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1. Introduction

Throughout this paper all rings are commutative with identity element and all

modules are unital.

In 1968 [15], Vamos introduced the notion of finitely embedded modules as a

dual of finitely generated modules such that, for a ring R, an R-module M is called

finitely embedded if there is a finite set {Si, i = 1, ..., n} of simple R-modules, such

that E(M) = E(S1)⊕E(S2)⊕ · · · ⊕E(Sn) (where E(X) denotes the injective hull

of the R-module X). Finitely embedded modules were called, by Jans [12], finitely

cogenerated modules when he introduced co-Noetherian rings as a dual notion of

Noetherian rings. Such that a ring R is called co-Noetherian if factors of finitely

cogenerated R-modules are finitely cogenerated R-modules. In that paper, Jans

mentioned that Vamos’ property coincides with the following Pareigis’ one on a

module M : “for every family {Mi}i∈I of submodules of M with ∩i∈IMi = 0, there

is a finite subset J ⊂ I such that ∩i∈JNi = 0”. Since then, several authors have

been interested in this notion such that various characterizations of finitely cogen-

erated modules were given (see [1] and [16] for more details). The following result

gives some of them including the two conditions above.
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Theorem 1.1. For a ring R, an R-module M is called finitely cogenerated if it

satisfies one of the following equivalent conditions:

(1) There is a finite set {Si, i = 1, ..., n} of simple R-modules, such that E(M) =

E(S1)⊕ E(S2)⊕ · · · ⊕ E(Sn).

(2) There is a finite set {Si, i = 1, ..., n} of simple R-modules, such that M

is isomorphic to a submodule of E(S1) ⊕ E(S2) ⊕ · · · ⊕ E(Sn). In others

words, M is isomorphic to a submodule of a finitely cogenerated cofree R-

module, where a cofree R-module means a direct product of the injective

hull of simple R-modules (see [10]).

(3) M is isomorphic to a submodule of direct product of finitely many cocyclic

modules (where a cocyclic module means an essential extension of a simple

module [16, pages 115-116]).

(4) For every injective homomorphism M →
∏
i∈I

Ni, where {Ni}i∈I is a family

of R-modules, there is a finite subset J ⊂ I and an injective homomorphism

M →
∏
i∈J

Ni.

(5) For every family {Mi}i∈I of submodules of M with ∩i∈IMi = 0 there is a

finite subset J ⊂ I such that ∩i∈JNi = 0.

(6) The socle of M , Soc(M), is finitely generated and essential in M (where

the socle of M is by definition the sum of all simple (minimal) submodules

of M [16, pages 174-175]).

In the same way, Hiremath [10] introduced the notion of finitely copresented

module as a dual of finitely presented modules such that a module M is said to be

finitely copresented, if it is finitely cogenerated and for every short exact sequence

0 → M → L → K → 0, if L is finitely cogenerated then also K is finitely cogen-

erated (see [16, pages 248-249]). As the classical case for coherent rings (see [11]),

the notion of finitely copresented modules was served to define co-coherent rings as

a dual notion of coherent rings (see [16, page 249]).

In this paper, we introduce and study dual notions of both n-presented modules

and n-coherent rings which were first introduced by Costa [7] and developed by

Dobbs, Mahdou and Kabbaj [8] as extensions of respectively the classical finitely

generated (presented) modules and Noetherian (coherent) rings. Recall that a

module is said to be n-presented, for some positive integer n, if there is an exact

sequence of modules of the form Fn → Fn−1 → · · · → F0 → M → 0 where Fi are

free and finitely generated. A ring R is said to be n-coherent, if every n-presented

R-module is (n + 1)-presented. Clearly, 0-presented and 1-presented modules are

respectively the same as finitely generated and finitely presented modules. Then, 0-

coherent and 1-coherent rings are respectively the same as Noetherian and coherent
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rings. Notice that the terminology of “n-coherence” in this paper is Costa’s n-

coherence but it is not the same as that of [8]. These notions have been the subject

of several papers (see for example [2,5,6,9,17,18]).

