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Abstract. Let R be a Noetherian ring and a be a proper ideal of R. We

generalize the Rees characterization of grade for a-cofinite modules and as a

consequence, we extend Grothendieck’s Non-vanishing Theorem. We also gen-

eralize the classical Auslander-Buchsbaum and Bass formulas.

Mathematics Subject Classification (2010): 13D05, 13D45, 13E10, 13C11

Keywords: Auslander-Buchsbaum formula, Bass formula, local cohomology,

cofinite module

1. Introduction

Throughout this paper, R is a commutative Noetherian ring, a ⊆ b are two

proper ideals of R and M is an R-module. Furthermore, if R is a local ring with

maximal ideal m and residue class field k we will refer to R as (R,m) or if we need

the residue class field of R as (R,m, k). The undefined terminology is the same as

that in [4] and [5].

We say M is a-cofinite if SuppM ⊆ V (a) and ExtiR(R/a,M) is a finitely gener-

ated R-module for all i ≥ 0. The notion of a-cofinite module was first introduced in

[10] and recently has been studied extensively by many authors; see, for example,

[1, 2, 8, 13, 17, 27]. It is a well-known result that if (R,m) is a complete local ring,

then the R-module M is Artinian if and only if SuppM ⊆ V (m) and ExtiR(R/m,M)

is finitely generated for all i ≥ 0 (see [10, Proposition 1.1]). In view of this fact, the

following conjecture was made by Grothendieck (see [9, Expose XIII, Conjecture

1.2]).

Grothendieck’s conjecture. Let M be a finitely generated R-module. Then the

module Hom(R/a, Hi
a(M)) is finitely generated for all i ≥ 0.

Hartshorne later refined this conjecture and proposed the following.

Hartshorne’s conjecture. Let M be a finitely generated R-module. Then the

local cohomology module Hi
a(M) is a-cofinite for all i ≥ 0.
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Hartshorne showed that, in general, this conjecture is false, even if R is a regular

local ring. In the positive direction, the best well known result is that when either

a is principal or R is local and dimR/a = 1, then the module Hi
a(M) is a-cofinite

for all i ≥ 0. These results are proved in [17] and [8], respectively.

Mafi [19] used spectral sequences to show that, for a finitely generated module

M , the module Hn
a (M) is a-cofinite whenever the modules Hi

a(M) are a-cofinite for

all i < n and Hn
a (M) is Artinian. In Section 2, we give a generalization of Mafi’s

result without using spectral sequences.

In Section 3, we extend the Rees characterization of grade (Theorem 3.2) to

a-cofinite modules and then generalize the concept of grade and depth for a-cofinite

modules and as an application, we extend the Grothendieck’s Non-vanishing The-

orem.

One of the basic problems concerning local cohomology is to find when the set

of associated primes of Hn
a (M) is finite. The question of finiteness of associated

primes of the local cohomology Hn
a (R) when R is a regular local ring was first raised

by Huneke [12]. In this direction, Huneke and Sharp [14] (when R is regular and

contains a field of positive characteristic) and Lyubeznik [18] (when R is regular and

contains a field of zero characteristic or is of mixed characteristic and unramified)

gave an affirmative answer to this question. On the other hand it is not true in

general, in view of the non local (respectively local) example given by Singh [25]

(respectively Katzman [16]). In Section 4, we shall show that if M is an a-cofinite

module and c is an ideal of R such that M ̸= cM , then the first non-vanishing

local cohomology Ht
c(M), where t = grade(c,M), has only finitely many associated

primes.

Notation. For modules M and N over the ring R, set

fdR(M,N) = sup{i|TorRi (M,N) ̸= 0},

idR(M,N) = sup{i|ExtiR(M,N) ̸= 0}.

Recall that, if M is a module over a local ring (R,m, k), then

depthM = inf{i|ExtiR(k,M) ̸= 0},

widthM = inf{i|TorRi (k,M) ̸= 0}.

For an R-module M , we say that flat dimaM ≤ n (respectively inj dimaM ≤ n)

if TorRk (R/p,M) = 0 (respectively ExtkR(R/p,M) = 0) for all p ∈ V (a) and all

k ≥ n + 1. Here V (a) denotes the set of prime ideals of R which contain a. We

call flat dimaM (respectively inj dimaM) the a-relative flat (respectively injective)
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dimension of M . In view of [5, Corollary 3.1.12] and its dual, if a is the zero ideal

of R, then inj dimaM = inj dimM and flat dimaM = fldimM .

