ON A SUBCLASS OF SEMISTAR GOING-DOWN DOMAINS

Parviz Sahandi and Nematollah Shirmohammadi

Received: 7 January 2013; Revised: 9 February 2013 Communicated by Sarah Glaz

ABSTRACT. Let D be an integral domain and let \star be a semistar operation on D. In this paper, we define the class of \star -quasi-going-up domains, a notion dual to the class of \star -going-down domains. It is shown that the class of \star -quasi-going-up domains is a proper subclass of \star -going-down domains and that every Prüfer- \star -multiplication domain is a \star -quasi-going-up domain. Next, we prove that the \star -Nagata ring Na (D, \star) , is a quasi-going-up domain if and only if D is a $\tilde{\star}$ -quasi-going-up and a $\tilde{\star}$ -quasi-Prüfer domain. Several new characterizations are given for \star -going-down domains. We also define the universally \star -going-down domains, and then, give new characterizations of Prüfer- \star -multiplication domains.

Mathematics Subject Classification (2010): Primary 13G05, 13B24, 13A15; Secondary 13F05, 13B21

Keywords: Semistar operation, integral domain, Bézout domain, going-down domain, going-up, lying-over, quasi-going-up, quasi-going-up domain

1. Introduction

Throughout this note, D denotes a (commutative integral) domain with identity and K denotes the quotient field of D. In [18], A. J. Hetzel introduced and studied a concept dual to going-down domains [4], [7], namely, quasi-going-up domains. By characterizing quasi-going-up domains as a particular type of going-down domains, he showed that, in addition to Prüfer domains, the pseudo-valuation domains of Hedstrom and Houston [17], are examples of quasi-going-up domains.

Let $\overline{\mathcal{F}}(D)$ denote the set of all nonzero *D*-submodules of *K*. As in [23], a semistar operation on *D* is a function $\star : \overline{\mathcal{F}}(D) \to \overline{\mathcal{F}}(D), E \mapsto E^{\star}$, such that, for all $x \in K$, $x \neq 0$, and for all $E, F \in \overline{\mathcal{F}}(D)$, the following three properties hold: $(xE)^{\star} = xE^{\star}$; $E \subseteq F$ implies that $E^{\star} \subseteq F^{\star}$; $E \subseteq E^{\star}$ and $E^{\star\star} := (E^{\star})^{\star} = E^{\star}$. Perhaps the most familiar (semi)star operations, d_D and v, are given by $E^{d_D} := E$ and $E^v := (E^{-1})^{-1}$ for all $E \in \overline{\mathcal{F}}(D)$. Introduced in part to generalize the notion of star operations (in the sense of [20, Section 32]), semistar operations have been shown in several articles to permit a finer study and new classification of domains in many respects.

P. Sahandi was supported in part by a grant from IPM (No. 89130051).

N. Shirmohammadi was supported in part by a grant from IPM (No. 88130036).

For instance, semistar-theoretic analogues of the classical notions of Noetherian and Prüfer domains have been introduced: see [11] and [10] for the basics on \star -Noetherian domains and Prüfer-*-multiplication domains, respectively. In [8] and [9] the authors introduced and studied the concept of a \star -going-down (for short *-GD) domain. They showed that every Prüfer-*-multiplication domain and every domain of *-dimension at most 1 is a *-GD domain. The purpose of this paper is to define and to study a dual notion for *-GD domain. So (as A. J. Hetzel wrote in the introduction of his paper [18]) it is natural to consider the semistar analogue of going-up property GU [21, Page 28] or the semistar analogue of lying-over property LO [21, Page 28]. But as Proposition 2.4 shows these notions are not suitable for our purpose. Nevertheless there are weaker notions of GU and LO properties. These are the quasi-lying-over property QLO [18, p. 419] and the quasi-going-up property QGU [18, p. 423] of D. E. Dobbs and M. Fontana. We next recall these notions. Let $D \subseteq T$ be an extension of domains. Recall that $D \subseteq T$ is said to satisfy quasi-going-up property (for short QGU) if, whenever $P_0 \subseteq P$ are prime ideals of D such that $PT \neq T$, and Q_0 is a prime ideal of T such that $Q_0 \cap D = P_0$, there exists a prime ideal Q of T such that $Q_0 \subseteq Q$ and $Q \cap D = P$. Also recall that $D \subseteq T$ satisfies quasi-lying-over property (for short QLO) if, whenever P is a prime ideal of D such that $PT \neq T$, there exists at least one prime ideal Q of T such that $Q \cap D = P$. In Section 2 we consider the QGU property and introduce the class of *-quasi-going-up (for short *-QGU) domains as a dual notion of *-GD domains. In Theorem 2.7 we give several new characterization of \star -GD domains, and that the notion of \star -QLO domains are the same things as \star -GD domains, but (by Example $(2.10) \star$ -QGU domains are a proper subclass of \star -GD domains. We also characterize *-QGU domains and prove that $Na(D, \star)$ is a quasi-going-up domain if and only if D is a $\tilde{\star}$ -QGU and a $\tilde{\star}$ -quasi-Prüfer domain. As an application, we give a new characterization of P*MDs. In Section 3 we prove that a domain D is a $\tilde{*}$ -QGU domain if and only if D/P is a (\star/P) -QGU domain for each $P \in \operatorname{QSpec}^{\widetilde{\star}}(D) \cup \{0\}$. In the last section we study the universal properties of $\star\text{-}\mathrm{GD}$ domains and $\star\text{-}\mathrm{QGU}$ domains, and again give new characterizations of P*MDs.

In the reminder of the introduction, we collect some background about semistar operations. (For additional background, the reader is invited to consult papers such as [15] or [8].) As before, we suppose given a semistar operation \star on a domain D. A nonzero ideal I of D is said to be a quasi- \star -ideal of D if $I^* \cap D = I$; a quasi- \star -prime (ideal of D) if I is a prime quasi- \star -ideal of D; and a quasi- \star -maximal (ideal of D) if I is maximal in the set of all proper quasi- \star -ideals of D. Each quasi- \star -maximal ideal is a prime ideal. We denote by QMax^{*}(D) (resp., QSpec^{*}(D)) the set of all quasi- \star -maximal ideals (resp., quasi- \star -prime ideals) of D. Associated to \star is a semistar operation, \star_f , on D defined by $E^{\star_f} := \cup F^{\star}$, where the union is taken

over all finitely generated $F \subseteq E$, for all $E \in \overline{\mathcal{F}}(D)$. Note that \star_f is of finite type, in the sense that $(\star_f)_f = \star_f$. It was shown in [12, Lemma 4.20] that if $D^* \neq K$, then each proper quasi- \star_f -ideal of D is contained in a quasi- \star_f -maximal ideal of D.