In Section 2, we define and study n-copresented modules as a dual notion of

n-presented modules (see Definition 2.1). The main result (Theorem 2.4) studies

the behavior of this notion in short exact sequences. It is a generalization of [16,

Theorem 30.2] and a dual result of a well known one on n-presented modules (see

[4, Exercice 6, p. 60]). We close Section 2 with some change of rings results

(Propositions 2.6 and 2.8). In Section 3, we are interested in n-co-coherent rings,

a dual notion of n-coherent rings (see Definition 3.1). We show that for semi-local

rings, n-co-coherence implies the classical coherence (Theorem 3.6). We close the

paper with some change of rings results (Proposition 3.7 and Theorem 3.9).

2. n-Copresented modules

In this section, we investigate the notion of n-copresented modules which is

defined as follows.

Definition 2.1. For a ring R and a positive integer n, an R-module M is called

n-copresented if there is an exact sequence of R-modules of the form

0→M → I0 → I1 → · · · → In

where, for i = 0, ..., n, Ii is injective and finitely cogenerated. If M is n-copresented

for every positive integer n, we say that M is infinitely copresented. If we ignore that

M is n-copresented for some positive integer n, we say that M is (−1)-copresented.

Obviously, every n-copresented module is m-copresented for every positive inte-

ger m ≤ n. Also, one can see easily that every injective and finitely cogenerated R-

module I is infinitely copresented associated to the exact sequence 0→ I == I → 0.

The following propositions shows that 0-copresented and 1-copresented modules

are just, respectively, the finitely cogenerated and finitely copresented modules.

Proposition 2.2. For a ring R, an R-module is 0-copresented if and only if it is

finitely cogenerated.

Proof. Since every submodule of finitely cogenerated module is finitely co-

generated, 0-copresented R-modules are finitely cogenerated. Conversely, from

Theorem 1.1 (2), we can see easily that every finitely cogenerated module is 0-

copresented. �
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Proposition 2.3. For a ring R, an R-module is 1-copresented if and only if it is

finitely copresented.

Proof. (⇒) Suppose that M is 1-copresented. Then there exists an exact sequence

0→M → E0 → E1 where, E0 and E1 are injective and finitely cogenerated. Then,

M is finitely cogenerated as a submodule of E0. Now, Let 0 → M → L →
N → 0 with L is finitely cogenerated. We claim that N is also finitely cogenerated.

Consider the short exact sequence 0→M → E0 → K → 0 with K = Im(E0 → E1).

Then we get the following pushout diagram:

0 0

↓ ↓
0 → M → E0 → K → 0

↓ ↓ ‖
0 → L → D → K → 0

↓ ↓
N == N

↓ ↓
0 0

By the middle horizontal exact sequence and since L and K are finitely cogenerated

(since K ⊂ E1), D is finitely cogenerated. Since E0 is injective, the sequence

0 → E0 → D → N → 0 splits and so D ∼= N ⊕ E0. And, since D is finitely

cogenerated, N is finitely cogenerated. Therefore, M is finitely copresented.

(⇐) Suppose that M is finitely copresented. Then, M is finitely cogenerated and

so there is an exact sequence 0 → M → E0 such that E0 is injective and finitely

cogenerated (by Proposition 2.2). Consider the short exact sequence 0 → M →
E0 → K → 0, where K = E0/M . By definition, K is finitely cogenerated, which

implies that there is an exact sequence 0 → K → E1 such that E1 is an injective

and finitely cogenerated. Then, we get the following commutative diagram

0 // M // E0
''OOO

// E1

K
''OOOO

77ooo

0

77oooo
0

with the sequence 0 → M → E0 → E1 is exact. This implies that M is 1-

copresented. �

Now we give the main result in this section which is dual to a well known result

on n-presented modules (see [4, Exercice 6, p. 60]) and a generalization of [16,

Theorem 30.2].
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Theorem 2.4. Let R be a ring and let 0 → A → B → C → 0 be a short exact

sequence of R-modules. Then, for a positive integer n, we have:

(1) If A and C are n-copresented, then B is n-copresented.

(2) If C is (n−1)-copresented and B is n-copresented, then A is n-copresented.

(3) If A is (n+1)-copresented and B is n-copresented, then C is n-copresented.