The classical Auslander-Buchsbaum formula asserts that if a nonzero finite mod-

ule M over a local ring R has finite projective dimension, then proj dimM +

depthM = depthR. In Section 5, we generalize this formula by proving the fol-

lowing. Let (R,m, k) be a local ring and let M be a nonzero a-cofinite R-module

of finite flat dimension. Then flat dimaM = depthR− depthM . As a consequence,

for any nonzero R-module N ,

p = fdR(M,N) ≥ depthR− depthM − depthN

with equality if and only if depthTorRp (M,N) = 0.

The classical Bass formula asserts that if a nonzero finite module M over a local

ring R has finite injective dimension, then inj dimM = depthR. In Section 6, we

generalize this formula by proving the following. Let (R,m, k) be a local ring and

let M be a nonzero a-cofinite R-module. Then inj dimaM = depthR − widthM .

As a consequence, we have the following statement which is a generalization of

Ischebeck’s result: let (R,m, k) be a local ring and M be an a-cofinite R-module of

finite injective dimension and N be an arbitrary R-module. Then

q = idR(N,M) ≥ depthR− widthM − depthN

with equality if and only if widthExtqR(N,M) = 0. In particular, the equality holds

for any finite R-module N .

2. Cofiniteness of Local Cohomology

Theorem 2.1. Let n be a non-negative integer such that ExtnR(R/a,M) is a finitely

generated R-module. If ExtiR(R/a,Hj
a(M)) is finitely generated for all i ≤ n+1 and

j < n, then HomR(R/a,Hn
a (M)) is finitely generated. In particular, Ass(Hn

a (M))

is finite.

Proof. We prove the theorem by induction on n(≥ 0). If n = 0, then

Hom(R/a,Γa(M)) ∼= Hom(R/a,M)

is finitely generated. Suppose, inductively, that n > 0 and the result has been

proved for n − 1. Since ExtiR(R/a,Γa(M)) is finitely generated for all i ≤ n + 1,

by using the exact sequence 0 → Γa(M) → M → M/Γa(M) → 0 we get that

ExtnR(R/a, (M/Γa(M)) is finitely generated. On the other hand, H0
a(M/Γa(M)) =

0 and Hi
a(M/Γa(M)) ∼= Hi

a(M) for all i > 0. Thus we may assume that Γa(M) =

0. Let E be an injective hull of M and put N = E/M . Then it is easy to
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see that Γa(E) = 0. Consequently Hi
a(N) ∼= Hi+1

a (M) for all i ≥ 0. Since

ExtiR(R/a, N) = Exti+1
R (R/a,M) for all i ≥ 0, the induction hypothesis yields that

Hom(R/a,Hn−1
a (N)) is finitely generated and hence Hom(R/a, Hn

a (M)), which is

isomorphic to it, is finitely generated. �

Zöschinger [28] introduced the interesting class of minimax modules. The R-

module M is said to be a minimax module, if there is a finitely generated submodule

N of M , such that M/N is Artinian. The class of minimax modules includes all

finitely generated and all Artinian modules. Moreover it is closed under taking

submodules, quotients and extensions, i.e., it is a Serre subcategory of the category

of R-modules; see, Rudlof [24] and Zöschinger [28,29]. Obviously this class is strictly

larger than the class of all finitely generated modules and also than the class of all

Artinian modules; see Belshoff et al [3].

The next result has been shown using a spectral sequence argument by Mafi in

[19, Theorem 2.1] under the assumption that M is finitely generated. We should

mention that by definition every finitely generated R-module M is a-cofinite, where

a ⊆ Ann(M) is an ideal of R.

Corollary 2.2. Let M be a-cofinite. If Hn
b (M) is minimax and Hi

b(M) is b-cofinite

for all i < n, then Hn
b (M) is b-cofinite.

Proof. Since M is a-cofinite, it follows from [8, Corollary 1] that ExtnR(R/b,M) is

finitely generated. The above theorem implies that HomR(R/b,Hn
b (M)) is finitely

generated. Now the assertion follows from [21, Proposition 4.3] and the fact that

SuppHn
b (M) ⊆ V (b). �

3. Cofiniteness and Grade

The proof of the following result is standard and we give its proof for complete-

ness.

Lemma 3.1. Let M be a-cofinite and c be an ideal of R such that M ̸= cM . Then

c contains an M -regular element if and only if HomR(R/c,M) = 0.

