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Abstract. In [1] a Levitzki module which we here call an l-prime module was

introduced. In this paper we define and characterize l-prime submodules. Let

N be a submodule of an R-module M . If

l.
√
N := {m ∈M : every l- system of M containingm meets N},

we show that l.
√
N coincides with the intersection L(N) of all l-prime submod-

ules of M containing N . We define the Levitzki radical of an R-module M as

L(M) = l.
√

0. Let β(M), U(M) and Rad(M) be the prime radical, upper nil

radical and Jacobson radical of M respectively. In general β(M) ⊆ L(M) ⊆
U(M) ⊆ Rad(M). If R is commutative, β(M) = L(M) = U(M) and if R is

left Artinian, β(M) = L(M) = U(M) = Rad(M). Lastly, we show that the

class of all l-prime modules RM with RM 6= 0 forms a special class of modules.
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1. Introduction

All modules are left modules, the rings are associative but not necessarily unital.

By I / R and N ≤ M we respectively mean I is an ideal of a ring R and N is a

submodule of a module M . A submodule P of an R-module M with RM 6⊆ P is

prime if for all A / R and every N ≤ M such that AN ⊆ P , we have AM ⊆ P or

N ⊆ P . In all our definitions for “prime” submodules P of RM , we shall assume

(without mention) that RM 6⊆ P . In [10], a generalization of upper nil radical of

rings to modules was done. A submodule P of an R-module M is s-prime if P is

prime and the ring R/(P : M) has no nonzero nil ideals, i.e., U(R/(P : M)) = 0

where U is the upper nil radical map. This definition generalizes that of s-prime

ideals in [14, Definition 2.6.5, p.170] and in [16]. Since the upper nil radical of

rings (sum of all nil ideals of a ring) coincides (see [16] ) with the intersection of all

s-prime ideals of R, in [10] we defined the upper nil radical of a module M denoted

by U(M) as the intersection of all s-prime submodules of M . For any unital ring

R, U(RR) = U(R).
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Definition 1.1. [17] An ideal I of a ring R is l-prime if it satisfies one of the

following equivalent statements:

(1) I is a prime ideal and L(R/I) = 0, where L is the Levitzki radical map,

i.e., the ring R/I has no nonzero locally nilpotent ideals;

(i) if a, b 6∈ I, then (a)(b) 6⊆ I where (a) denotes principal ideal and

(ii) if a 6∈ I, then (a) is not locally nilpotent modulo I;

(2) given a, b 6∈ I, there exists elements a1, a2, · · · , an ∈ (a) and

b1, b2, · · · , bm ∈ (b) such that for every p > 1 there exists a product of

N ≥ p factors, consisting of a′is and b′js, which is not in I.

A set L of elements of a ring R is an l-system [17] if to every element a ∈ L is

assigned a finite number of elements a1, a2, · · · , an(a) ∈ (a), such that the following

condition is satisfied: If a, b ∈ L, then for every m > 1 there exists a product of

N ≥ m factors, consisting of ai and bj ’s, which is in L.

From [2], the intersection of all l-prime ideals coincides with the Levitzki radical

of a ring (the sum of all locally nilpotent ideals of a ring). The notion of l-prime

ideals and l-systems of near-rings was defined and studied by Groenewald and

Potgieter in [9]. In this paper we generalize the Levitzki radical of rings to modules

by defining l-prime submodules and having the Levitzki radical L(M) of a module

M as the intersection of all l-prime submodules of M .

2. l-prime submodules

Definition 2.1. A proper submodule P of an R-module M is an l-prime sub-

module if for any A / R, N ≤ M and for every {a1, a2, · · · , an} ⊆ A there exists

m ∈ N such that for any product a1ia2i · · · ami of elements from {a1, a2, · · · , an},
a1ia2i · · · amiN ⊆ P implies N ⊆ P or AM ⊆ P .