(4) If B = A ⊕ C, then B is n-copresented if and only if A and C are n-

copresented.

Proof. 1. Since A and C are n-copresented, there are exact sequences of R-modules

0→ A→ A0 → A1 → · · · → An and 0→ C → C0 → C1 → · · · → Cn,

where, for i = 0, ..., n, Ai and Ci are injective and finitely cogenerated. By the dual

result of Horseshoe Lemma ([14, Remark after Lemma 6.20]), we get the following

commutative diagram of R-modules with exact sequences:

0 0 0

↓ ↓ ↓
0 → A → B → C → 0

↓ ↓ ↓
0 → A0 → A0 ⊕ C0 → C0 → 0

↓ ↓ ↓
0 → A1 → A1 ⊕ C1 → C1 → 0

...
...

...

↓ ↓ ↓
0 → An → An ⊕ Cn → Cn → 0

By the middle vertical sequence and since Ai ⊕Ci are injective and finitely cogen-

erated, we deduce that B is n-copresented.

2. Now suppose that C is (n−1)-copresented and B is n-copresented, then there

is an exact sequence of R-modules 0 → B → B0 → B1 → · · · → Bn, where, for

i = 0, ..., n, Bi is injective and finitely cogenerated. Then, we get the following

exact sequences

0→ B → B0 → K → 0 and 0→ K → B1 → B2 → · · · → Bn,
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where K = B0/B. Then K is (n−1)-copresented. Consider the pushout diagram

0 0

↓ ↓
0 → A → B → C → 0

‖ ↓ ↓
0 → A → B0 → D → 0

↓ ↓
K == K

↓ ↓
0 0

By (1), D is (n−1)-copresented (since C and K are (n−1)-copresented). Then,

there is an exact sequence of R-modules 0→ D → D0 → D1 → · · · → Dn−1, where

each Di is injective and finitely cogenerated. We combine this sequence with the

sequence 0→ A→ B0 → D → 0, we get the following commutative diagram

0 // A // B0
//

**TTTTTT D0
// D1

// · · · // Dn−1

D
**TTTTTTT

44jjjjjj

0

44jjjjjjj
0

with the top sequence is exact. Hence, A is n-copresented.

3. We have that A is (n + 1)-copresented, then there is an exact sequence of

R-modules 0→ A→ A0 → A1 → · · · → An → An+1 where each Ai is injective and

finitely cogenerated. Thus we get the two exact sequences

0→ A→ A0 → K → 0 and 0→ K → A1 → A2 → · · · → An → An+1

where K = A0/A. Then, K is n-copresented. Consider the pushout diagram

0 0

↓ ↓
0 → A → B → C → 0

↓ ↓ ‖
0 → A0 → D → C → 0

↓ ↓
K == K

↓ ↓
0 0

Since B and K are n-copresented, D is n-copresented by (1). And since A0 is

injective, the middle horizontal sequence splits and so D = A0 ⊕ C. Thus we get

the following short exact sequence 0 → C → D = A0 ⊕ C → A0 → 0. Since D

is n-copresented, there is an exact sequence of R-modules 0 → D → D0 → D1 →
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· · · → Dn, where each Di is injective and finitely cogenerated. This gives a short

exact sequence 0→ D → D0 → K → 0 such that K = D0/D is (n−1)-copresented.

Then we have the following pushout diagram

0 0

↓ ↓
0 → C → D → A0 → 0

‖ ↓ ↓
0 → C → D0 → E → 0

↓ ↓
K == K

↓ ↓
0 0

Being a finitely cogenerated and injective R-module, A0 is infinitely copresented.

Then, by the right vertical exact sequence and (1), E is (n−1)-copresented. Then

there is an exact sequence of R-modules 0 → E → E0 → E1 → · · · → En−1

where each Ei is injective and finitely cogenerated. Combining this sequence with

0→ C → D0 → E → 0 we get the following exact sequence:

0→ C → D0 → E0 → E1 → · · · → En−1

Therefore, C is n-copresented.

4. Assume that A and C are n-copresented. Applying (1) to the following short

exact sequence 0 → A → B = A ⊕ C → C → 0, we get that B is n-copresented.

