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Abstract. The study of Armendariz rings was initiated by Rege and Chhawch-

haria, based on a result of Armendariz related to the structure of reduced

rings. Armendariz rings were generalized to quasi-Armendariz rings by Hi-

rano. We introduce the concept of power-quasi-Armendariz (simply, p.q.-

Armendariz) ring as a generalization of quasi-Armendariz, applying the role of

quasi-Armendariz on the powers of coefficients of zero-dividing polynomials.

In the process we investigate the power-quasi-Armendariz property of several

ring extensions, e.g., matrix rings and polynomial rings, which have roles in

ring theory.
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1. Introduction

Throughout this note every ring is associative with identity unless otherwise

specified. Given a ring R, J(R), N∗(R) and N(R) denote the Jacobson radical,

the upper nilradical (i.e., sum of all nil ideals) and the set of all nilpotent elements

in R, respectively. It is well-known that N∗(R) ⊆ J(R) and N∗(R) ⊆ N(R). We

use R[x] to denote the polynomial ring with an indeterminate x over given a ring

R. For f(x) ∈ R[x], let Cf(x) denote the set of all coefficients of f(x). Z (resp.,

Zn) denotes the ring of integers (resp., the ring of integers modulo n). Denote the

n by n full (resp., upper triangular) matrix ring over a ring R by Matn(R) (resp.,
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Un(R)) for n ≥ 2. Next let

Dn(R) be the subring {m ∈ Un(R) | the diagonal entries of m are all equal}

of Un(R),

Nn(R) = {(aij) ∈ Dn(R) | aii = 0 for all i}, and

Vn(R) = {(aij) ∈ Dn(R) | aij = a(i+1)(j+1) for i = 1, . . . , n−2 and j = 2, . . . , n−1}.

Note that Vn(R) ∼= R[x]/(xn), where (xn) is the ideal of R[x] generated by xn. Use

Eij for the matrix with (i, j)-entry 1 and other entries 0.

For a ring R and an (R,R)-bimodule M , the trivial extension of R by M is the

ring T (R,M) = R ⊕M with the usual addition and the following multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2+m1r2). This is isomorphic to the ring of all matrices(
r m

0 r

)
, where r ∈ R and m ∈M and the usual matrix operations are used.

A ring is called reduced if it has no nonzero nilpotent elements. Rege and

Chhawchharia [15] called a ring R (not necessarily with identity) Armendariz if

ab = 0 for all a ∈ Cf(x) and b ∈ Cg(x) whenever f(x)g(x) = 0 for f(x), g(x) ∈ R[x]

based on [2, Lemma 1]. Reduced rings are clearly Armendariz. A ring is usu-

ally called Abelian if every idempotent is central. Armendariz rings are Abelian

by [10, Lemma 7]. The concept of Armendariz ring was generalized to the quasi-

Armendariz ring property by Hirano. A ring R (not necessarily with identity) is

called quasi-Armendariz [7] provided that

aRb = 0 for all a ∈ Cf(x) and b ∈ Cg(x) wheneverf(x)Rg(x) = 0

for f(x), g(x) ∈ R[x].

Semiprime rings are quasi-Armendariz rings by [7, Corollary 3.8], but not con-

versely in general.

On the other hand, Han et al. [6] called a ring R (not necessarily with identity)

power-Armendariz if whenever f(x)g(x) = 0 for f(x), g(x) ∈ R[x], there exist

m,n ≥ 1 such that

ambn = 0 for all a ∈ Cf(x), b ∈ Cg(x).

The class of quasi-Armendariz rings and the class of power-Armendariz rings do

not imply each other by Example 2.1 to follow.
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2. Power-quasi-Armendariz rings

We first consider the following condition (†): There exist m,n ≥ 1 such that

amRbn = 0 for any a ∈ Cf(x) and b ∈ Cg(x), whenever f(x)Rg(x) = 0

for f(x), g(x) ∈ R[x], where R is a ring, not necessarily with identity.

