + td(F/E0) = 0 + n = n. It

remains only to produce suitable D1 and D2.

Since E0 ⊂ F is an non-algebraic finitely generated field extension, every maxi-

mal chain in S(F/E0) has cardinality ℵ0, by [3, Theorem 4.2] (and the implication

(3) ⇒ (4) in Proposition 2.1). Pick one such chain, E . Then the cardinality of the

chain D1 := C1 ∪ E is |C1|+ |E| = ℵ+ ℵ0 = max(ℵ,ℵ0) = ℵ, and the cardinality of

the chain D2 := C2 ∪ E is |C2| + |E| = 2ℵ + ℵ0 = max(2ℵ,ℵ0) = 2ℵ. Finally, note

that for i = 1, 2, the chain Di is maximal because the chains Ci and E are each

maximal. �
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