Conversely, suppose that B = A⊕ C is n-copresented. Then B is finitely cogener-

ated and so are A and C. Let 0→ A→ A0 → Z0 → 0 and 0→ C → C0 → X0 → 0

be exact sequences. We add these sequences such that we get a short exact sequence

0→ B = A⊕ C → A0 ⊕ C0 → Z0 ⊕X0 → 0

By (3), Z0 ⊕ X0 is (n−1)-copresented. Therefore, applying (2) to the above two

short exact sequences, we get that A and C are n-copresented. �

Corollary 2.5. Let R be a ring and let 0→M → I0 → I1 → · · · → In → K → 0 be

an exact sequence, where n is a positive integer and, for i = 0, ..., n, Ii is (m−(i+1))-

copresented for a positive integer m ≥ n. Then, M is m-copresented if and only if

K is (m− n−1)-copresented.

Proof. We decompose the sequence 0 → M → I0 → I1 → · · · → In → K → 0

into short exact sequences as follows:

0→ Ki → Ii → Ki+1 → 0, for i = 0, ..., n
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such that K0 = M and Kn+1 = K, and by applying recursively Theorem 2.4 to

each of these sequences we obtain the desired result. �

Note that Corollary 2.5 holds true, in particular, if Ii are injective and finitely

cogenerated.

We close this Section with the following change of rings results.

Proposition 2.6. Let R −→ S be a ring homomorphism and consider a positive

integer n. If the injective hull of every simple S-module is n-copresented as an

R-module, then every n-copresented S-module is an n-copresented R-module.

Proof. Let M be an n-copresented S-module. Then there is an exact sequence of

S-modules

0→M → E0 → E1 → · · · → En

where, for i = 0, ..., n , Ei is injective and finitely cogenerated. We decompose this

sequence into two exact sequences:

0→M → E0 → E1 → · · · → En−1 → K → 0 and 0→ K → En → En/K → 0

Being a finite direct sum of the injective hull of simple S-modules, each Ei is an n-

copresented R-module (by hypothesis). On the other hand, K is finitely cogenerated

as an R-module because it is embedded in En which is finitely cogenerated as an

R-module. Therefore, by Corollary 2.5, M is an n-copresented R-module. �

Corollary 2.7. Let R −→ R/I be the canonical ring homomorphism. Then every

finitely cogenerated R/I-module is a finitely cogenerated R-module.

Proof. Let T be a simple R/I-module, then there is a maximal ideal M of R

such that I ⊂ M and T = ((R/I)/(M/I)) ∼= R/M ⊂ E(R/M) then T is a finitely

cogenerated R-module. Then, using Proposition 2.6, every finitely cogenerated

R/I-module is a finitely cogenerated R-module. �

Proposition 2.8. Let R −→ S be a ring homomorphism such that, the injective

hull of every simple S-module is (n−1)-copresented as an R-module, where n is

a positive integer. Then, for every S-module M , if M is n-copresented as an R-

module then it is n-copresented as an S-module.

Proof. We prove by induction on n. The case n = 0 means that M is a finitely

cogenerated R-module. We prove that M is a finitely cogenerated S-module. Then

consider (Mi)i∈I to be a family of submodules of the S-module M with ∩i∈IMi = 0.

Since Mi ⊂ M as S-modules, Mi ⊂ M as R-modules. Since M is a finitely

cogenerated R-module, there exists a finite subset J of I such that ∩j∈JMj =
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0, Then M is a finitely cogenerated S-module. Now assume that M is an n-

copresented R-module for n ≥ 1. In particular, M is a finitely cogenerated R-

module. Then, from the first case, M is also finitely cogenerated as S-module.

Hence, there exists a short exact sequence of S-modules 0 → M → E0 → K → 0

where E0 is injective and finitely cogenerated. By hypothesis E0 is an (n−1)-

copresented R-module, then, by Theorem 2.4 (3), K is an (n−1)-copresented R-

module. Then, by induction, K is an (n−1)-copresented S-module. Therefore, by

Theorem 2.4 (2), M is an n-copresented S-module. �

3. n-Co-coherent rings

In this section we give some properties of a dual notion of n-coherent rings.

