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Abstract. For each infinite cardinal number κ, let Ω(κ) be the supremum of

the cardinalities of chains of subsets of a set of cardinality κ. (Ω(κ) is equal

to what has been called ded(κ) in the literature.) Let K be a field and V a

vector space over K. Let Λ(V ) be the supremum of the cardinalities of chains

of vector subspaces of V . Let the dimension of V as a vector space over K be

the infinite cardinal number κ. Then Ω(κ) ≤ Λ(V ) ≤ Ω(|V |), and so Λ(V ) > κ,

contrary to a result of Menth. If, in addition, K is either finite or infinite with

|K| ≤ κ, then Ω(κ) = Ω(|V |) (= Λ(V )).
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1. Introduction

Since the appearance of [5], it has been fruitful to intuitively measure the size

of a field extension L/K by means of a certain invariant that has been denoted

by λ(L/K). For an infinitely, but not countably, generated field extension L/K,

the calculation of λ(L/K) was recently reduced to a question of set theory in [4,

Theorem 4.3]. Our main interest here is in defining an analogous way to measure

the size of an infinite-dimensional vector space V and to see if its calculation reduces

analogously to set-theory. Our work will be pursued while assuming only ZFC (that

is, the usual Zermelo-Fraenkel foundations for set theory, together with the Axiom

of Choice).

Consider a vector space V over a field K. We will be interested in calculating,

or at least finding lower and upper bounds for, an invariant Λ(V ), which is defined

as the supremum of the cardinalities of chains of K-subspaces of V . (As usual, |S|
will denote the cardinal number of a set S.) It is easy to see that if V is finite-

dimensional, with n := dimK(V ) <∞, then every maximal chain C of K-subspaces

of V has length n (that is, |C| = n + 1), and so Λ(V ) = n + 1. Accordingly, our
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interest here is focused on the case where V is infinite-dimensional over K, with

dimK(V ) being an infinite cardinal number κ. It was asserted in [9] (without the

Λ notation) that Λ(V ) = κ.

We will show in Remark 2.5 (a) that the above assertion from [9] is incorrect.

While our work will assume only ZFC, one could detect the error in [9] rather

quickly if one also assumes the Generalized Continuum Hypothesis (GCH). Indeed,

suppose that κ is an infinite cardinal number and let B be any set such that |B| = κ.

It follows from ZFC+GCH that there is a chain C = {Bi | i ∈ I} of subsets Bi of

B (with Bi 6= Bj if i 6= j in I) such that |C| = 2κ. (For a correct explanation of

which set-theoretic principles imply the preceding assertion, see [2, Remark 2.2].)

Now suppose that V is a vector space over a field K with dimK(V ) = κ and that

the above B arose as a K-basis of V (so that |B| = κ). For each i ∈ I, let Wi

denote the K-subspace of V that is spanned by Bi. It is clear that if i, j ∈ I with

Bi ⊂ Bj , then Wi ⊂Wj . (As usual, ⊂ denotes proper containment.) Consequently,

D := {Wi | i ∈ I} is a chain of K-subspaces of V such that |D| = |C| = 2κ, and

so Λ(V ) ≥ |D| > κ, contrary to the assertion in [9]. The treatment in Remark

2.5 will have much of the same tempo as in the preceding argument, but instead

of appealing to GCH (which will play no further role in this paper), our work will

depend on the behavior of a quantity Ω(κ) whose definition is recalled next from

[4].

Let κ be an infinite cardinal number and U a set of cardinality κ. Let T denote

the set of all chains of subsets of U . Then, as in [4], we define Ω(κ) := sup{|C| |
C ∈ T}. For any (infinite cardinal number) κ, the Ω(κ) concept has appeared in

the literature as follows (cf. [1, page 87]): ded(κ) := sup{µ | there is a linear order

of cardinal κ with µ Dedekind cuts}. The interested reader can easily verify that

Ω(κ) and ded(κ) define the same quantity. Our form of the definition of Ω(κ) seems

more intuitively suited for the task at hand, and so we will not mention Dedekind

cuts (or ded(κ)) again.