As above, \star denotes a given semistar operation on a domain D. Let X be an indeterminate over K, the quotient field of D. For each $h \in K[X]$, let $c_D(h)$ denote the content of the polynomial h, i.e., the fractional ideal of D generated by the coefficients of h. If $N_{\star} := \{g \in D[X] \mid g \neq 0 \text{ and } c_D(g)^{\star} = D^{\star}\}$, then $N_{\star} = D[X] \setminus \bigcup \{P[X] \mid P \in QMax^{\star f}(D)\}$ is a saturated multiplicatively closed subset of D[X]. The ring of fractions $Na(D, \star) := D[X]_{N_{\star}}$ is called the \star -Nagata ring of D with respect to \star . Note that $Na(D, d_D)$ coincides with the classical Nagata domain D(X) (as in, for instance, [20, Section 33] and [15]).

Also associated to \star is a semistar operation, $\widetilde{\star}$, on D, which is defined by $E^{\widetilde{\star}} := \cap \{ED_M | M \in \operatorname{QMax}^{\star_f}(D)\}$ for all $E \in \overline{\mathcal{F}}(D)$. A semistar operation \star is said to be stable if $(E \cap F)^{\star} = E^{\star} \cap F^{\star}$ for all $E, F \in \overline{\mathcal{F}}(D)$. For any semistar operation \star , it is known that $\widetilde{\star}$ is a stable semistar operation of finite type [12, Lemma 4.1(3), Corollary 3.9]; and moreover that $\operatorname{Na}(D, \widetilde{\star}) = \operatorname{Na}(D, \star_f) = \operatorname{Na}(D, \star)$.

Let \star be a semistar operation on a domain D. The \star -Krull dimension of D is defined as

$$\star - \dim(D) := \sup \left\{ n \middle| \begin{array}{c} (0) = P_0 \subset P_1 \subset \dots \subset P_n \text{ where } P_i \text{ is a} \\ \text{quasi-} \star \text{-prime ideal of } D \text{ for } 1 \le i \le n \end{array} \right\}$$

It is known (see [11, Lemma 2.11]) that

$$\widetilde{\star}$$
-dim (D) = sup{ht $(P) \mid P$ is a quasi- $\widetilde{\star}$ -prime ideal of D }.

As a final piece of background, we recall that an *overring of* D is any ring T such that $D \subseteq T \subseteq K$. We denote the integral closure of a domain D in its quotient field by D'.

2. *-Quasi-going-up Domains

In [8] and [9] the authors defined and studied the notion of \star -going-down domain as semistar-theoretic version of the more known notion of going-down domains [4], [7]. Let $D \subseteq T$ be an extension of domains. Let \star and \star' be semistar operations on D and T, respectively. As in [8], we say that $D \subseteq T$ satisfies the (\star, \star') -GD if, whenever $P_0 \subset P$ are quasi- \star -prime ideals of D and Q is a quasi- \star' -prime ideal of T such that $Q \cap D = P$, there exists a quasi- \star' -prime ideal Q_0 of T such that $Q_0 \subseteq Q$ and $Q_0 \cap D = P_0$. A domain D together with a semistar operation \star on D is called a \star -going-down domain (for short \star -GD domain) if, for each overring T of D the ring extension $D \subseteq T$ satisfies the (\star, d_T) -GD property. It is clear that a domain D is a d_D -GD domain if and only if D is a going-down domain (in the sense of [4]). The following proposition is a new characterization of \star -GD domains (c.f. [8, Theorem 3.13]).

Proposition 2.1. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) D is a \star -GD domain;
- (2) $D \subseteq V$ satisfies (\star, d_V) -GD for each valuation overring V of D;
- (3) $D \subseteq T$ satisfies (\star, d_T) -GD for each domain T containing D.

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (1) are trivial. For the implication (2) \Rightarrow (3) we follow the method of [7, Theorem 1]. Let T be a domain containing D. Let $P \subset M$ be quasi-*-prime ideals of D and $N \in \operatorname{Spec}(T)$ such that $N \cap D = M$. Let W be a valuation overring of T centered on N. Let $V := W \cap K$. Thus V is a valuation overring of D. Since $D \subseteq V$ satisfies (\star, d_V) -GD and $V \subseteq W$ satisfies GD, then $D \subseteq W$ satisfies (\star, d_W) -GD. We thus obtain a prime ideal Q of W such that $Q \cap D = P$. Therefore $Q \cap T$ is contained in N and contracts to P in D.

We aim to define and to study a concept dual to the notion of " \star -GD domain". It is natural to consider the semistar versions of going-up property GU [21, Page 28] and of lying-over property LO [21, Page 28]. Now we have the following definition (See also [2, Lemma 2.15] for the notions of $\tilde{\star}$ -GU and $\tilde{\star}$ -LO).

Definition 2.2. Let $D \subseteq T$ be an extension of domains. Let \star and \star' be semistar operations on D and T, respectively. We say that $D \subseteq T$ satisfies (\star, \star') -GU if, whenever $P_0 \subseteq P$ are elements of $\operatorname{QSpec}^{\star}(D) \cup \{0\}$, and Q_0 is an element of $\operatorname{QSpec}^{\star'}(T) \cup \{0\}$ such that $Q_0 \cap D = P_0$, there exists an element Q of $\operatorname{QSpec}^{\star'}(T) \cup$ $\{0\}$ satisfying both $Q_0 \subseteq Q$ and $Q \cap D = P$. We say that $D \subseteq T$ satisfies (\star, \star') -LO if, whenever P is a quasi- \star -prime ideal of D, there exists at least one quasi- \star' -prime ideal Q of T such that $Q \cap D = P$.

Note that, in the notion of (\star, \star') -GU, we consider the prime ideals $\operatorname{QSpec}^{\star}(D) \cup \{0\}$ of D and $\operatorname{QSpec}^{\star'}(T) \cup \{0\}$ of T.

Lemma 2.3. Let D be a domain and \star a semistar operation on D. If $D \subseteq T$ satisfies the (\star, d_T) -GU property, then it is satisfies (\star, d_T) -LO property.

Proof. Let $P \in \text{QSpec}^*(D)$. Then $0 \subsetneq P$. Since $D \subseteq T$ satisfies the (\star, d_T) -GU property, there exists a prime ideal Q of T such that $Q \cap D = P$. Thus $D \subseteq T$ satisfies the (\star, d_T) -LO property.

Proposition 2.4. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) $D \subseteq T$ satisfies (\star, d_T) -GU for every overring T of D;
- (2) $D \subseteq D[u]$ satisfies $(\star, d_{D[u]})$ -GU for every $u \in K$;

- (3) $D \subseteq T$ satisfies (\star, d_T) -LO for every overring T of D;
- (4) $D \subseteq D[u]$ satisfies $(\star, d_{D[u]})$ -LO for every $u \in K$;
- (5) $\operatorname{QSpec}^{\star}(D) = \emptyset$.

Moreover if $\star = \star_f$, the above statements are also equivalent to:

(6) D is a field or $\star = e$ (i.e. $E^e = K$ for all $E \in \overline{\mathcal{F}}(D)$).

Proof. $(1) \Rightarrow (2), (3) \Rightarrow (4), (5) \Rightarrow (1) \text{ and } (5) \Rightarrow (3) \text{ are trivial.}$

 $(1) \Rightarrow (3)$ and $(2) \Rightarrow (4)$ follow by Lemma 2.3.