Definition 3.1. For a positive integer n, a ring R is called n-co-coherent, if every

n-copresented R-module is (n+1)-copresented.

Proposition 3.2. For a positive integer n, if R is an n-co-coherent ring, then

every n-copresented R-module M is infinitely copresented.

Proof. Since M is n-copresented, there is an exact sequence 0 → M → I0 →
M1 → 0 such that I0 is injective and finitely cogenerated. Since R is n-co-coherent,

M is (n+1)-copresented, then, by Theorem 2.4, M1 is n-copresented and so it is

(n+1)-copresented (since R is n-co-coherent). This implies, also by Theorem 2.4

(3), that M is (n+2)-copresented. We continue, using the same argument, such

that we obtain that M is m-copresented for every positive integer m ≥ n, which

means that M is infinitely copresented. �

Proposition 3.3. For a positive integer n, if a ring R is n-co-coherent, then, for

every positive integer m ≥ n, R is m-co-coherent.

Proof. Consider an m-copresented R-module M . Then, M is n-copresented (since

m ≥ n). And, since R is n-co-coherent, M is infinitely copresented (by Proposition

3.2), and so it is m+1-copresented. This means that R is m-co-coherent. �

The following results show that n-co-coherent rings are extensions of the known

co-Noetherian and co-coherent rings.

Recall that a ring R is called co-Noetherian if factors of finitely cogenerated

R-modules are finitely cogenerated [12].

Proposition 3.4. A ring R is 0-co-coherent if and only if it is co-Noetherian.

Proof. (⇒) Suppose that R is 0-co-coherent and consider a 0-copresented R-

module M . Then every submodule K of M is 0-copresented and so it is 1-

copresented (since R is 0-co-coherent). Then Theorem 2.4 (3) applied to the short
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exact sequence 0 → K → M → M/K → 0 implies that M/K is finitely cogener-

ated. Hence R is co-Noetherian.

(⇐) Now suppose that R is co-Noetherian. Let M be a 0-copresented R-module

M . Then, there is an exact sequence 0 → M → E0 → E0/M → 0 with E0 is

injective and finitely cogenerated, and E0/M is finitely cogenerated (since R is co-

Noetherian). Then, form Theorem 2.4 (2), M is 1-copresented. Therefore, R is

0-co-coherent. �

The co-coherence is defined as a dual of the classical coherence, such that a

ring R is called co-coherent if every finitely cogenerated factor module of a finitely

cogenerated injective R-module is finitely copresented [13]. Then clearly we get the

following result.

Proposition 3.5. A ring R is 1-co-coherent if and only if it is co-coherent.

The following result gives a condition that relies n-coherent rings with n-co-

coherent rings.

Recall that an R-module C is called cogenerator if every R-module M can be

embedded in a product of copies of C [1, page 210]. From [1, Proposition 18.14],

every cogenerator R-module C is faithful, that is every sequence of R-modules

A → B → D is exact if the sequence Hom(D,C) → Hom(B,C) → Hom(A,C)

is exact. From [1, Corollary 18.16], the direct sum of injective hull of all simple

modules is a cogenerator.

Theorem 3.6. Let R be a semi-local ring (i.e. R has a finite set of maximal

ideals). If R is an n-co-coherent ring for a positive integer n, then it is n-coherent.

Proof. Let {I1, I2, ..., Im} be the set of all maximal ideals of R. Then {R/I1, R/I2,

..., R/Im} is the set of all simple modules, then the cogenerator R-module C =

⊕0≤i≤mE(R/Ii) is injective, faithful and finitely cogenerated. Let M be an n-

presented R-module. Then there exists an exact sequence of R-modules

0→ K → Fn → · · · → F1 → F0 →M → 0

where each Fi is finitely generated and free and K is finitely generated. Then

0→ Hom(M,C)→ Hom(F0, C)→ · · · → Hom(Fn, C)→ Hom(K,C)→ 0

is exact (since C is injective). Since each Fi is free and finitely generated, there

exists a positive integer ni such that Fi
∼= Rni , then

Hom(Fi, C) ∼= Hom(Rni , C) ∼= Cni
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And since C is injective and finitely cogenerated, Hom(F,C) ∼= Cni is injective

and finitely cogenerated. On the other hand, Hom(K,C) is finitely cogenerated,

since K is finitely generated (by [16, Proposition 30.6 (1)]). Then, Hom(M,C) is

n-copresented by Corollary 2.5. Then, since R is n-co-coherent, Hom(M,C) is (n+

1)-copresented which implies, by corollary 2.5, that Hom(K,C) is 1-copresented.