It is convenient next to recall the definition of λ(L/K) from [5] and its inter-

pretation using Ω(−) from [4]. Let L/K be a field extension. Then by definition,

λ(L/K) is the supremum of the set of cardinal numbers that arise as lengths of

chains {Fi} involving fields Fi such that K ⊆ Fi ⊆ L. (As usual, the “length” of a

finite chain is defined as the number of “jumps” in it; to avoid possible ambiguity,

we take the “length” of any infinite chain to be its cardinality. Note that one could

consider a vectorial analogue of λ(L/K) by positing an inclusion of vector spaces

V1 ⊆ V2 and taking the supremum of the cardinalities of chains {Wi} of vector
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spaces Wi such that V1 ⊆ Wi ⊆ V2. By a standard isomorphism theorem, there

is an order-isomorphism between the set of such chains and the set of chains of

vector subspaces of the vector space V2/V1, and so we can equate this supremum

with the above definition of Λ(V ), for the case V = V2/V1.) Now, suppose that

the field extension L/K is infinitely generated (in the sense that there is no finite

set S such that K(S) = L) but not countably generated. By [4, Theorem 4.3], if

κ is the (infinite cardinal number that is the) infimum of the cardinalities of sets

S such that K(S) = L, then λ(L/K) = Ω(κ). The present work was motivated by

the question whether an infinite-dimensional vector space V (over a field K) must

satisfy the analogous assertion that Λ(V ) = Ω(dimK(V )).

In fact, Corollary 2.4 shows that Λ(V ) = Ω(dimK(V )) does hold whenever K

is a finite field (and V is infinite-dimensional). This follows from our main result,

Theorem 2.3, which gives the following lower and upper bounds: regardless of

whether the field K is finite, any infinite-dimensional vector space V over K, with

κ := dimK(V ), satisfies Ω(κ) ≤ Λ(V ) ≤ Ω(|V |). Using this fact, we obtain the

above-mentioned counterexample to [9] in Remark 2.5 (a) with the aid of a fact

from [4] about the behavior of Ω(−). For convenience, the latter fact is stated in

Lemma 2.2.

Note that our assumption of the ZFC foundations ensures that we can use the

usual laws of arithmetic for infinite cardinal numbers. For the appropriate back-

ground on related transfinite matters, we recommend [8].

2. Results

For the sake of completeness, we begin by recording the value of Λ(V ) in case V

is finite-dimensional. The proof of Proposition 2.1 may safely be left to the reader.

Proposition 2.1. Let V be a vector space over a field K, with n := dimK(V ) <∞.

Then every maximal chain of K-subspaces of V has length n, and so Λ(V ) = n+1.

Henceforth, fix the following notation and assumptions: K is a field, V is an

infinite-dimensional vector space over K of dimension κ := dimK(V ), and B is a

basis of V over K (so that |B| = κ). To analyze Λ(V ) in the spirit of an argument

that was given in the Introduction (but, this time, without using GCH), we will

need to use the following result. (Note that the cited result, which is stated in [4]

as a result about an arbitrary infinite cardinal number, applies here because every

cardinal number is the dimension of some vector space over any field.)

Lemma 2.2. ([4, Lemma 4.4]) κ < Ω(κ) ≤ 2κ.
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We can now give our main result.

Theorem 2.3. Ω(κ) ≤ Λ(V ) ≤ Ω(|V |).

Proof. Recall that Λ(V ) (resp., Ω(|V |)) is the supremum of the cardinalities of

chains of K-subspaces (resp., of subsets) of V . Since every K-subspace of V is a

subset of V , it is now clear that Λ(V ) ≤ Ω(|V |).
It will take slightly more work to establish the lower bound. Insofar as possible,

we modify an argument that was given in the Introduction. Since |B| = κ, one sees

that Ω(κ) is the supremum of the cardinalities of chains of subsets of B. Consider

any such chain C = {Bi | i ∈ I}. Without loss of generality, Bi 6= Bj if i 6= j in

I. For each i ∈ I, let Wi denote the K-subspace of V that is spanned by Bi. It is

clear that if i, j ∈ I with Bi ⊂ Bj , then Wi ⊂Wj . Consequently, D := {Wi | i ∈ I}
is a chain of K-subspaces of V such that |C| = |D| ≤ Λ(V ). Taking the supremum

as C varies leads to Ω(κ) ≤ Λ(V ), as required. �

We next give some important cases where Λ(V ) = Ω(κ).