Proposition 2.2. If P ≤M , then the following statements are equivalent:

(1) P is an l-prime submodule;

(2) P is a prime submodule and for all A / R with AM 6⊆ P there exists

F = {a1, a2, · · · , an} ⊆ A \ (P : M) such that ai1ai2 · · · aiiM 6⊆ P for all

1 ≤ i ∈ N where aij ∈ F ;

(3) P is a prime submodule and L(R/(P : M)) = 0;

(4) P is a prime submodule and L(R/(P : N)) = 0 for all N ≤M with N 6⊆ P ;

(5) for all m ∈M , for each a ∈ R and for every finite set F = {a1, · · · , an} ⊆
(a) there exists n ∈ N such that for any product of elements ai1ai2 · · · ain
from F , ai1ai2 · · · ain <m>⊆ P implies m ∈ P or aM ⊆ P , where <m>

denotes the submodule of M generated by m;

(6) P is a prime submodule of M and (P : M) is an l-prime ideal of R;
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(7) P is a prime submodule of M and (P : N) is an l-prime ideal of R for all

N ≤M with N 6⊆ P .

Proof. (1) ⇒ (2) Let A / R, N ≤ M such that AN ⊆ P . For any finite

subset {a1, a2, · · · , an} ⊆ A, and for any t ∈ N, ai1ai2 · · · aitN ⊆ P for aij ∈
{a1, a2, · · · an}. Since P is l-prime we have N ⊆ P or AM ⊆ P . Hence P is a prime

submodule. Let A / R such that AM 6⊆ P . Am 6⊆ P for some m ∈ M . Since P

is l-prime, there exists {a1, a2, · · · , an} ⊆ A such that ai1ai2 · · · aiiAm 6⊆ P for any

i ≥ 1, where aij ∈ A. Hence, ai1ai2 · · · aiiM 6⊆ P for any i ≥ 1 and aij ∈ A.

(2) ⇒ (1) Let A / R and N ≤ M such that N 6⊆ P and AM 6⊆ P . Since P

is prime, (P : M) = (P : N). From our assumption, there exists a finite subset

F = {a1, a2, · · · , an} ⊆ A such that ai1ai2 · · · aiiM 6⊆ P for every natural number

i ≥ 1 and aij ∈ F . Hence, ai1ai2 · · · aiiN 6⊆ P for all 1 ≤ i ∈ N and aij ∈ F . Thus,

P is an l-prime submodule.

(2)⇔ (3) This is clear since L(R/(P : M)) = 0 if and only if R/(P : M) contains

no nonzero locally nilpotent ideals.

(3) ⇒ (4) Let P is a prime submodule such that L(R/(P : N) = 0. Now let

N ≤ P such thatN 6⊆ P . Since P is a prime submodule, we have (P : N) = (P : M)

and from our assumption L(R/(P : N)) = L(R/(P : M)) = 0.This proves 4.

(4)⇒ (3) Let P is a prime submodule such that L(R/(P : N) = 0 for all N ≤ P
such that N 6⊆ P. Since P is a prime submodule and N 6⊆ P , we have (P : N) =

(P : M) and from our assumption L(R/(P : N)) = L(R/(P : M)) = 0.This proves

3.

(5)⇒ (1) Let A/R, N ≤M such that AM 6⊆ P and N 6⊆ P . There exists a ∈ A
such that aM 6⊆ P and m ∈ N \ P . So, there exists F = {a1, · · · , an} ⊆ (a) ⊆ A
such that ai1 · · · aii <m>6⊆ P for all i ≥ 1. Hence ai1ai2 · · · aiiN 6⊆ P for all i ≥ 1.

Therefore P is l-prime.

(1) ⇒ (5) Suppose m ∈ M \ P and a ∈ R such that aM 6⊆ P . Then (a)M 6⊆ P

and <m>6⊆ P . Since P is l-prime there exists F = {a1, · · · an} ⊆ (a) such that

ai1ai2 · · · aii<m>6⊆ P for all i ≥ 1.

(6) ⇒ (3) Suppose P is a prime submodule and (P : M) is an l -prime ideal of

R. By definition of l-prime ideals, (P : M) is a prime ideal and L(R/(P : M)) = 0.

It follows that P is a prime submodule and L(R/(P : M)) = 0 which is 3.

(3) ⇒ (6) Suppose that P is a prime submodule of M and L(R/(P : M)) = 0.