(4) \Rightarrow (5) Suppose the contrary. Thus there exists a quasi-*-prime ideal P of D. Choose $0 \neq p \in P$. Then the pair $D \subseteq D[\frac{1}{p}]$ does not satisfy $(\star, d_{D[\frac{1}{p}]})$ -LO (since $PD[\frac{1}{p}] = D[\frac{1}{p}]$) which is a contradiction.

Therefore the statements (1) - (5) are equivalent. Now assume that $\star = \star_f$. The implication $(6) \Rightarrow (5)$ is obvious and for $(5) \Rightarrow (6)$ suppose that (5) holds and (6) fails. Hence $D \neq K$ and $\star \neq e$. Then $D^* \neq K$; hence by [12, Lemma 4.20], we have $\operatorname{QSpec}^{\star_f}(D) \neq \emptyset$ which is a contradiction.

As Proposition 2.4 makes clear, for a given domain D and a semistar operation \star on D, the property of " $D \subseteq T$ satisfies (\star, d_T) -GU (resp. (\star, d_T) -LO) for every overring T of D" implies that $\operatorname{QSpec}^{\star}(D) = \emptyset$. In particular, if $\star = \star_f$, then we have D is a field or $\star = e$. So we dispense with the notion that a " \star -LO domain" or a " \star -GU domain" could be a desirable dual concept to a " \star -GD domain".

In [6], D. E. Dobbs and M. Fontana defined the notions of quasi-going-up and quasi-lying-over properties. We now define the semistar analogue of these notions and make use of these as dual notion for "*-GD domain".

Definition 2.5. Let $D \subseteq T$ be an extension of domains. Let \star and \star' be semistar operations on D and T, respectively. We say that $D \subseteq T$ satisfies (\star, \star') -QGU if, whenever $P_0 \subseteq P$ are elements of $\operatorname{QSpec}^*(D) \cup \{0\}$ such that $PT \neq T$, and Q_0 is an element of $\operatorname{QSpec}^{\star'}(T) \cup \{0\}$ such that $Q_0 \cap D = P_0$, there exists an element Qof $\operatorname{QSpec}^{\star'}(T) \cup \{0\}$ satisfying both $Q_0 \subseteq Q$ and $Q \cap D = P$. We say that $D \subseteq T$ satisfies (\star, \star') -QLO if, whenever P is a quasi- \star -prime ideal of D such that $PT \neq T$, there exists at least one quasi- \star' -prime ideal Q of T such that $Q \cap D = P$.

The above definition generalizes the classical QGU (resp. QLO) property in the following sense. If $D \subseteq T$ are domains, then $D \subseteq T$ satisfies (d_D, d_T) -QGU (resp. (d_D, d_T) -QLO) if and only if $D \subseteq T$ satisfies QGU (resp. QLO). It is clear that if $D \subseteq T$ satisfies the (\star, \star') -QGU (resp. (\star, \star') -QLO) property, then it is satisfies the (\star, \star') -GU (resp. (\star, \star') -LO) property. The proof of the following lemma is the same as Lemma 2.3.

Lemma 2.6. Let D be a domain and \star a semistar operation on D. If $D \subseteq T$ satisfies the (\star, d_T) -QGU property, then it is satisfies (\star, d_T) -QLO property.

In the following theorem, we give several new characterizations of \star -GD domains in terms of (\star, \star') -QGU and (\star, \star') -QLO properties. The special case of $\star = d_D$ is contained in [18, Theorem 2.5].

Theorem 2.7. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) $D \subseteq T$ satisfies (\star, d_T) -QGU for every quasilocal domain T containing D;
- (2) $D \subseteq T$ satisfies (\star, d_T) -QGU for every quasilocal overring T of D;
- (3) $D \subseteq T$ satisfies (\star, d_T) -QGU for every quasilocal treed overring T of D;
- (4) $D \subseteq V$ satisfies (\star, d_V) -QGU for every valuation overring V of D;
- (5) $D \subseteq T$ satisfies (\star, d_T) -QLO for every domain T containing D;
- (6) $D \subseteq T$ satisfies (\star, d_T) -QLO for every overring T of D;
- (7) $D \subseteq T$ satisfies (\star, d_T) -QLO for every quasilocal domain T containing D;
- (8) D ⊆ T satisfies (*, d_T)-QLO for every quasilocal treed domain T containing D;
- (9) $D \subseteq V$ satisfies (\star, d_V) -QLO for every valuation overring V of D;
- (10) $D \subseteq D[u]$ satisfies $(\star, d_{D[u]})$ -QLO for every $u \in K$;
- (11) D is a \star -GD domain.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are trivial.

 $(1) \Rightarrow (5)$ Suppose (1) and fix a domain T containing D. Let $P \in \operatorname{QSpec}^*(D)$ such that $PT \neq T$. Then there exists a valuation overring V of T such that $PV \neq V$. Thus, by considering $0 \subseteq P$ in $\operatorname{QSpec}^*(D) \cup \{0\}$, there exists $\mathfrak{Q} \in \operatorname{Spec}(V)$ such that $\mathfrak{Q} \cap D = P$. Set $Q := \mathfrak{Q} \cap T$. Then we have $Q \in \operatorname{Spec}(T)$ such that $Q \cap D = P$. Therefore, $D \subseteq T$ satisfies (\star, d_T) -QLO.

 $(5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9)$ are trivial.

 $(9) \Rightarrow (11)$ It is true by Proposition 2.1 and the same argument as in the proof of [18, Theorem 2.5, part $(9) \Rightarrow (11)$].

 $(11) \Rightarrow (1)$ It is true by Proposition 2.1 and the same argument as in the proof of [18, Theorem 2.5, part $(11) \Rightarrow (1)$].

 $(4) \Rightarrow (9)$ It is true by Lemma 2.6.

 $(11) \Rightarrow (10)$ Follows by $(11) \Rightarrow (6)$ by the above work.

 $(10) \Rightarrow (11)$ We modify the proof given in [18]. Suppose that the assertion fails. Then, by Proposition 2.1 there exists a valuation overring V of D, such that the extension $D \subseteq V$ does not satisfy the (\star, d_V) -GD property. Then there exist quasi- \star -prime ideals $P \subset P_1$ of D and a prime ideal Q_1 of V such that $Q_1 \cap D = P_1$ and no $Q \in \operatorname{Spec}(V)$ satisfies both $Q \subset Q_1$ and $Q \cap D = P$. Therefore, $D \subseteq V$ does not satisfy GD. Applying [21, Exercise 37, page 44], we find $Q \in \operatorname{Spec}(V)$ such that Q is the radical of PV. Thus, choosing $r \in (Q \cap D) \setminus P$ leads to an equation $r^m = \sum p_i w_i$ for some $p_i \in P$, $w_i \in V$ and $m \geq 1$. Now, the primes of V are linearly ordered by inclusion and, by a result of Prekowitz [22, Page 29], we may relabel the p_j such that, for each i, p_1 divides a power of p_i (with quotient in V). Raising the above equation to a suitably high power, say the t-th, gives an element w in V such that $r^{mt} = p_1 w$. Since $PD[w] \subseteq Q \cap D[w]$, we have $PD[w] \neq D[w]$. Thus, by hypothesis, there exists $Q_0 \in \text{Spec}(D[w])$ such that $Q_0 \cap D = P$. Therefore, $p_1 w \in Q_0$, whence $r \in Q_0$, whence $r \in P$. But $r \notin P$ a contradiction.