Corollary 2.4. Suppose that the field K either is finite or is infinite but satisfies

|K| ≤ κ. Then Ω(κ) = Ω(|V |) = Λ(V ).

Proof. The usual laws of arithmetic with infinite cardinal numbers give that κ · κ
and ℵ0 ·κ each equal κ. Since the K-basis B has cardinality κ, it follows easily that

the (cardinal) number of finite subsets of B is κ. Given the assumptions on |K|,
this, in turn, leads to |V | = κ. In view of Theorem 2.3 (and the Schroeder-Bernstein

Theorem), the assertion is now immediate. �

Part (a) of Remark 2.5 shows that the result from [9] that was mentioned in the

Introduction is false for every infinite cardinal number κ. In Remark 2.5 (c), we

close by using the field-theoretic material on λ(L/K) from [4] to give an amusing

second proof (which is much more elaborate than the above proof) of the easier

part of Theorem 2.3 in case κ > ℵ0 and K has characteristic 0.

Remark 2.5. (a) Let K,V and κ be as in the riding assumptions. Then by combin-

ing Lemma 2.2 with Theorem 2.3, we get that κ < Ω(κ) ≤ Λ(V ), whence κ < Λ(V ).

In particular, Λ(V ) 6= κ, contrary to what was asserted in [9].

(b) It is natural to ask if the conclusion of Corollary 2.4 holds if |K| > κ. This

question remains open. Perhaps the case |K| > κ will prove to be analogous to

the requirement that κ > ℵ0 in [4, Theorem 4.3]. That requirement was necessary

because of the behavior of J-extensions, in the sense of [7]. (Indeed, if L/K is a
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J-extension, then each maximal chain of fields going from K to L is denumerable

and λ(L/K) = ℵ0 [3, Proposition 2.7], although Ω(ℵ0) = 2ℵ0 [4, Proposition 4.2].)

When one studies vector spaces, there may be no anomaly of the kind presented by

J-extensions in the field-theoretic setting. In any case, despite the above Theorem

and Corollary, we have not fully realized the goal of reducing the calculation of Λ(V )

to set theory (in the spirit of [4, Theorem 4.3]).

(c) We next sketch how to use field theory to give an alternate proof that Λ(V ) ≤
Ω(|V |) in case κ > ℵ0 and K has characteristic 0. It is enough to show that if

C := {Wi | i ∈ I} is any chain of K-subspaces of V , then |C| ≤ Ω(|V |). Without

loss of generality, Wi 6= Wj if i 6= j in I. For each i ∈ I, let Di denote the group

ring K[Wi]. Since K has characteristic 0, a standard fact about monoid rings [6,

Theorem 8.1] shows that Di is an integral domain. Let Fi (resp., L) denote the

quotient field of Di (resp., of K[V ]). If Wi ⊂Wj, with v ∈Wj \Wi, one can check

that Xv is in both Dj \ Di and Fj \ Fi. Thus, D := {Fi | i ∈ I} is a chain of

fields that are contained between K and L such that |D| = |C|. As |D| ≤ λ(L/K),

it now suffices to prove that λ(L/K) ≤ Ω(|V |). In fact, λ(L/K) = Ω(|V |) (which

is perhaps the most interesting part of this argument). Indeed, by [4, Theorem 4.3]

(which applies since κ > ℵ0), it suffices to show that |V | is the infimum of the

cardinalities of generating sets of the field extension L/K. This, in turn, follows

from [4, Corollary 3.3] since L is purely transcendental over K with transcendence

degree |V |; in fact, {Xv | v ∈ V } is a transcendence basis of L/K.
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