Then (P : M) is a prime ideal of R and L(R/(P : M)) = 0. So, by definition

(P : M) is an l-prime ideal of R.

(6) ⇒ (7) Let P be a prime submodule of M and (P : M) an l-prime ideal of R.

Now, let N ≤M with N 6⊆ P. Since P is a prime submodule and N 6⊆ P, we have

(P : N) = (P : M) and from our assumption (P : N) is an l-prime ideal of R.



80 NICO J. GROENEWALD AND DAVID SSEVVIIRI

(7) ⇒ (6). Let P be a prime submodule of M and (P : N)is an l-prime ideal of

R for all N ≤ M with N 6⊆ P.Since P is a prime submodule and N 6⊆ P,we have

(P : N) = (P : M)and from our assumption (P : M)is an l-prime ideal of R. �

P is an l-prime submodule of M if and only if M/P is an l-prime module.

Definition 2.3. A module M is prime if the zero submodule of M is a prime

submodule.

Proposition 2.4. If R is a unital ring, then R is l-prime if and only if RR is an

l -prime module.

Proof. We know that R is a prime ring if and only if RR is a prime module. R

prime implies (0 : R) = 0. Hence, whenever R is prime, L(R) = 0 if and only if

L(R/(0 : R)) = 0. It follows that: R is prime and L(R) = 0 if and only if RR is

prime and L(R/(0 : R)) = 0, i.e., R is l-prime if and only if RR is l-prime. �

Corollary 2.5. For any unital ring R, L(R) = L(RR).

Example 2.6. Any maximal submodule is l-prime, hence any simple module is

l-prime.

Proposition 2.7. For any submodule P of RM ,

s-prime⇒ l-prime⇒ prime.

Proof. Suppose P is prime and U(R/(P : M)) = 0. Since for rings L ⊆ U , we

have L(R/(P : M)) = 0. So, P is l-prime. The last implication is trivial. �

Corollary 2.8. For any module M ,

β(M) ⊆ L(M) ⊆ U(M).

Example 2.9. Any strictly prime submodule (as defined by Dauns in [6]) is s-

prime (see [11]). Hence, it is l-prime by Proposition 2.7.

Example 2.10. In [18, Section 2.2], an example of a ring R which is prime and

locally nilpotent was constructed. Hence R is prime but not l-prime. Thus, the

module M = RR is prime but not l-prime.

Example 2.11. In [18, Section 2.3], an example of a prime nil ring R which is

not locally nilpotent was constructed. Hence R is l-prime but not s-prime. Thus,

the module M = RR is l-prime but not s-prime.

Theorem 2.12. For modules over commutative rings,

s-prime⇔ l-prime⇔ prime.

Hence,

β(M) = L(M) = U(M).
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Proof. Follows from Proposition 2.7 and the fact that prime and s-prime are the

same for modules over commutative rings, see [10]. �

3. Semi l-prime submodules

An ideal I of a ring R is semi s-prime (resp. semi l -prime) if U(R/I) = 0 (resp.

L(R/I) = 0). A submodule P of an R-module M is a semi s-prime [15] submodule

if for all A / R and every N ≤ M with a ∈ A and N 6⊆ P such that anN ⊆ P

for some n ∈ N, then AN ⊆ P . It was shown in [15] that P is a semi s-prime

submodule if and only if U(R/(P : N)) = 0 for all N ≤M with N 6⊆ P .

Definition 3.1. P is a semi l-prime submodule of M , if for all A/R, for all N ≤M
such that N 6⊆ P and for every finite subset F = {a1, a2, · · · , an} ⊆ A, there exists

T = T (F ) ∈ N such that for any product of m elements (m less or equal to T )

consisting of the ai’s we have ai1 · · · aimN ⊆ P implies AN ⊆ P .

Proposition 3.2. For any submodule P of an R-module M , the following state-

ments are equivalent:

(1) P is a semi l-prime submodule of RM ;

(2) L(R/(P : N)) = 0 for all N ≤M with N 6⊆ P .

Proof. Follows from the definition of a semi l-prime submodule and the notion of

a locally nilpotent ideal. �

Theorem 3.3. A submodule P of RM is l-prime if and only if P is prime and

semi l-prime.