A. J. Hetzel, in [18], introduced and studied the notion of quasi-going-up domains (rings). A domain D is said to be a *quasi-going-up domain* (for short a QGU domain) if $D \subseteq T$ satisfies the quasi-going-up property for each overring T of D. As a semistar analogue we define:

Definition 2.8. Let D be a domain and \star a semistar operation on D. Then D is said to be a \star -quasi-going-up domain (for short, a \star -QGU domain) if, for every overring T of D, the extension $D \subseteq T$ satisfies (\star, d_T) -QGU.

In the same way, one can define the \star -QLO domains. As the above theorem shows a \star -QLO domain is precisely the same as a \star -GD domain.

Let *D* be a domain and \star a semistar operation on *D*. Recall from [8] that *D* is said to be a \star -treed domain if QSpec^{*}(*D*), as a poset under inclusion, is a tree; i.e., if no quasi- \star -prime ideal of *D* contains incomparable quasi- \star -prime ideals of *D*. It is shown in [8, Theorem 3.6] that a \star -GD domain is a \star -treed domain.

Corollary 2.9. If D is a \star -QGU-domain, then D is a \star -GD-domain, and hence is a \star -treed domain.

Note that the converse of the above corollary does not longer true. In fact, in [18, Example 2.14], A. J. Hetzel gave an example of a d_D -GD domain which is not d_D -QGU domain. As another example we have:

Example 2.10. Let V be a DVR, with maximal ideal N, dominating a twodimensional local Noetherian domain D, with maximal ideal M [3], and let \star be a semistar operation on D defined by $E^{\star} = EV$ for each $E \in \overline{\mathcal{F}}(D)$. Then, clearly, $\star = \star_f$ and the only quasi- \star -prime ideal of D is M, since if P is a nonzero prime ideal of D, then $P^{\star} = PV = N^k$ for some integer $k \ge 1$. Thus, if we assume that P is quasi- \star -prime ideal of D, then we would have $P = PV \cap D = N^k \cap D \supseteq M^k$, which implies that P = M. Therefore, in this case, \star -dim(D) = 1; so that D is a \star -GD domain by [8, Proposition 3.2 (e)]. Now since D is Noetherian and dim(D) = 2, then D is not a QGU domain by [18, Corollary 2.8]. Hence by [18, Corollary 2.8] there exists an overring T of D such that there does not exist a prime ideal of T contracting to M at D. So the extension $D \subseteq T$ does not satisfy the (\star, d_T) -QGU (resp. (\star, d_T) -QLO) property considering the prime ideals $0 \subseteq M$ in $\operatorname{QSpec}^*(D) \cup \{0\}$ (resp. the prime ideal M in $\operatorname{QSpec}^*(D)$). Thus D is not a \star -QGU domain.

Remark 2.11. According to [21, Page 45, Exercise 38], if the extension $D \subseteq T$ satisfies the GD property, then it is satisfies the QLO property. Example 2.10 shows that in the semistar case this is not true, that is, there exists an extension $D \subseteq T$ of integral domains with a semistar operation \star on D such that $D \subseteq T$ satisfies (\star, d_T) -GD property, but it does not satisfy the (\star, d_T) -QLO property.

Although Example 2.10 shows that there is a (Noetherian) domain D and a (finite type) semistar operation \star on D such that \star -dim(D) = 1 and D is not a \star -QGU domain, we have the following result.

Corollary 2.12. Let D be a $\tilde{\star}$ -Noetherian domain. Then D is a $\tilde{\star}$ -QGU-domain if and only if $\tilde{\star}$ -dim $(D) \leq 1$.

Proof. The "if" assertion is valid even without the " $\tilde{\star}$ -Noetherian" hypothesis using [18, Corollary 2.8]. For the "only if" part note that, by Corollary 2.9, D is a $\tilde{\star}$ -treed domain; so that $\tilde{\star}$ -dim $(D) \leq 1$ by [9, Proposition 2.4].

The following proposition shows that the class of $\tilde{\star}$ -QGU domains is well behavior with respect to localization of quasi- $\tilde{\star}$ -prime ideals.

Proposition 2.13. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) D is a $\tilde{\star}$ -QGU domain;
- (2) D_P is a quasi-going-up domain for all $P \in \operatorname{QSpec}^{\widetilde{*}}(D)$;
- (3) D_M is a quasi-going-up domain for all $M \in \operatorname{QMax}^{\widetilde{*}}(D)$.

Proof. (1) \Rightarrow (2) Suppose (1). Our task is to show that if $P \in \operatorname{QSpec}^{\tilde{\star}}(D)$ and T is an overring of D_P , then $D_P \subseteq T$ satisfies QGU. Let $P_0 D_P \subset P_1 D_P$ be prime ideals of D_P such that $P_1 T \neq T$ and Q_0 a prime ideal of T such that $Q_0 \cap D_P = P_0 D_P$. We must find a prime ideal Q_1 of T such that $Q_0 \subseteq Q_1$ and $Q_1 \cap D_P = P_1 D_P$. It is enough to find a prime ideal Q_1 of T such that $Q_0 \subseteq Q_1$ and $Q_1 \cap D_P = P_1 D_P$. By (1), the ring extension $D \subseteq T$ satisfies $(\tilde{\star}, d_T)$ -QGU. Therefore, it is enough to observe (via [12, Lemma 4.1 and Remark 4.5]) that P_0 and P_1 are elements of QSpec $\tilde{\star}(D) \cup \{0\}$. (since they are contained in P).

 $(2) \Rightarrow (3)$ is trivial.

(3) \Rightarrow (1) Let *T* be an overring of *D*. Suppose that $P_0 \subset P$ are elements of $\operatorname{QSpec}^{\widetilde{\star}}(D) \cup \{0\}$ such that $PT \neq T$, and Q_0 is a prime ideal of *T* such that $Q_0 \cap D = P_0$. We must find a prime ideal *Q* of *T* such that both $Q_0 \subseteq Q$ and $Q \cap D = P$. Choose a quasi- $\widetilde{\star}$ -maximal ideal *M* of *D* which contains *P*. It is enough to find a prime ideal *Q* of *T* such that $Q_0 \subseteq Q$ and $Q \cap D_M = PD_M$. This can be done thanks to (3), as the ring extension $D_M \subseteq T_{D \setminus M}$ satisfies QGU, and noting that $PT_{D \setminus M} \neq T_{D \setminus M}$.

The special case of $\star = d_D$ is contained in [18, Theorem 2.10].

Theorem 2.14. Let D be a domain and \star a semistar operation on D. Then D is a $\check{\star}$ -QGU domain if and only if D is a $\check{\star}$ -GD domain and $(D_P)'$ is a valuation domain for each $P \in \operatorname{QSpec}^{\check{\star}}(D) \setminus \operatorname{QMax}^{\check{\star}}(D)$.