It is obvious that amRbn = 0 for some m,n ≥ 1 if and only if a`Rb` = 0 for

some ` ≥ 1, in the condition (†) above. Quasi-Armendariz rings clearly satisfy the

condition (†), but each part of the following example shows that the class of rings

satisfying the condition (†) need not be quasi-Armendariz or power-Armendariz.

Example 2.1. (1) Consider a ring R = Dn(T ) where T = T (W,W ) for a divi-

sion ring W and n ≥ 2. Let f(x) =
∑s
i=0Aix

i, g(x) =
∑t
j=0Bjx

j ∈ R[x] with

f(x)Rg(x) = 0. Since J(R) = Nn(T ) and R
Nn(T )

∼= T , f(x)Rg(x) = 0 implies that

Ai, Bj ∈ Nn(T ) for all i, j. Then Ani = 0 = Bnj and so Ani RB
n
j = 0, showing that

R satisfies the condition (†). However, R is not quasi-Armendariz by help of [3,

Example 2.5]. Note that R is power-Armendariz.

(2) Consider a ring R = Matn(A) where A is a quasi-Armendariz ring and

n ≥ 2. Then R is quasi-Armendariz by [7, Theorem 3.12] and so it satisfies the

condition (†), but not power-Armendariz by [6, Example 1.5(1)].

Based on the above, we will call a ring R (not necessarily with identity) power-

quasi-Armendariz (shortly, p.q.-Armendariz) if it satisfies the condition (†). Hence,

the concept of p.q.-Armendariz ring is a generalization of a quasi-Armendariz ring.

Due to Lambek [13], an ideal I of a ring R is called symmetric if abc ∈ I implies

acb ∈ I for all a, b, c ∈ R. If the zero ideal of a ring R is symmetric then R is

called symmetric. Following Bell [4], a ring R is called to satisfy the Insertion-of-

Factors-Property (simply, an IFP ring) if ab = 0 implies aRb = 0 for a, b ∈ R. Note

that N(R) = N∗(R) for an IFP ring R by [16, Theorem 1.5]. Reduced rings are

symmetric and symmetric rings are IFP, and a simple computation yields that IFP

rings are Abelian. We see that D3(R) is an IFP ring and Dn(R) is not IFP for

n ≥ 4 in [11], where R is a reduced ring.

Recall that a ring R is called almost symmetric [16] if R is IFP and satisfies the

following condition:

(S II) abmcm = 0 for some positive integer m whenever a(bc)n = 0

for given n ≥ 1 and a, b, c ∈ R.
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Symmetric rings are almost symmetric, but not conversely by [16, Proposition 1.4

and Example 5.1], and almost symmetric rings are obviously IFP, however the class

of IFP rings and the class of rings satisfying the condition (S II) are independent

of each other by [16, Example 5.1(c) and Example 5.2(b)]. Symmetric rings are

power-Armendariz by [6, Proposition 1.1(4)].

Proposition 2.2. (1) If R is a p.q.-Armendariz ring, then so is eRe for 0 6= e2 =

e ∈ R.

(2) The class of p.q.-Armendariz rings is closed under direct sum.

(3) Almost symmetric rings are p.q.-Armendariz.

(4) Power-Armendariz IFP rings are p.q.-Armendariz.

Proof. (1) Let f(x), g(x) ∈ eRe[x] such that f(x)(eRe)g(x) = 0. Since f(x)e =

f(x) and eg(x) = g(x), we have f(x)Rg(x) = 0. Assume that R is p.q.-Armendariz.

Then there exist m,n ≥ 1 such amRbn = 0 for any a ∈ Cf(x), b ∈ Cg(x). Since

a = ae and b = eb, 0 = amRbn = a · · · a︸ ︷︷ ︸
m−1

aeReb b · · · b︸ ︷︷ ︸
n−1

= am(eRe)bn and thus eRe is

p.q.-Armendariz.