Proof. Follows from Proposition 2.2 and Proposition 3.2. �

Proposition 3.4. For any module RM ,

(1) L(M) = ∩{P : P ≤ M, P l-prime submodule of M} is a semi l-prime

submodule;

(2) P is a semi l-prime submodule of RM if and only if (P : N) is a semi

l-prime ideal of R for any N ≤M with N 6⊆ P .

Proof. (1) Let A/R, N ≤M such that AN 6⊆ L(M). Then there exists an l-prime

submodule P such that AN 6⊆ P . From Proposition 2.2, there exists a finite subset

F = {a1, a2, · · · , an} ⊆ A \ (P : N) such that ai1ai2 · · · aiiN 6⊆ P for all 1 ≤ i ∈ N
with aij ∈ F . Hence, ai1ai2 · · · aiiN 6⊆ L(M) for all i ≥ 1 with aij ∈ F .

(2) Follows from Proposition 3.2 and the definition of semi l-prime ideals. �

Definition 3.5. A submodule P of an R-module M is

(1) semiprime [6] if for all a ∈ R and every m ∈M , if aRam ⊆ P then am ∈ P ;

(2) classical semiprime [3] if for all A /R and every N ≤M , if A2N ⊆ P then

AN ⊆ P .
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Remark 3.6. Classical semiprime submodules are called “semiprime” by Behboodi

in [3].

Proposition 3.7. For any submodule P ,

semi s-prime⇒ semi l-prime⇒ classical semiprime.

Proof. Suppose P is a semi s-prime submodule of M , then U(R/(P : N)) = 0

for all N ≤ M with N 6⊆ P . We know L ⊆ U , hence L(R/(P : N)) = 0 for all

N ≤ M with N 6⊆ P , i.e., P is semi l-prime. Let P be a semi l-prime submodule

of RM . Suppose A / R and N ≤ M such that AN 6⊆ P . Then there exists

F = {a1, · · · an} ⊆ A such that for all i ≥ 1, ai1ai2 · · · , aiiN 6⊆ P for aij ∈ F .

Hence for i = 2, there exists a21, a12 ∈ F such that a21a12N 6⊆ P , i.e., A2N 6⊆ P

and hence P is classical semiprime. �

Proposition 3.8. For modules over a commutative ring,

semi s-prime⇔ semi l-prime⇔ classical semiprime⇔ semiprime.

Proof. Suppose R is commutative and P is classical semiprime. Let A / R and

AN 6⊆ P for some N ≤ M . Then there is a ∈ A such that aN 6⊆ P . P semiprime

implies (P : N) is semiprime and because R is commutative (P : N) is completely

semiprime, hence an 6∈ (P : N) for all n ∈ N, i.e., anN 6⊆ P for all n ∈ N which

shows that P is semi s-prime. The rest follows from Proposition 3.7 and the fact

that for commutative rings the notions of semiprime and classical semiprime are

the same. �

Remark 3.9. We have seen in Proposition 3.4 that any intersection of l-prime

submodules is a semi l-prime submodule. The converse does not hold in general.

For over a commutative ring, prime is the same as l-prime (see Theorem 2.12) and

semiprime is the same as semi l-prime, (see Proposition 3.8). Now, let R = Z[x]

and F = R ⊕ R . If f := (2, x) ∈ F and P = 2R + Rx which is a maximal ideal

of R, then N = Pf is a semiprime submodule of F which is not an intersection of

prime submodules, see [12, p.3600].

Definition 3.10. Let R be a ring and M an R-module. A nonempty set L ⊆
M\{0} is called an l-system if, for each A/R and for all J,K ≤M , if (K+J)∩L 6= ∅
and (K +AM) ∩ L 6= ∅, then there exists a finite subset F = {a1, a2, · · · an} ⊆ A
such that K + (ai1ai2 · · · aiiJ) ∩ L 6= ∅ for any i ≥ 1 and aij ∈ F .

It is easy to see that every s-system as defined in [10] is an l-system and any

l-system is an m-system as defined in [4].