Then, from [16, Proposition 30.6 (1)], K is 1-presented and therefore M is (n+ 1)-

presented. This means that R is n-coherent. �

We close this paper with some change of rings results.

In [12, first part of Section 2], Jans noted that if a ring R is co-Noetherian

then so is R/I for every ideal I of R. The following result generalize this fact to

n-co-coherent rings (see Corollary 2.5 and its proof).

Proposition 3.7. Let R −→ S be a ring homomorphism such that, for a positive

integer n, the injective hull of every simple S-module is n-copresented as an R-

module. Then, S is n-co-coherent if R is n-co-coherent.

Proof. Suppose that R is an n-co-coherent ring and consider an n-copresented S-

module M . From Proposition 2.6, M is n-copresented as an R-module. Thus M is

an (n+1)-copresented R-module (since R is n-co-coherent). Then, from Proposition

2.8, M is an (n+1)-copresented S-module. Therefore, S is n-co-coherent. �

Now we study n-co-coherence of a direct product of rings. For that we recall the

following results on the structure of modules over a direct product of rings. Let

R =

n∏
i=1

Ri be a direct product of rings, where n > 0 is a positive integer. If Mi is

an Ri-module for i = 1, ..., n, then M = M1⊕· · ·⊕Mn is an R-module. Conversely,

if M is an R-module, then it is of the form M = M1 ⊕ · · · ⊕Mn, where Mi is

an Ri-module for i = 1, ..., n [3, Subsection 2.6.6]. Also, the homomorphisms of

R-modules are determined by their actions on the Ri-module components. Using

[3, Theorem 2.6.8], we get that an R-module M = M1⊕· · ·⊕Mn is injective if and

only if Mi is an injective Ri-module for every 1 ≤ i ≤ n.

For the structure of n-copresented modules over direct product of rings we give

the following result.

Lemma 3.8. Let R =

n∏
i=1

Ri be a direct product of rings, where n > 0 is a positive

integer, and let M = M1 ⊕ · · · ⊕Mn be a decomposition of an R-module M into

Ri-modules Mi. Then, for a positive integer m, M is an m-copresented R-module

if and only if each Mi is an m-copresented Ri-module.
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Proof. Using the definition of a finitely cogenerated module (the assertion 5

in Theorem 1.1) and the structure of modules over a direct product of rings, we

get immediately the result for the case m = 0. Now suppose that m ≥ 1. First

note that for the R-module M , there exists a short exact sequence of R-modules

0 → M → I → K → 0 such that I is injective. By [3, Theorem 2.6.8], this

sequence can be decomposed into short exact sequences of Ri-modules 0→ Mi →
Ii → Ki → 0 such that I = I1 ⊕ · · · ⊕ In and K = K1 ⊕ · · · ⊕ Kn. Now, if M

is m-copresented, we can suppose that I is finitely cogenerated and K is (m−1)-

copresented. Then, by induction each Ki is an (m−1)-copresented Ri-module and

Ii is a finitely cogenerated Ri-module. Then, using the short exact sequences, we

get that each Mi is an m-copresented Ri-module. Conversely, if each Mi is an m-

copresented Ri-module, then we can suppose that each Ii is a finitely cogenerated

Ri-module and each Ki is an (m−1)-copresented Ri-module. Then, by induction, I

is a finitely cogenerated R-module and each K is an (m−1)-copresented R-module.

This implies that M is an m-copresented R-module. �

The following result is a dual one of [8, Theorem 2.13].

Theorem 3.9. Let n > 0 be a positive integer. A direct product of rings R =

n∏
i=1

Ri

is an n-co-coherent ring if and only if each Ri is n-co-coherent.

Proof. The result follows immediately from Lemma 3.8. �
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