(2) Let Ru be p.q.-Armendariz rings for all u ∈ U and E = ⊕u∈URu, the direct

sum of Ru’s. Suppose that f(x)Eg(x) = 0 for 0 6= f(x) =
∑s
i=0(a(i)u)xi, 0 6=

g(x) =
∑t
j=0(b(j)u)xj ∈ E[x]. We apply the proof of [6, Proposition 1.1(1)]. Note

that f(x) and g(x) can be rewritten by

f(x) = (

s∑
i=0

a(i)ux
i), g(x) = (

t∑
j=0

b(j)ux
j) ∈ ⊕u∈URu[x].

f(x)Eg(x) = 0 yields (
∑s
i=0 a(i)ux

i)E(
∑t
j=0 b(j)ux

j) = 0 for all u ∈ U . Note

that finitely many polynomials in {(
∑s
i=0 a(i)ux

i), (
∑t
j=0 b(j)ux

j) | u ∈ U} are

nonzero. Since Ru is p.q.-Armendariz for all u ∈ U . Then there exists h ≥ 1 such

that [a(i)u]h[b(j)u]h = 0 for all i, j, u. This implies that (a(i)u)hE(b(j)u)h = 0 for

all i, j, showing that E is p.q.-Armendariz.

(3) Let R be an almost symmetric ring. Then N(R) = N∗(R). Suppose that

f(x)Rg(x) = 0 for f(x) =
∑
aix

i, g(x) =
∑
bjx

j ∈ R[x]. We use R̄ and r̄ to

denote R/N(R) and r+N(R), respectively. Since R/N(R) is reduced (hence quasi-

Armendariz) and (
∑
āix

i)R̄(
∑
b̄jx

j) = 0, we have aRb ⊆ N(R) for any a ∈ Cf(x)
and b ∈ Cg(x). Then (aRb)n = 0 and so (ab)n = 0 for some n ≥ 1. Since R is almost

symmetric, albl = 0 and so alRbl = 0 for some l ≥ 1. Thus R is p.q.-Armendariz.

(4) is simply checked through a simple computation. �
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Corollary 2.3. Let e be a central idempotent of a ring R. Then R is p.q.-

Armendariz if and only if eR and (1− e)R are both p.q.-Armendariz.

Proof. It follows from Proposition 2.2(1,2), since R ∼= eR⊕ (1− e)R. �

Example 2.4. The ring R = U2(D) for a domain D is quasi-Armendariz by [7,

Corollary 3.15] and hence R is p.q.-Armendariz, but not IFP.

Proposition 2.5. Let R be a ring and I be a proper ideal of R. If R/I is a

p.q.-Armendariz ring and I is reduced as a ring without identity, then R is p.q.-

Armendariz.

Proof. We adapt the proof of [6, Theorem 1.11(4)]. Let f(x)Rg(x) = 0 for

f(x), g(x) ∈ R[x]. Since R/I is p.q.-Armendariz, there exists s ≥ 1 such that

asRbs ⊆ I for any a ∈ Cf(x) and b ∈ Cg(x). By the same computation as in the

proof of [6, Theorem 1.11(4)], we have aIb = 0 for any a ∈ Cf(x) and b ∈ Cg(x),
and thus

as+1Rbs+1 = a(asRbs)b ∈ aIb,

and hence as+1Rbs+1 = 0. Therefore R is p.q.-Armendariz. �

Proposition 2.6. For a ring R, if Matn(R) (resp., Un(R)) is p.q-Armendariz for

n ≥ 2, then R is p.q.-Armendariz.

Proof. IfMatn(R) is p.q.-Armendariz, thenR ∼= E11Matn(R)E11 is p.q.-Armendariz

by Proposition 2.2(1). �

We actually do not know whether Matn(R) (resp., Un(R)) is p.q.-Armendariz if

R is a p.q.-Armendariz ring.

Question. If R is a p.q.-Armendariz ring, then is Matn(R) (resp., Un(R)) p.q.-

Armendariz?

But we find the following kinds of subrings of Matn(R) which preserve the p.q.

Armendariz property.