Proof. Let f ∈ HomR(R/c,M) and a ∈ c be an M -regular element. Since ax = 0

for all x ∈ R/c, f(ax) = af(x) = 0 for all x ∈ R/c. Since a is M -regular, f(x) = 0.

Therefore HomR(R/c,M) = 0. Conversely, let c have no M -regular elements.

Then by [20, Corollary 1.4] there exists an associated prime p ∈ AssM such that

c ⊆ p. There is a monomorphism ϕ : R/p −→ M ; the composition of the natural

epimorphism R/c −→ R/p and ϕ yields a non-zero homomorphism R/c −→ M. �
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The following is a generalization of Rees’ characterization of grade (see [5, The-

orem 1.2.5]).

Theorem 3.2. Let M be a-cofinite and let c be an ideal of R such that M ̸= cM .

Then all maximal M -sequences in c have same length n and it is given by

n = inf{i : ExtiR(R/c,M) ̸= 0}.

Proof. Let x = x1, x2, . . . , xn be a maximal M -regular sequence in c. If Mi =

M/(x1, x2, . . . , xi)M , then c has an Mi-regular element for i = 0, 1, . . . , n − 1.

Hence by [5, Lemma 1.2.4] we have ExtiR(R/c,M) ∼= HomR(R/c,Mi) = 0 for all

i = 0, 1, . . . , n− 1. On the other hand, since M ̸= cM and c has no M/xM -regular

elements,

ExtnR(R/c,M) ∼= HomR(R/c,M/xM) ̸= 0.

This concludes the proof. �

We are now in a position to define the concept of grade and depth for a-cofinite

modules.

Definition 3.3. Let M be a-cofinite and c an ideal of R such that cM ̸= M . Then

the common length of all maximalM -sequences in c is called the grade of c onM and

it is denoted by grade(c,M). If (R,m) is local, then we put depthM = grade(m,M).

Now we are ready to present the main result of this section.

Theorem 3.4. Let M be a-cofinite and let c be an ideal of R such that M ̸= cM .

Then grade(c,M) is the least integer i such that Hi
c(M) ̸= 0

Proof. Let n = grade(c,M). Apply induction on n. If n = 0 then c contains

only zero divisors of M . Thus H0
c (M) = Γc(M) ̸= 0. Suppose n > 0. Then there

exists x ∈ c, a non-zerodivisor on M . Set M = M/xM . We have still cM ̸= M

and note that grade(c,M) = grade(c,M) − 1 = n − 1. By [20, Remark(a)], M is

a-cofinite. Therefore, by the induction hypothesis, Hi
c(M) = 0 for i < n − 1 and

Hn−1
c (M) ̸= 0. Consider the exact sequence

0 −→ M
x−→ M −→ M −→ 0.

Applying the long exact cohomology sequence we get

Hi−1
c (M) −→ Hi−1

c (M) −→ Hi
c(M)

x−→ Hi
c(M).

If i < n then i − 1 < n − 1 and so Hi−1
c (M) = 0. Thus x is a non-zero divisor of

Hi
c(M). As Hi

c(M) is c-torsion module it follows that Hi
c(M) = 0. On the other
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hand, from Hn−1
c (M) = 0 we get the injective map Hn−1

c (M) −→ Hn
c (M). As

Hn−1
c (M) ̸= 0 it follows that Hn

c (M) ̸= 0. �

The following result is a generalization of Grothendieck’s Theorem (see, for ex-

ample, [5, Theorem 3.5.7]).

Corollary 3.5. Let (R,m) be a local ring and let M be a non-zero a-cofinite module

of depth t and dimension d. Then

(1) Hi
m(M) = 0 for all i < t and i > d,

(2) Ht
m(M) ̸= 0 and Hd

m(M) ̸= 0.

Proof. (1) Use Theorem 3.4 and Grothendieck’s Vanishing Theorem [4, Theorem

6.1.2].

(2) Use Theorem 3.4 and [19, Theorem 2.9]. �

We end this section by establishing upper bounds for depthM . First we need

two lemmas.

Lemma 3.6. Let (R,m) be a local ring and let M be a-cofinite. If mM = M , then

aM = M .

Proof. Since m(M/aM) = (mM + aM)/aM = M/aM , the assertion follows from

[20, Corollary 1.2] and Nakayama’s Lemma. �

Lemma 3.7. Let (R,m) be a local ring, p ∈ SuppM and M be an a-cofinite module

such that aM ̸= M . If dimR/p ≤ depthM , then ExtiR(R/p,M) = 0 for i <

depthM − dimR/p.