Corollary 3.11. Let M be an R-module. A submodule P of M is l-prime if and

only if M \ P is an l-system of M .
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Proof. (⇒) Suppose L := M\P . LetA/R and K,J ≤M such that (K+J)∩L 6= ∅
and (K+AM)∩L 6= ∅. Suppose that for every finite subset F = {a1, a2, · · · an} ⊆ A
there exists t = t(F ) ∈ N such that for any product of t elements ai1ai2 · · · ait from

F we have (K + ai1ai2 · · · aitJ) ∩ L = ∅. Hence ai1ai2 · · · aitJ ⊆ P . Since P is

l-prime, J ⊆ P or AM ⊆ P . It follows that (J +K)∩L = ∅ or (AM +K)∩L = ∅,
a contradiction.

(⇐) Suppose A/R, N ≤M and for every finite subset F = {a1, a2, · · · , an} ⊆ A
there exists t = t(F ) ∈ N such that for any product of t elements ai1, · · · , ait from

F , ai1ai2 · · · aitJ ⊆ P . If J 6⊆ P and AM 6⊆ P , J ∩ L 6= ∅ and AM ∩ L 6= ∅. Since

M \ P is an l-system, there exists a finite subset {b1, b2, · · · , bm} ⊆ A such that

bi1bi2 · · · biiJ ∩ L 6= ∅ for every i ≥ 1. This leads to a contradiction. Hence J ⊆ P

or AM ⊆ P and therefore P is an l-prime submodule of M . �

Lemma 3.12. Let M be an R-module, L ⊆M an l-system and P a submodule of

M maximal with respect to the property that P ∩ L = ∅. Then, P is an l-prime

submodule of M .

Proof. LetA/R and J ≤M . Suppose that for any finite subset F = {a1, a2, · · · , an}
⊆ A there exists a natural number n such that for the product of any n elements

ai1, · · · , ain from F we have ai1ai2 · · · ainJ ⊆ P . If J 6⊆ P and AM 6⊆ P then

(J + P ) ∩ L 6= ∅ and (AM + P ) ∩ L 6= ∅. Since L is an l-system, there exists

{b1, b2, · · · bm} ⊆ A such that (bi1bi2 · · · biiJ + P ) ∩ L 6= ∅ for every i ≥ 1 and

bij ∈ {b1, · · · bm}. But for this finite subset {b1, · · · bm} it follows from above that

there exists a natural number n such that for the product of any n elements from

the set bi1bi2 · · · binJ ⊆ P . Hence P ∩ L 6= ∅. Thus, we must have J ⊆ P or

AM ⊆ P and therefore P must be an l-prime submodule. �

Definition 3.13. Let R be a ring and M an R-module. For N ≤M , if there is an

l-prime submodule containing N , then we define

l.
√
N := {m ∈M : every l-system of M containing m meets N}.

We write l.
√
N = M whenever there are no l-prime submodules of M containing

N .

Theorem 3.14. Let M be an R-module and N ≤M . Then, either l.
√
N = M or

l.
√
N equals the intersection of all l-prime submodules of M containing N .

Proof. Suppose l.
√
N 6= M . This means

βl(N) := ∩{P : P is an l-prime submodule of M and N ⊆ P} 6= ∅.

Both l.
√
N and N are contained in the same l-prime submodules. By definition of

l.
√
N it is clear that N ⊆ l.

√
N . Hence, any l-prime submodule of M which contains

l.
√
N must necessarily contain N . Suppose P is an l-prime submodule of M such
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that N ⊆ P , and let t ∈ l.
√
N . If t 6∈ P , then the complement of P , C(P ) in M is

an l-system containing t and therefore we would have C(P )∩N 6= ∅. However, since

N ⊆ P , C(P ) ∩ P = ∅ and this contradiction shows that t ∈ P . Hence l.
√
N ⊆ P

as we wished to show. From this we have l.
√
N ⊆ βl(N). Conversely, assume

s 6∈ l.
√
N . Then there exists an l-system L such that l ∈ L and L ∩N = ∅. From

Zorn’s lemma, there exists a submodule P ⊇ N which is maximal with respect to

P ∩ L = ∅. From Lemma 3.12, P is an l-prime submodule of M and l 6∈ P , as

desired. �

Proposition 3.15. If P / R, then there is an l-prime R -module M with P = (0 :

M) if and only if P is an l -prime ideal of R.