Theorem 2.7. Let R be an IFP ring and n ≥ 2. The following conditions are

equivalent:

(1) R is p.q.-Armendariz.

(2) Dn(R) is p.q.-Armendariz.

(3) Vn(R) is p.q.-Armendariz.

(4) T (R,R) is p.q.-Armendariz.
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Proof. (1)⇒(2): Let f(x) =
∑s
i=0Aix

i, g(x) =
∑t
j=0Bjx

j ∈ Dn(R)[x] satisfy

f(x)Dn(R)g(x) = 0, where Ai = (a(i)cd) and Bj = (b(j)hk) for 0 ≤ i ≤ s and

0 ≤ j ≤ t. The proof is similar to one of [6, Theorem 1.4(1)], but we write it here

for completeness.

Note that f(x) and g(x) can be expressed by

f(x) =



f11(x) f12(x) f13(x) · · · f1n(x)

0 f22(x) f23(x) · · · f2n(x)

0 0 f33(x) · · · f3n(x)
...

...
...

. . .
...

0 0 0 · · · fnn(x)


and

g(x) =



g11(x) g12(x) g13(x) · · · g1n(x)

0 g22(x) g23(x) · · · g2n(x)

0 0 g33(x) · · · g3n(x)
...

...
...

. . .
...

0 0 0 · · · gnn(x)


,

where

f11(x) = · · · = fnn(x) =

s∑
i=0

a(i)11x
i, fcd(x) =

s∑
i=0

a(i)cdx
i

and

g11(x) = · · · = gnn(x) =

t∑
j=0

b(j)11x
j , ghk(x) =

t∑
j=0

b(j)hkx
j .

Since f(x)Dn(R)g(x) = 0, f11(x)Rg11(x) = 0 and so there exist w ≥ 1 such that

a(i)w11Rb(j)
w
11 = 0 for all i, j since R is p.q.-Armendariz.

Next note that every sum-factor of each entry of Awni (resp., Bwnj ) contains

a(i)w11 (resp., b(j)w11) in its product by [9, Lemma 1.2(1)]. Now since R is IFP, we

get Awni RBwnj = 0 because every sum-factor in each entry of Awni RBwnj is of the

form

sa(i)w11tb(j)
w
11u = 0,

for any s, t, u ∈ R.

(2)⇒(1): Suppose that Dn(R) is p.q.-Armendariz. Let f(x)Rg(x) = 0 for

f(x), g(x) ∈ R[x]. Then

(f(x)

n∑
i=1

Eii)Dn(R)[x](g(x)

n∑
i=1

Eii) = 0.
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Since Dn(R) is p.q.-Armendariz, there exist s, t ≥ 1

(a

n∑
i=1

Eii)
sDn(R)(b

n∑
i=1

Eii)
t = 0

for any a ∈ Cf(x) and b ∈ Cg(x). In particular, for any r ∈ R, we get

(a

n∑
i=1

Eii)
s(r

n∑
i=1

Eii)(b

n∑
i=1

Eii)
t = 0,

implying that asRbt = 0 for any a ∈ Cf(x) and b ∈ Cg(x). Therefore R is p.q.-

Armendariz.

(1)⇔(3) and (1)⇔(4) can be obtained by the same argument as in the proof of

(1)⇔(2). �

The following result comes from Theorem 2.7 and Proposition 2.2(3).

Corollary 2.8. If R is an almost symmetric ring, then Dn(R) is p.q.-Armendariz

for any n ≥ 2.

Recall that a ring R is called directly finite if ba = 1 whenever ab = 1 for

a, b ∈ R. Abelian rings are directly finite and power-Armendariz rings are Abelian

by [6, Proposition 1.1(5)]. However, there exists a p.q.-Armendariz ring which is

not directly finite (hence non-Abelian) by the following.

Example 2.9. There exists a domain (hence p.q.-Armendariz) D such that R =

Mat2(D) is not directly finite by [14, Theorem 1.0]. Then R is quasi-Armendariz

by [7, Theorem 3.12], and so it is p.q.-Armendariz. But R is non-Abelian obviously.