Proof. We proceed by induction on n = dimR/p. If n = 0, then p = m. By

Lemma 3.6, we have mM ̸= M . Hence the assertion follows from Theorem 3.2.

Now suppose n > 0. Then p ̸= m. Choose an element x ∈ m \ p. The element x is

a non-zero divisor on R/p, and therefore we get the exact sequence

0 −→ R/p
x−→ R/p −→ R/(p, x) −→ 0.

There is a chain 0 = M0  M1  · · ·  Mn−1  Mn = R/(p, x) of submodules of

R/(p, x) such that Mj/Mj−1
∼= R/pj for some pj ∈ SpecR. Moreover, p  pj and

so pj ∈ SuppM and dimR/pj < dimR/p for each j. So by induction, for each j,

ExtiR(R/pj ,M) = 0 for i ≤ depthM − dimR/p. Hence ExtiR(R/(p, x),M) = 0 for

i ≤ depthM − dimR/p. If i < depthM − dimR/p, the exact sequence

0 −→ ExtiR(R/p,M)
x−→ ExtiR(R/p,M) −→ Exti+1

R (R/(p, x),M) = 0
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gives xExtiR(R/p,M) = ExtiR(R/p,M) and thus the conclusion follows from [8,

Corollary 1] and Nakayama’s Lemma. �

We are now in a position to prove the following result.

Theorem 3.8. Let (R,m) be a local ring and M be an a-cofinite module such that

aM ̸= M . Then

(1) depthM ≤ dimR/p for all p ∈ AssM ,

(2) depthM ≤ dimM .

Proof. (1) If p ∈ AssM , then Hom(R/p,M) ̸= 0, and so the result follows from

Lemma 3.7.

(2) This follows from Part (1). �

4. Associated Primes of Local Cohomology Modules

The following theorem is one of the main results of this paper. We shall use the

following theorem to deduce that, if M is a-cofinite, then the first non-vanishing

local cohomology module Ht
c(M), where c is an ideal of R such that cM ̸= M and

t = grade(c,M), has only finitely many associated primes.

Theorem 4.1. (See [11, Theorem 1]) Let M be an a-cofinite module and let c be

an ideal of R such that M ̸= cM ; let t = grade(c,M). Then

HomR(R/c,Ht
c(M)) ∼= ExttR(R/c,M).

Proof. We use induction on t. If t = 0, then H0
c (M) = Γc(M) and the assertion

follows from the fact that (0 :Γc(M) c) = (0 :M c).

Now suppose that t > 0. Let x1, x2, ..., xt be an M -regular sequence in c and let

M = M/x1M . Since Ht−1
c (M) = 0 by Theorem 3.2, the exact sequence

0 −→ M
x1−→ M −→ M −→ 0

induces an exact sequence

0 −→ Ht−1
c (M) −→ Ht

c(M)
x1−→ Ht

c(M).

ThereforeHt−1
c (M) ∼= (0 :Ht

c(M) x1) and so HomR(R/c,Ht−1
c (M)) ∼= HomR(R/c,Ht

c(M)).

By the inductive hypothesis and [5, Lemma 1.2.4], we have

HomR(R/c,Ht
c(M)) ∼= Extt−1

R (R/c,M)

∼= HomR(R/c,M/(x1, x2, ..., xt)M)

∼= ExttR(R/c,M).

This concludes the proof. �
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Corollary 4.2. Let M be a-cofinite, bM ̸= M and t = grade(b,M). Then

AssRH
t
b(M) is finite.

Proof. The assertion follows from Theorem 4.1, [8, Corollary 1] and the fact that

AssR(H
t
b(M)) = AssR(HomR(R/b,Ht

b(M))). �

Corollary 4.3. Let (R,m) be a local ring and let M be an a-cofinite module such

that M ̸= aM . Then AssRH
t
b(M) is finite, where t = grade(b,M).

Proof. By Lemma 3.6, we haveM ̸= bM . Now the assertion follows from Corollary

4.2. �

5. Auslander-Buchsbaum Formula

We start with the following lemma which is the dual of [5, Lemma 3.1.11].

Lemma 5.1. Let M be an R-module, N a finite R-module and n ≥ 0 an integer.

If TorRn (R/p,M) = 0 for all p ∈ SuppN , then TorRn (N,M) = 0.

Proof. This is dual to the proof of [5, Lemma 3.1.11]. �

Corollary 5.2. Let M be an R-module and n ≥ 0 be an integer. Then the following

are equivalent.