Proof. Suppose M is an l-prime module. Then by Proposition 2.2, P = (0 : M) is

an l-prime ideal of R. For the converse, let P be an l-prime ideal of R. M = R/P
is an R-module with the usual operation and P = (0 : M). (0 : M) l-prime implies

(0 : M) is prime and L(R/(0 : M)) = 0. From [8, Proposition 3.14.16] (0 : M) prime

implies M is a prime module. Thus M is a prime module and L(R/(0 : M)) = 0

which proves that M is an l-prime module. �

Corollary 3.16. A ring R is an l-prime ring if and only if there exists a faithful

l -prime R-module.

Example 3.17. If R is a domain, then RR is a faithful l-prime module since every

domain is an l-prime ring.

Throughout the remaining part of this section rings have unity and all modules

are unital left modules.

For any module M , we define the Levitzki radical L(M) as L(0), i.e.,

L(0) := {m ∈M, every l-system in M which contains m also contains 0}.

From Theorem 3.14, we have

L(M) = ∩{K : K ≤M,M/K is l-prime}

which is a radical by [13, Proposition 1] since l-prime modules are closed under

taking non-zero submodules.

Proposition 3.18. For any R-module M ,

(1) L(L(M)) = L(M), i.e., L is idempotent;

(2) L(M) is a characteristic submodule of M ;

(3) If M is projective then L(R)M = L(M).

Proof. Follows from [5, Proposition 1.1.3]. �
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Proposition 3.19. For any M ∈ R-mod,

(1) if M =
⊕
Λ

Mλ is a direct sum of submodules Mλ(λ ∈ Λ), then

L(M) =
⊕

Λ

L(Mλ)

(2) if M =
∏
Λ

Mλ is a direct product of submodules Mλ(λ ∈ Λ), then

L(M) ⊆
∏
Λ

L(Mλ).

Proof. Follows from [5, Proposition 1.1.2]. �

4. The radicals L(RR) and L(R)

Lemma 4.1. For any associative ring R, L(RR) ⊆ L(R).

Proof. Let x ∈ L(RR) and I be an l-prime ideal of R. From Proposition 3.15,

we have R/I is an l-prime R-module. Hence, x ∈ I and we have x ∈ L(R), i.e.,

L(RR) ⊆ L(R). �

Remark 4.2. In general the containment in Lemma 4.1 is strict.

Example 4.3. Let R = {

(
x y

0 0

)
: x, y ∈ Z2} and M = RR. It is easy to check

that (0) is an l-prime submodule of RR. Hence, L(RR) = 0. Now, we have (0 : R)R

is an l-prime ideal of R, (0 : R)R 6= (0). For if b 6= 0, b ∈ Z2, then

(
0 b

0 0

)
R = 0.

Hence, L(R) ⊆ (0 : R)R. But since (0 : R)R(0 : R)R = 0 ⊆ L(R) and L(R) is a

semiprime ideal, we have (0 : R)R ⊆ L(R). Hence, L(R) = (0 : R)R 6= 0.

Lemma 4.4. For any ring R and any R-module M ,

L(R) ⊆ (L(M) : M).

Proof. We have (L(M) : M) = (
⋂

S≤M
S : M) =

⋂
S≤M

(S : M), where S is an

l-prime submodule of M . Since (S : M) is an l-prime ideal of R for each l-prime

submodule S of M , we get L(R) ⊆ (L(M) : M). �

Remark 4.5. In general, L(R)M ⊂ L(M) even over a commutative ring. For

let R = Z and M = Zp∞ ⊕ Z. Since R is commutative, L(M) = β(M). From [4,

Example 3.4], we have β(M) = Zp∞ . But β(R) = L(R) = 0. Hence, 0 = L(R)M ⊂
L(M) = Zp∞ .

We recall that, the Jacobson radical Rad(M) of a module M is the intersection

of all maximal submodules of M .
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Theorem 4.6. If M is a module over a left Artinian ring R, then

β(M) = L(M) = U(M) = Rad(M).