Proof. (\Rightarrow) By Corollary 2.9 we have D is a $\tilde{\star}$ -GD domain. Assume that $P \in QSpec^{\tilde{\star}}(D) \setminus QMax^{\tilde{\star}}(D)$ and choose a quasi- $\tilde{\star}$ -maximal ideal M of D containing P. Then D_M is a QGU-domain by Proposition 2.13. Since PD_M is a non-maximal prime ideal of D_M , then $((D_M)_{PD_M})' = (D_P)'$ is a valuation domain by [18, Theorem 2.10].

(⇐) Let $M \in \operatorname{QMax}^{\overline{\star}}(D)$. Then D_M is a going-down domain by [9, Proposition 2.5]. Now let $\mathcal{P} := PD_M$ be a non-maximal prime ideal of D_M for some $P \in \operatorname{Spec}(D)$. Then $P(\subsetneq M)$ is a quasi- $\overline{\star}$ -prime ideal of D which is not quasi- $\overline{\star}$ -maximal. Then $(D_P)' = ((D_M)_{\mathcal{P}})'$ is a valuation domain by the hypothesis. Consequently D_M is a QGU-domain by [18, Theorem 2.10]. Now the proof is complete by Proposition 2.13.

Let \star be a semistar operation on an integral domain D. We now consider which overrings T of the domain D are sufficient to test the (\star, d_T) -QGU property in order to guarantee that D is a \star -QGU domain. Recall from [16] that an overring T of Dis a \star -overring of D provided for each $F \in f(D)$ we have $F^{\star} \subseteq FT$ (or equivalently $F^{\star}T = FT$). It is observed [16, Lemma 4.2 (6)] that a Bézout overring B of Dis an \star -overring of D if and only if $B = B^{\star f}$. For the case where $\star = d_D$ of the following theorem see [18].

Theorem 2.15. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) D is a $\tilde{\star}$ -QGU domain;
- (2) $D \subseteq D[u, v]$ satisfies $(\check{\star}, d_{D[u,v]})$ -QGU for each u and v in K;
- (3) $D \subseteq B$ satisfies $(\tilde{\star}, d_B)$ -QGU for each Bézout $\tilde{\star}$ -overring B of D;
- (4) D ⊆ B satisfies (x̃, d_B)-QGU for each Bézout x̃-overring B of D with at most two maximal ideals.

Proof. $(1) \Rightarrow (2), (1) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are trivial.

 $(4) \Rightarrow (1)$ Assume (4). Let $M \in \text{QMax}^{\star}(D)$. Using Proposition 2.13, we only have to show that D_M is a QGU-domain. Let B be a Bézout overring of D_M with at most two maximal ideals. Note that $B \subseteq B^{\tilde{\star}} = \bigcap \{BD_M | M \in \text{QMax}^{\star_f}(D)\} \subseteq B$, hence $B = B^{\tilde{\star}}$. Therefore, using [16, Lemma 4.2 (6)], B is a Bézout $\tilde{\star}$ -overring of D. Thus $D \subseteq B$ satisfies $(\tilde{\star}, d_B)$ -QGU by the hypothesis. Now let $P_0 D_M \subset P_1 D_M$ be prime ideals of D_M such that $P_1B \neq B$ and Q_0 be a prime ideal of B satisfying $Q_0 \cap D_M = P_0 D_M$. Therefore $P_0 \subset P_1$ are elements of $\operatorname{QSpec}^{\tilde{\star}}(D) \cup \{0\}$ such that $P_1B \neq B$ and Q_0 be a prime ideal of B satisfying $Q_0 \cap D = P_0$. Hence there exists a prime ideal Q_1 of B satisfying both $Q_0 \subseteq Q_1$ and $Q_1 \cap D = P_1$. Thus $Q_1 \cap D_M = P_1 D_M$. Consequently D_M is a QGU-domain by [18, Theorem 4.1].

 $(2) \Rightarrow (1)$ Let $P \in \operatorname{QSpec}^{\star}(D)$. Again it is enough by Proposition 2.13 to show that D_P is a QGU-domain. To this end, fix $u, v \in K$. Let $P_0D_P \subset P_1D_P$ be prime ideals of D_P such that $P_1D_P[u, v] \neq D_P[u, v]$ and Q_0 be a prime ideal of $D_P[u, v]$ satisfying $Q_0 \cap D_P = P_0D_P$. Hence $P_1D[u, v] \neq D[u, v]$. Since $P_0 \subset P_1 \subseteq P$, P_0 and P_1 are elements of $\operatorname{QSpec}^{\tilde{\star}}(D) \cup \{0\}$ (via [12, Lemma 4.1 and Remark 4.5]). By the hypothesis there exists a prime ideal Q_1 of D[u, v] such that $Q_0 \subseteq Q_1$ and $Q_1 \cap D = P_1$. Hence $Q_1D_P[u, v] \cap D_P = P_1D_P$. It is shown that $D_P \subseteq D_P[u, v]$ satisfies the QGU property for all $u, v \in K$. Consequently, by [18, Theorem 4.4], D_P is a QGU-domain as desired.

Now we show that when the Nagata ring D(X) is a QGU domain. Recall a domain D is called a *quasi-Prüfer domain* if it has Prüferian integral closure (c.f. [13, Section 6.5]).

Theorem 2.16. Let D be a domain. Then D(X) is a QGU domain if and only if D is a QGU and a quasi-Prüfer domain.

Proof. (\Rightarrow) Since D(X) is a QGU domain then by [18, Corollary 2.6], it is a GD domain. Therefore by [1, Corollary 2.12], D is a GD domain and also a quasi-Prüfer domain. Note that the contraction map $\operatorname{Spec}(D(X)) \to \operatorname{Spec}(D)$ is a bijection by [1, Theorem 2.7]. Now let $P \in \operatorname{Spec}(D) \setminus \operatorname{Max}(D)$. Hence we have $\mathcal{P} := PD(X) \in \operatorname{Spec}(D(X)) \setminus \operatorname{Max}(D(X))$. Thus $(D(X)_{\mathcal{P}})' = (D_P(X))' = (D_P)'(X)$ is a valuation domain. Consequently $(D_P)'$ is a valuation domain. Therefore D is a QGU domain by [18, Theorem 2.10].

(⇐) Since D is a GD and a quasi-Prüfer domain, then D(X) is a GD domain by [1, Corollary 2.12]. Now let $\mathcal{P} \in \operatorname{Spec}(D(X)) \setminus \operatorname{Max}(D(X))$. There exists a prime ideal $P \in \operatorname{Spec}(D) \setminus \operatorname{Max}(D)$ such that $\mathcal{P} = PD(X)$. Using [18, Theorem 2.10] we have $(D_P)'$ is a valuation domain. Hence $(D_P)'(X) = (D(X)_P)'$ is a valuation domain. Therefore D(X) is a QGU domain by [18, Theorem 2.10].