(1) fl dimRM < n,

(2) TorRn (R/p,M) = 0 for all p ∈ SpecR.

Proof. This follows easily from the above lemma and the Flat Dimension Theorem

(see, for example, [22, Proposition 4.5]). �

Motivated by the above corollary, we make the following definition which pro-

vides a generalization of the concept of flat dimension.

Definition 5.3. An R-module M is said to be of a-relative flat dimension ≤ n if

TorRk (R/p,M) = 0 for all p ∈ V (a) and all k ≥ n + 1. We write flat dimaM for

a-relative flat dimension of M .

Proposition 5.4. Let (R,m, k) be a local ring, p ∈ V (a) different from m, M be

an a-cofinite R-module, and let n be an integer. If TorRn (R/q,M) = 0 for all prime

ideals q ∈ V (p), q ̸= p, then TorRn (R/p,M) = 0.

Proof. Choose an element x ∈ m \ p. The element x is a nonzero divisor on R/p,

and therefore we get the exact sequence

0 −→ R/p
x.−→ R/p −→ R/(p, x) −→ 0
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which induces the exact sequence

TorRn (R/p,M)
x.−→ TorRn (R/p,M) −→ TorRn (R/(p, x),M).

Since V (x, p) ⊆ {q ∈ V (p)|q ̸= p}, the above lemma and our assumption imply

TorRn (R/(p, x),M) = 0.

Therefore xTorRn (R/p,M) = TorRn (R/p,M) and hence the conclusion follows from

[21, Theorem 2.1], [8, Corollary 1] and Nakayama’s Lemma. �

It is now easy to obtain the following useful formula for an a-relative flat dimen-

sion of an a-cofinite module.

Theorem 5.5. Let (R,m, k) be a local ring and M be an a-cofinite R-module. Then

flat dimaM = fdR(k,M).

Proof. Clearly flat dimaM ≥ fdR(k,M). For the opposite inequality, let s =

fdR(k,M). Repeated applications of Proposition 5.4 show TorRi (R/p,M) = 0 for

all p ∈ V (a) and all i > s. This gives the desired inequality. �

The following theorem is our first main result of this section which generalizes

the classical Auslander-Buchsbaum formula.

Theorem 5.6. Let (R,m, k) be a local ring and M be a nonzero a-cofinite R-module

of finite flat dimension. Then flat dimaM = depthR− depthM .

Proof. We have fdR(k,M) = depthR − depthM , by [7, Proposition 1]. Now the

desired result follows from Theorem 5.5. �

The following result is due to S. Choi and S. Iyengar [6, Theorem 3]:

“Let (R,m, k) be a local ring, let M and N be finitely generated R-modules and

let M have finite complete intersection dimension. Then

p = fdR(M,N) ≥ depthR− depthM − depthN

with equality if and only if depthTorRp (M,N) = 0”.

A similar result holds for an a-cofinite R-module M and any R-module N .

Theorem 5.7. Let (R,m, k) be a local ring and M be a nonzero a-cofinite R-module

of finite flat dimension. Then for any nonzero R-module N ,

p = fdR(M,N) ≥ depthR− depthM − depthN

with equality if and only if depthTorRp (M,N) = 0.
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Proof. If we combine [26, Lemma 2.2] with [26, Lemmas 2.5 and 2.6(a)], we see that

fdR(M,N) ≥ fdR(k,M)−depthN with equality if and only if depthTorRp (M,N) =

0. Now the desired result follows from Theorem 5.5 and Theorem 5.6. �

6. Bass Formulas

We will consider a generalization of the concept of injective dimension.

Definition 6.1. An R-module M is said to be of a-relative injective dimension

≤ n if ExtkR(R/p,M) = 0 for all p ∈ V (a) and all k ≥ n + 1. We write inj dimaM

for the a-relative injective dimension of M .

Proposition 6.2. Let (R,m, k) be a local ring, p ∈ V (a) different from m, M be an

a-cofinite R-module, and let n be an integer. If Extn+1
R (R/q,M) = 0 for all prime

ideals q ∈ V (p), q ̸= p, then ExtnR(R/p,M) = 0.

Proof. Choose an element x ∈ m \ p. Then the exact sequence

0 −→ R/p
x.−→ R/p −→ R/(p, x) −→ 0

induces the exact sequence

ExtnR(R/p,M)
x.−→ ExtnR(R/p,M) −→ Extn+1

R (R/(p, x),M).