Proof. Since every maximal submodule is s-prime, we have

U(M) ⊆ Rad(M) = Jac(R)M.

Since R is left Artinian L(R) = Jac(R). Hence,

L(M) ⊆ U(M) ⊆ Rad(M) = Jac(R)M = L(R)M ⊆ L(M).

�

Proposition 4.7. For any ring R, L(R) = (L(RR) : R).

Proof. From Lemma 4.4, L(R) ⊆ (L(RR) : R). Since L(RR) ⊆ L(R) we have

L(R) ⊆ (L(RR) : R) ⊆ (L(R) : R). Let x ∈ (L(R) : R). Hence xR ⊆ L(R) =⋂
P l-prime in R

P ⊆ P for all l-prime ideals P of R. Since xR ⊆ P for P l-prime, we

have x ∈ P and x ∈ L(R). Hence, (L(R) : R) ⊆ L(R). �

Proposition 4.8. For all R-modules M ,

(1) L(M) = {x ∈M : Rx ⊆ L(M)};
(2) if L(R) = R, then L(M) = M .

Proof. (1) Since L(M) ≤ M , we have RL(M) ⊆ L(M). Conversely, let x ∈ M
with Rx ⊆ L(M). Hence Rx ⊆ P for all l-prime submodules P of M . Since P is

also a prime submodule, we have x ∈ P and hence x ∈ L(M).

(2) R = L(R) gives R ⊆ (L(M) : M) from Lemma 4.4. Hence RM ⊆ L(M) and

from (1), we have M ⊆ L(M), i.e., M = L(M). �

Proposition 4.9. Let R be any ring. Then, any of the following conditions implies

L(R) = L(RR).

(1) R is commutative;

(2) x ∈ xR for all x ∈ R, e.g., if R has an identity or R is Von Neumann

regular.

Proof. (1) Since R is commutative, it follows from Proposition 4.7 and Proposition

4.8 that L(R) ⊆ L(RR) ⊆ L(R) and L(R) = L(RR).

(2) Let x ∈ L(R), then from Proposition 4.7, xR ⊆ L(RR) and since x ∈ xR, we

get x ∈ L(RR) such that L(RR) = L(R). �
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5. A special class of l-prime modules

A class ρ of associative rings is called a special class if ρ is hereditary, consists of

prime rings and is closed under essential extensions, cf., [8, p.80]. Andrunakievich

and Rjabuhin in [1] extended this notion to modules and showed that prime mod-

ules, irreducible modules, simple modules, modules without zero divisors, etc form

special classes of modules. De La Rosa and Veldsman in [7] defined a weakly special

class of modules. We follow the definition in [7] of a weakly special class of modules

to define a special class of modules.

Definition 5.1. For a ring R, let KR be a (possibly empty) class of R-modules.

Let K = ∪{KR : R a ring}. K is a special class of modules if it satisfies:

S1. M ∈ KR and I / R with I ⊆ (0 : M)R implies M ∈ KR/I .
S2. If I / R and M ∈ KR/I , then M ∈ KR.

S3. M ∈ KR and I / R with IM 6= 0 implies M ∈ KI .
S4. M ∈ KR implies RM 6= 0 and R/(0 : M)R is a prime ring.

S5. If I / R and M ∈ KI , then there exists N ∈ KR such that (0 : N)I ⊆ (0 :

M)I .

Remark 5.2. It is known that the class of all prime R-modules M with RM 6= 0

is special hence satisfies the conditions S1 through S5.

Theorem 5.3. Let R be any ring and

MR := {M : M is an l-prime R-module with RM 6= 0}.

If M = ∪MR, then M is a special class of R-modules.

Proof. S1. Let M ∈ MR and I / R with IM = 0. M is an R/I-module via

(r + I)m = rm. Since M ∈MR, M is a prime R-module and L(R/(0 : M)R) = 0.

Since M is also a prime R/I-module we only need to show that L((R/I)/(0 :

M)R/I) = 0. Because

(R/I)/(0 : M)R/I = (R/I)/((0 : M)R/I) ∼= R/(0 : M)R,

we have L((R/I)/(0 : M)R/I) = 0 and therefore M ∈MR/I .