A ring R is called (von Neumann) regular if for each a ∈ R there exists b ∈ R
such that a = aba. in [5]. Notice that a regular ring R is power-Armendariz if and

only if R is Armendariz if and only if R is Abelian if and only if R is reduced by help

of [6, Theorem 1.8]. However, there exists a von Neumann regular p.q.-Armendariz

ring but not reduced, by considering Mat2(D) with D a division ring in Example

2.9.

Theorem 2.10. (1) If R[x] is a p.q.-Armendariz ring, then so is R.

(2) Let R be an IFP ring. If R is p.q.-Armendariz, then so is R[x].

Proof. (1) Suppose that R[x] is a p.q.-Armendariz ring. Let f(x)Rg(x) = 0 for

f(x), g(x) ∈ R[x]. Let y be an indeterminate over R[x]. Then f(y)Rg(y) = 0

and so f(y)R[x]g(y) = 0 for f(y), g(y) ∈ R[x][y], since x commutes with y. By

hypothesis, there exist s, t ≥ 1 such that asR[x]bt = 0 for any a ∈ Cf(y) and
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b ∈ Cg(y). This implies that asRbt = 0 for any a ∈ Cf(x) and b ∈ Cg(x), and thus

R is p.q.-Armendariz.

(2) We apply the proof of [6, Proposition 2.2] which was done by help of Ander-

son and Camillo [1, Theorem 2]. Suppose that R is a p.q.-Armendariz IFP ring. Let

p(y) =
∑m
i=0 fi(x)yi and q(y) =

∑n
j=0 gj(x)yj ∈ (R[x])[y] with p(y)R[x]q(y) = 0.

Next let fi(x) = ai0 +ai1x+· · ·+aiwxiw , gj(x) = bj0 +bj1x+· · ·+bjvxjv for each i, j,

where ai0 , . . . , aiw , bj0 , . . . , bjv ∈ R. Let k =
∑m
i=0 deg(fi(x)) +

∑n
j=0 deg(gj(x)),

where the degree is considered as polynomials in R[x] and the degree of zero polyno-

mial is taken to be 0. Let p(xk) =
∑m
i=0 fi(x)(xk)i and q(xk) =

∑n
j=0 gj(x)(xk)j ∈

R[x]. Then the set of coefficients of the fi’s (resp., gj ’s) equals the set of coeffi-

cients of p(xk) (resp., q(xk)). From p(y)R[x]q(y) = 0, we have p(y)Rq(y) = 0 and

so p(xk)Rq(xk) = 0. Since R is p.q.-Armendariz, there exists v ≥ 1 such that

avαRb
v
β = 0 for all α, β.

Since R is IFP, we also have

aαR1aαR2 · · ·Rv−1aαRvbβRv+1bβRv+2 · · ·R2v−1bβ = 0, (1)

where R1 = . . . = R2v−1 = R. Note that some aα′ (resp., some bβ′) occurs at least

v-times (resp., v-times) in the coefficient of each monomial in

fi(x)(m+1)v (resp., gj(x)(n+1)v).

From this we have

fi(x)(m+1)vRgj(x)(n+1)v = 0

by the equality (1). This implies that R[x] is p.q.-Armendariz. �

Recall that a ring R is called strongly IFP [12] if R[x] is IFP, equivalently,

whenever polynomials f(x), g(x) in R[x] satisfy f(x)g(x) = 0, f(x)Rg(x) = 0.

Clearly strongly IFP rings are IFP, but not conversely by [8, Example 2].

Let R be a strongly IFP ring. Then the Armendariz ring property coincides

with the quasi-Armendariz ring property by [12, Proposition 3.18]. This yields the

following equivalent conditions by help of [1, Theorem 2] and the fact that the

quasi-Armendariz property is closed under subrings:

(1) R is quasi-Armendariz;

(2) R is Armendariz;

(3) R[x] is Armendariz;

(4) R[x] is quasi-Armendariz.
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