Recall from [2] that D is said to be a \star -quasi-Prüfer domain, in case, if Q is a prime ideal in D[X], and $Q \subseteq P[X]$, for some $P \in \operatorname{QSpec}^{\star}(D)$, then $Q = (Q \cap D)[X]$. This notion is the semistar analogue of the classical notion of the quasi-Prüfer domains. By [2, Corollary 2.4], D is a \star_f -quasi-Prüfer domain if and only if D is a \star_f -quasi-Prüfer domain.

Corollary 2.17. Let D be a domain and \star be a semistar operation on D. Then $\operatorname{Na}(D,\star)$ is a QGU domain if and only if D is a $\widetilde{\star}$ -QGU and a $\widetilde{\star}$ -quasi-Prüfer domain.

Proof. (\Rightarrow) Since Na(D, \star) is a QGU-domain, it is a going-down domain by [18, Corollary 2.6]. Hence D is a $\tilde{\star}$ -GD and a $\tilde{\star}$ -quasi-Prüfer domain by [9, Theorem 2.6]. Now let $P \in \operatorname{QSpec}^{\tilde{\star}}(D) \setminus \operatorname{QMax}^{\tilde{\star}}(D)$. Then $P\operatorname{Na}(D, \star)$ is a non-maximal prime ideal of Na(D, \star), since the canonical contraction map $\operatorname{Spec}(\operatorname{Na}(D, \star)) \to$ $\operatorname{QSpec}^{\tilde{\star}}(D) \cup \{0\}$ is a bijection by [9, Lemma 2.1]. Therefore $(\operatorname{Na}(D, \star)_{P\operatorname{Na}(D, \star)})' =$ $(D_P(X))' = (D_P)'(X)$ is a valuation domain by [18, Theorem 2.10]. Hence $(D_P)'$ is a valuation domain. Consequently D is a $\tilde{\star}$ -QGU domain by Theorem 2.14.

(⇐) We will show that the localization of Na(D, \star) at any of its maximal ideals \mathcal{M} is a QGU-domain. By [15, Proposition 3.1 (3)], $\mathcal{M} = \mathcal{M}$ Na(D, \star) for some $\mathcal{M} \in \operatorname{QMax}^{\tilde{\star}}(D)$. Since D is a $\tilde{\star}$ -quasi-Prüfer domain, [2, Theorem 2.16] gives that Na(D, \star) is a quasi-Prüfer domain. Hence its overring Na(D, \star) $\mathcal{M} = D[X]_{\mathcal{M}[X]} = D_{\mathcal{M}}(X)$ is also a quasi-Prüfer domain by [2, Theorem 1.1]. Another appeal to [2, Theorem 1.1] yields that $D_{\mathcal{M}}$ itself is a quasi-Prüfer domain. Thus, to show that $D_{\mathcal{M}}(X)$ is a QGU-domain (and thereby finish the proof), it suffices, by Theorem 2.16, to prove that $D_{\mathcal{M}}$ is a QGU-domain. This, in turn, follows from Proposition 2.13.

Let \star be a semistar operation on a domain D. As in [14] and [10] (cf. also [19] for the case of a star operation), D is called a *Prüfer* \star -multiplication domain (for short, a $P \star MD$) if each finitely generated ideal of D is \star_f -invertible; i.e., if $(II^{-1})^{\star_f} = D^{\star}$ for all $I \in f(D)$. When $\star = v$, we recover the classical notion of a PvMD; when $\star = d$, the identity (semi)star operation, we recover the notion of a Prüfer domain.

Corollary 2.18. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) D is a $P \star MD$;
- (2) $D^{\tilde{\star}}$ is integrally closed and Na(D, \star) is a QGU domain;
- (3) $Na(D, \star)$ is an integrally closed QGU domain;

Proof. (1) \Rightarrow (3) If *D* is a P*MD, then [14, Theorem 3.1] ensures that Na(*D*, *) is a Prüfer domain and, hence, an integrally closed QGU-domain.

(3) \Rightarrow (2) If Na(D, \star) is integrally closed, so is Na(D, \star) $\cap K = D^{\tilde{\star}}$.

 $(2) \Rightarrow (1)$ Assume (2). Since Na(D, \star) is a QGU-domain, Corollary 2.17 yields that D is a $\tilde{\star}$ -quasi-Prüfer domain. As it is also the case that $D^{\tilde{\star}}$ is integrally closed, [2, Corollary 2.17] gives (1).

3. Semistar-QGU domains and factor domains

Let D be a domain with quotient field K, let X be an indeterminate over D, let \star be a semistar operation on D, and let P be a quasi- \star -prime ideal of D. Set

$$\mathcal{S}_P^\star := (D/P)[X] \setminus \{ (Q/P)[X] \mid Q \in \operatorname{QSpec}^{\star_f}(D) \text{ and } P \subseteq Q \}.$$

Clearly, \mathcal{S}_{P}^{\star} is a multiplicatively closed subset of (D/P)[X].

For all $E \in \overline{\mathcal{F}}(D/P)$, set

$$E^{\mathcal{O}_{\mathcal{S}_P^*}} := E(D/P)[X]_{\mathcal{S}_P^*} \cap (D_P/PD_P).$$

It is proved in [9, Theorem 3.2] that the mapping $\star/P := \bigcirc_{\mathcal{S}_P^\star} : \overline{\mathcal{F}}(D/P) \to \overline{\mathcal{F}}(D/P),$ $E \mapsto E^{\circ S_P^*}$, is a stable semistar operation of finite type on D/P; i.e., $\widetilde{\star/P} = \star/P$, $\operatorname{QMax}^{\star/P}(D/P) = \{Q/P \in \operatorname{Spec}(D/P) \mid Q \in \operatorname{QMax}^{\star_f}(D) \text{ and } P \subseteq Q\}, \widetilde{\star}/P =$ $\star_f / P = \star / P$ and $d_D / P = d_{D/P}$.

Remark 3.1. Let D be a domain and \star a semistar operation on D. If in the construction of \star/P , we consider P = 0, then one can easily seen that $\star/P =$ $\star/0 = \widetilde{\star}$ (cf., [15, Proposition 3.4 (3)]).

The next result uses/generalizes the fact that the class of quasi-going-up domains is stable under the formation of factor domains [18, Proposition 3.12].

Theorem 3.2. Let D be a domain and \star a semistar operation on D. Then D is a $\widetilde{\star}$ -QGU domain if and only if D/P is a (\star/P) -QGU domain for each $P \in$ $\operatorname{QSpec}^{\widetilde{\star}}(D) \cup \{0\}.$

Proof. (\Rightarrow) Let $P \in \operatorname{QSpec}^{\widetilde{\star}}(D)$. By [9, Theorem 3.2 (a)], $\star/P = \widetilde{\star/P}$. Hence, by Proposition 2.13, D/P is a (\star/P) -QGU domain if and only if $(D/P)_{\mathcal{M}}$ is a quasi-going-up domain for each $\mathcal{M} \in \operatorname{QMax}^{\star/P}(D/P)$, that is (by [9, Theorem 3.2 (b)]), if and only if D_M/PD_M is a quasi-going-up domain whenever P is a subset of $M \in \operatorname{QMax}^{\check{\star}}(D)$. Thus, by Proposition 2.13, our task is to prove that this condition holds for each $P \in \operatorname{QSpec}^{\tilde{\star}}(D)$ if D_M is a quasi-going-up domain for all $M \in QMax^{*}(D)$. This, in turn, is immediate since any factor domain of a quasi-going-up domain must be a quasi-going-up domain by [18, Proposition 3.12].