S2. Let I / R and M ∈MR/I . Then M is a prime R/I-module and

L((R/I)/(0 : M)R/I) = 0. From

(R/I)/(0 : M)R/I = (R/I)/((0 : M)R/I) ∼= R/(0 : M)R,

we get L(R/(0 : M)R) = 0. Thus, M ∈MR.

S3. Suppose M ∈ MR and I / R with IM 6= 0. Then M is a prime R-module

and L(R/(0 : M)R) = 0. Since

I/(0 : M)I = I/((0 : M)R ∩ I) ∼= (I + (0 : M)R)/(0 : M)R / R/(0 : M)R
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and a Levitzki semisimple class is hereditary, we have L(I/(0 : M)I) = 0. Hence,

M ∈MI . Therefore, M ∈MI .

S4. Let M ∈ MR. Hence RM 6= 0. Since (0 : M)R is an l-prime ideal of R,

R/(0 : M)R is an l-prime ring and hence a prime ring.

S5. Let I / R and M ∈ MI . Since M is an l-prime I-module, (0 : M)I is

an l-prime ideal of I. Now, (0 : M)I / I / R and I/(0 : M)R an l-prime ring

implies (0 : M)I / R. Choose K/(0 : M)I / R/(0 : M)I maximal with respect to

I/(0 : M)I ∩ K/(0 : M)I = 0. Then, I/(0 : M)I ∼= (I + K)/K / ·R/K by [8,

Lemma 3.2.5]. Since I/(0 : M)I / ·R/K and I/(0 : M)I an l-prime ring R/K is

l-prime. Let N = R/K. N is an R-module. Clearly, RN 6= 0. From Proposition

3.15, we have (0 : N)R = K. We show (0 : N)I ⊆ (0 : M)I . Let x ∈ (0 : N)I . Then

xR/K = 0, i.e., xR ⊆ K. Now, xR ⊆ I ∩K and from definition of K/(0 : M)I , we

have xR ⊆ I ∩K ⊆ (0 : M)I . Hence xRM = 0 and since xIM ⊆ xRM we have

xI ⊆ (0 : M)I and (0 : M)I is a prime ideal of I implies x ∈ (0 : M)I . Hence,

(0 : N)I ⊆ (0 : M)I . �

Proposition 5.4. If Ms is the special class of l-prime modules, then the special

radical induced by Ms on a ring R is L.

Proof. Let R be a ring. From Proposition 3.15, we have L(R) =

∩{(0 : M)R : M is an l-prime R-module} = ∩{I / R : I is an l-prime ideal}. �

Acknowledgment. We are grateful to the referee for the valuable comments.

References

[1] V. A Andrunakievich and Ju M. Rjabuhin, Special modules and special radicals,

Soviet Math. Dokl., 3 (1962), 1790–1793. Russian original: Dokl. Akad. Nauk

SSSR., 147 (1962), 1274–1277.

[2] A. M. Babic, Levitzki radical, Doklady Akad. Nauk. SSSR., 126 (1950), 242-243

(Russian).

[3] M. Behboodi, A generalization of Baer’s lower nilradical for modules, J. Alge-

bra Appl., 6 (2007), 337–353.

[4] M. Behboodi, On the prime radical and Baer’s lower nilradical of modules,

Acta Math. Hungar., 122 (2008), 293–306.

[5] L. Bican, T. Kepka and P. Nemec, Rings, modules and preradicals, Lecture

Notes in Pure and Applied Mathematics no.75, Marcel Dekker Inc., New York,

1982.

[6] J. Dauns, Prime modules, J. Reine. Angew. Math., 298 (1978), 156–181.

[7] B. De La Rosa and S. Veldsman, A relationship between ring radicals and

module radicals, Quaest. Math., 17 (1994), 453–467.



ON THE LEVITZKI RADICAL OF MODULES 89

[8] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, New York: Marcel

Dekker, 2004.

[9] N. J. Groenewald and P. C. Potgieter, A note on the Levitzki radical of a

near-ring, J. Austral. Math. Soc. (Series A), 36 (1984), 416-420.

[10] N. J. Groenewald and D. Ssevviiri, Köthe upper nilradical for modules, Acta
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