Since V (x, p) ⊆ {q ∈ V (p)|q ̸= p}, our assumption and [5, Lemma 3.1.11] imply

Extn+1
R (R/(p, x),M) = 0. Therefore xExtnR(R/p,M) = ExtnR(R/p,M), and hence,

the conclusion follows from [8, Corollary 1] and Nakayama’s Lemma. �

Theorem 6.3. Let (R,m, k) be a local ring and M be an a-cofinite R-module. Then

inj dimaM = idR(k,M).

Proof. Clearly inj dimM ≥ idR(k,M). For the opposite inequality, let t = idR(k,M).

Repeated applications of Proposition 6.2 show ExtiR(R/p,M) = 0 for all p ∈ V (a)

and all i > t. This gives the desired inequality. �

The proof of the following corollary is standard and we include it here for com-

pleteness.

Corollary 6.4. Let (R,m, k) be a local ring and M be an a-cofinite R-module.

(1) If x ∈ m is R-regular and M -regular, then

inj dim(a+(x))/(x)M/xM = inj dimaM − 1,

(2) dimM ≤ inj dimaM .
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Proof. (1) Consider the exact sequence

0 −→ M
x.−→ M −→ M/xM −→ 0.

By [20, Remark(a)], M/xM is an a-cofinite R-module and hence M/xM is an

(a+ (x))/(x)-cofinite R/(x)-module, by [8, Proposition 2]. Therefore the assertion

follows from [5, Lemma 3.1.16] and Theorem 6.3.

(2) Let d = dimM and consider a chain p0 ⊆ p1 ⊆ · · · ⊆ pd = m of prime ideals

in SuppM where for all i there is no prime ideal strictly between pi and pi+1.

By induction on i, we show that ExtiRpi
(Rpi/piRpi ,Mpi) ̸= 0. If i = 0, then

p0Rp0 ∈ AssRp0
Mp0 , and therefore HomRp0

(Rp0/p0Rp0 ,Mp0) ̸= 0. Now suppose

i ≥ 1. Then by [23, Theorem 9.50] and the induction hypothesis,

(Exti−1
Rpi

(Rpi/pi−1Rpi ,Mpi))pi−1Rpi

∼= ((Exti−1
R (R/pi−1,M))pi)pi−1Rpi

∼= Exti−1
R (R/pi−1,M)pi−1

∼= Exti−1
Rpi−1

(Rpi−1/pi−1Rpi−1 ,Mpi−1)

̸= 0,

and so Exti−1
Rpi

(Rpi/pi−1Rpi ,Mpi) ̸= 0. It follows from [20, Proposition 1.5] that

Mpi is an aRpi-cofinite Rpi-module. Therefore, by Proposition 6.2, we have that

ExtiRpi
(Rpi/piRpi ,Mpi) ̸= 0.

In particular, it follows that ExtdRpd
(Rpd

/pdRpd
,Mpd

) ̸= 0 and so ExtdR(R/pd,M) ̸=
0, by [23, Theorem 9.50]. Thus d ≤ inj dimaM , and we are done. �

The following theorem is our second main result of this section which generalizes

the classical Bass formula.

Theorem 6.5. Let (R,m, k) be a local ring and M be a nonzero a-cofinite R-module

of finite injective dimension. Then inj dimaM = depthR−widthM . In particular,

if M is finite then inj dimaM = depthR.

Proof. We have idR(k,M) = depthR − widthM , by [7, Proposition 2]. Now the

desired result follows from Theorem 6.3. �

Ischebeck [15, p. 517] proved the following formula from which the classical Bass

formula can be recovered by setting N equal to the residue field of the base ring.

Theorem. Let (R,m, k) be a local ring and let M and N be nonzero finitely

generated R-modules with inj dimM < ∞. Then

idR(N,M) = depthR− depthN.
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The next theorem is a generalization of Ischebeck’s result.

Theorem 6.6. Let (R,m, k) be a local ring and M be a nonzero a-cofinite R-module

of finite injective dimension and N be an arbitrary R-module. Then

q = idR(N,M) ≥ depthR− widthM − depthN

with equality if and only if widthExtqR(N,M) = 0. In particular, the equality holds

for any finite R-module N .

Proof. By [26, Lemma 2.5 and 2.6(a)], we have idR(N,M) ≥ idR(k,M)−depthN

with equality if and only if widthExtqR(N,M) = 0. Now the desired result follows

from Theorem 6.3 and Theorem 6.5. �
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