(\Leftarrow) It is enough to consider P = 0 and noting Remark 3.1.

Example 3.3. Consider the domain $D = \mathbb{Q}[X,Y]$ which is not a quasi-goingup domain. In other words, D is not a d_D -QGU domain. However, each $P \in$ $QSpec^{d_D}(D) = Spec(D) \setminus \{0\}$ has height 1 or 2; so that D/P has Krull dimension at most 1 and, hence, is necessarily a (d_D/P) -QGU domain.

Remark 3.4. [9, Corollary 3.3] By the same proof as Theorem 3.2, one has D is a $\widetilde{\star}$ -GD domain if and only if D/P is a (\star/P) -GD domain for each $P \in QSpec^{\star}(D) \cup$ {0}.

4. Universal properties

In this section, we introduce and explore the concept of "universally \star -GD domain" analogous to "universally going-down domains" [5, Page 426]. Recall that a (unital) homomorphism $R \to T$ of (commutative) rings is said to be a *univer*sally GD-homomorphism in case $S \to S \otimes_R T$ is a GD-homomorphism for each commutative *R*-algebra *S*. A domain *D* is a *universally* GD-domain if, for each overring *T* of *D*, the inclusion map $D \subseteq T$ is a universally GD-homomorphism. The most natural examples of such are the Prüfer domains. It is easy to see (cf. [6, Corollary 2.3]) that, in testing for a universally GD-domain, one may restrict to $S = D[X_1, \dots, X_n]$ and, then, test the induced inclusion maps between polynomial rings $D[X_1, \dots, X_n] \subseteq T[X_1, \dots, X_n]$ for GD.

Let D be an integral domain with quotient field K, let X, Y be two indeterminates over D and let \star be a semistar operation on D. Set $D_1 := D[X], K_1 := K(X)$ and take the following subset of $\text{Spec}(D_1)$.

$$\Theta_1^\star := \{ Q_1 \in \operatorname{Spec}(D_1) | \ Q_1 \cap D = (0) \text{ or } (Q_1 \cap D)^{\star_f} \subsetneq D^\star \}$$

Set $\mathfrak{S}_1^\star := D_1[Y] \setminus (\bigcup \{Q_1[Y] | Q_1 \in \Theta_1^\star\})$ and

 $E^{\mathfrak{S}_{\mathfrak{S}_{1}^{\star}}} := E[Y]_{\mathfrak{S}_{1}^{\star}} \cap K_{1}, \text{ for all } E \in \overline{\mathcal{F}}(D_{1}).$

It is proved in [24, Theorem 2.1] (see also [25]) that the mapping $\star[X] := \bigcirc_{\mathfrak{S}_1^*}$: $\overline{\mathcal{F}}(D_1) \to \overline{\mathcal{F}}(D_1), E \mapsto E^{\star[X]}$ is a stable semistar operation of finite type on D[X], i.e., $\overline{\star[X]} = \star[X]$. It is also proved that $\widetilde{\star}[X] = \star_f[X] = \star[X], d_D[X] = d_{D[X]}$ and $\operatorname{QSpec}^{\star[X]}(D[X]) = \Theta_1^* \setminus \{0\}$. If X_1, \cdots, X_r are indeterminates over D, for $r \geq 2$, we let

$$\star [X_1, \cdots, X_r] := (\star [X_1, \cdots, X_{r-1}])[X_r],$$

where $\star[X_1, \dots, X_{r-1}]$ is a stable semistar operation of finite type on $D[X_1, \dots, X_{r-1}]$. For an integer r, put $\star[r]$ to denote $\star[X_1, \dots, X_r]$ and D[r] to denote $D[X_1, \dots, X_r]$.

Definition 4.1. Let D be a domain and \star a semistar operation on D. Then D is said to be a *universally* \star -going-down domain (for short, a *universally* \star -GD domain) if, for every overring T of D and every positive integer n, the extension $D[n] \subseteq T[n]$ satisfies ($\star[n], d_T[n]$)-GD property.

Note that the notion of universally d_D -GD domain coincides with the "classical" notion of universally GD-domain.

Theorem 4.2. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) D is a universally $\tilde{\star}$ -GD domain;
- (2) D_P is a universally going-down domain for all $P \in QSpec^{\star}(D)$;
- (3) D_M is a universally going-down domain for all $M \in \operatorname{QMax}^{\check{\star}}(D)$.

Proof. (1) \Rightarrow (2) Suppose (1). Let *n* be a positive integer and $P \in \operatorname{QSpec}^{\check{\star}}(D)$. Suppose that *T* is an overring of D_P . We have to show that $D_P[n] \subseteq T[n]$ satisfies the GD property by [6, Corollary 2.3]. Suppose that $L_0 \subseteq L$ are prime ideals of $D_P[n]$ and $Q \in \operatorname{Spec}(T[n])$ such that $Q \cap D_P[n] = L$. But $D_P[n] = D[n]_{D \setminus P}$. So there exist $K_0, K \in \operatorname{Spec}(D[n])$ such that $K_0 \subseteq K, K_0 D_P[n] = L_0$ and $K D_P[n] = L$. Since $K_0 \cap D \subseteq P$ and $K \cap D \subseteq P$, then we have $K_0, K \in \Theta_1^{\star} = \operatorname{QSpec}^{\star[n]}(D[n]) \cup \{0\}$. On the other hand

$$Q \cap D[n] = (Q \cap D_P[n]) \cap D[n] = L \cap D[n] = KD_P[n] \cap D[n] = K.$$

Thus by the hypothesis there exists $Q_0 \in \operatorname{Spec}(T[n])$ such that $Q_0 \subseteq Q$ and $Q_0 \cap D[n] = K_0$. So $Q_0 \cap D_P[n] = K_0 D_P[n] = L_0$. Therefore is D_P is a universally going-down domain.

 $(2) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (1)$ Let T be an overring of D and n is a positive integer. We have to show that $D[n] \subseteq T[n]$ satisfies the $(\star[n], d_T[n])$ -GD property. Suppose that $K_0 \subseteq K$ are elements of $\operatorname{QSpec}^{\star[n]}(D[n])$ and $Q \in \operatorname{Spec}(T[n])$ such that $Q \cap D[n] = K$. Set $P := K \cap D$. So that $P \in \operatorname{QSpec}^{\widetilde{\star}}(D) \cup \{0\}$. Next choose a quasi- $\widetilde{\star}$ -maximal ideal M of D containing P. Hence $D_M[n] \subseteq D_P[n]$, and since $D_M[n]$ is a universally GD-domain, then $D_P[n]$ is a universally GD-domain by [5, Proposition 2.2 (a)]. We have $K_0 D_P[n] \subseteq K D_P[n]$. Since $Q \cap D = (Q \cap D[n]) \cap D = K \cap D = P$, then $Q \cap$ $(D \setminus P) = \emptyset$. Therefore $QT[n]_{D \setminus P} \in \operatorname{Spec}(T[n]_{D \setminus P})$. Note that $QT[n]_{D \setminus P} \cap D_P[n] =$ $K D_P[n]$. Then there exists $Q_0T[n]_{D \setminus P} \in \operatorname{Spec}(T[n]_{D \setminus P})$ contained $QT[n]_{D \setminus P}$ such that $Q_0T[n]_{D \setminus P} \cap D_P[n] = K_0 D_P[n]$. Intersecting the preceding one with D[n], we obtain that $Q_0 \cap D[n] = K_0$.

Corollary 4.3. Let D be a domain and \star a semistar operation on D. If D is a $P\star MD$, then D is a universally $\tilde{\star}$ -GD domain, hence, a universally \star -GD domain.

Proof. Suppose that D is a P*MD. Then for every $P \in \operatorname{QSpec}^{\widetilde{\star}}(D)$, D_P is a valuation domain by [14, Theorem 3.1]. So D_P is a universally GD-domain by [5]. Thus D is a universally $\widetilde{\star}$ -GD domain by Theorem 4.2. The last assertion is true since $\widetilde{\star} \leq \star$.

Corollary 4.4. Let D be a domain and \star a semistar operation on D. Then $\operatorname{Na}(D,\star)$ is a universally GD-domain if and only if D is a universally $\widetilde{\star}$ -GD domain.

Proof. It is true by combining [1, Corollary 2.16 (a)] with Theorem 4.2. \Box

In [18], A. J. Hetzel defined and studied the notion of universally quasi-going-up domains.

Definition 4.5. Let *D* be a domain and \star a semistar operation on *D*. Then *D* is said to be a *universally* \star -quasi-going-up domain (for short, a *universally* \star -QGU

domain) if, for every overring T of D and every positive integer n, the extension $D[n] \subseteq T[n]$ satisfies $(\star[n], d_T[n])$ -QGU property.

Note that the notion of universally d_D -QGU domain coincides with the notion of universally quasi-going-up domain by [18, Proposition 2.6]. The proof of the following theorem is the same as Theorem 4.2; so we omit it.

Theorem 4.6. Let D be a domain and \star a semistar operation on D. Then the following conditions are equivalent:

- (1) D is a universally $\tilde{\star}$ -QGU domain;
- (2) D_P is a universally quasi-going-up domain for all $P \in QSpec^{\star}(D)$;
- (3) D_M is a universally quasi-going-up domain for all $M \in \operatorname{QMax}^{\check{\star}}(D)$.

Corollary 4.7. Let D be a domain and \star a semistar operation on D. Assume that $D^{\tilde{\star}}$ is integrally closed. Then the following conditions are equivalent:

- (1) D is a $P \star MD$;
- (2) D is a universally $\tilde{\star}$ -GD domain;
- (3) D is a universally $\check{\star}$ -QGU domain.

Proof. Let $P \in \operatorname{QSpec}^{\tilde{\star}}(D)$. Then D_P is an integrally closed domain by [9, Proposition 3.8]. Now D_P is a Prüfer (valuation) domain if and only if D is a universally GD-domain by [5, Corollary 2.3] (resp. is a universally quasi-going-up domain by [18, Corollary 6.5]). Therefore the result is clear by [14, Theorem 3.1] and Theorems 4.2 and 4.6.

References

- D. F. Anderson, D. E. Dobbs and M. Fontana, On treed Nagata rings, J. Pure Appl. Algebra, 61 (1989), 107–122.
- [2] G. W. Chang and M. Fontana, Uppers to zero in polynomial rings and Prüferlike domains, Comm. Algebra, 37 (2009), 164–192.
- [3] C. C. Chevalley, La notion d'anneau de décomposition, Nagoya Math. J., 7 (1954), 21–33.
- [4] D. E. Dobbs, On going-down for simple overrings II, Comm. Algebra, 1 (1974), 439–458.
- [5] D. E. Dobbs and M. Fontana, Universally going-down integral domains, Arch. Math., 42 (1984), 426–429.
- [6] D. E. Dobbs and M. Fontana, Universally going-down homomorphisms of commutative rings, J. Algebra, 90 (1984), 410–429.
- [7] D. E. Dobbs and I. J. Papick, On going-down for simple overrings III, Proc. Amer. Math. Soc., 54 (1976), 35–38.
- [8] D. E. Dobbs and P. Sahandi, Going-down and Semistar operations, J. Algebra Appl., 8(1) (2009), 83–104.

- [9] D. E. Dobbs and P. Sahandi, On semistar Nagata rings, Prüfer-like domains and semistar going-down domains, Houston J. Math., 37(3) (2011), 715–731.
- [10] S. El Baghdadi and M. Fontana, Semistar linkedness and flatness, Prüfer semistar multiplication domains, Comm. Algebra, 32 (2004), 1101–1126.
- [11] S. El Baghdadi, M. Fontana and G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra, 193 (2004), 27–60.
- [12] M. Fontana and J. A. Huckaba, *Localizing Systems and Semistar Operations*, in: S. Chapman and S. Glaz (Eds.), Non Noetherian Commutative Ring Theory, Kluwer, Dordrecht, 2000, 169–197.
- [13] M. Fontana, J. Huckaba, and I. J. Papick, Prüfer Domains, Marcel Dekker, 1997.
- [14] M. Fontana, P. Jara and E. Santos, Prüfer *-multiplication domains and semistar operations, J. Algebra Appl., 2 (2003), 21–50.
- [15] M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra, 31 (2003), 4775–4805.
- [16] M. Fontana and K. A. Loper, A generalization of Kronecker function rings and Nagata rings, Forum Math., 19 (2007), 971–1004.
- [17] J. R. Hedstrom and E. G. Houston, *Pseudo-valuation domains*, Pacific J. Math., 75 (1978), 137–147.
- [18] A. J. Hetzel, *Quasi-going-up rings*, Houston J. Math., 30(2) (2004), 357–392.
- [19] E. Houston, S. Malik and J. Mott, Characterizations of *-multiplication domains, Canad. Math. Bull., 27 (1984), 48–52.
- [20] R. Gilmer, Multiplicative Ideal Theory, New York, Dekker, 1972.
- [21] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974.
- [22] I. Kaplansky, Topics in Commutative Ring Theory, III, University of Chicago, Chicago (mimeographed notes).
- [23] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ., 17 (1994), 1–21.
- [24] P. Sahandi, Semistar-Krull and valuative dimension of integral domains, Ricerche Mat., 58 (2009), 219–242.
- [25] P. Sahandi, Universally catenarian integral domains, strong S-domains and semistar operations, Comm. Algebra, 38(2) (2010), 673–683.

Parviz Sahandi and Nematollah Shirmohammadi

Department of Mathematics, University of Tabriz, Tabriz, Iran;

and, School of Mathematics, Institute for Research in Fundamental Sciences (IPM),

P.O. Box: 19395-5746, Tehran Iran

e-mails: sahandi@tabrizu.ac.ir (P. Sahandi)

shirmohammadi@tabrizu.ac.ir (N. Shirmohammadi)