ON THE LEVITZKI RADICAL OF MODULES

Nico J. Groenewald and David Ssevviiri

Received: 5 May 2013; Revised: 15 August 2013 Communicated by Abdullah Harmancı

Dedicated to the memory of Professor Efraim P. Armendariz

ABSTRACT. In [1] a Levitzki module which we here call an l-prime module was introduced. In this paper we define and characterize l-prime submodules. Let N be a submodule of an R-module M. If

 $l.\sqrt{N} := \{m \in M : \text{ every } l \text{- system of } M \text{ containing} m \text{ meets } N\},\$

we show that $l.\sqrt{N}$ coincides with the intersection $\mathcal{L}(N)$ of all *l*-prime submodules of M containing N. We define the Levitzki radical of an R-module M as $\mathcal{L}(M) = l.\sqrt{0}$. Let $\beta(M), \mathcal{U}(M)$ and $\operatorname{Rad}(M)$ be the prime radical, upper nil radical and Jacobson radical of M respectively. In general $\beta(M) \subseteq \mathcal{L}(M) \subseteq \mathcal{U}(M) \subseteq \operatorname{Rad}(M)$. If R is commutative, $\beta(M) = \mathcal{L}(M) = \mathcal{U}(M)$ and if R is left Artinian, $\beta(M) = \mathcal{L}(M) = \mathcal{U}(M) = \operatorname{Rad}(M)$. Lastly, we show that the class of all *l*-prime modules $_RM$ with $RM \neq 0$ forms a special class of modules.

Mathematics Subject Classification (2010): 16D60, 16N40, 16N60, 16N80, 16S90

Keywords: *l*-prime submodule; semi *l*-prime; *s*-prime submodule; upper nil radical; Levitzki radical

1. Introduction

All modules are left modules, the rings are associative but not necessarily unital. By $I \triangleleft R$ and $N \leq M$ we respectively mean I is an ideal of a ring R and N is a submodule of a module M. A submodule P of an R-module M with $RM \not\subseteq P$ is prime if for all $A \triangleleft R$ and every $N \leq M$ such that $AN \subseteq P$, we have $AM \subseteq P$ or $N \subseteq P$. In all our definitions for "prime" submodules P of $_RM$, we shall assume (without mention) that $RM \not\subseteq P$. In [10], a generalization of upper nil radical of rings to modules was done. A submodule P of an R-module M is s-prime if P is prime and the ring R/(P:M) has no nonzero nil ideals, i.e., $\mathcal{U}(R/(P:M)) = 0$ where \mathcal{U} is the upper nil radical map. This definition generalizes that of s-prime ideals in [14, Definition 2.6.5, p.170] and in [16]. Since the upper nil radical of rings (sum of all nil ideals of a ring) coincides (see [16]) with the intersection of all s-prime ideals of R, in [10] we defined the upper nil radical of a module M denoted by $\mathcal{U}(M)$ as the intersection of all s-prime submodules of M. For any unital ring $R, \mathcal{U}(_RR) = \mathcal{U}(R)$. **Definition 1.1.** [17] An ideal I of a ring R is *l*-prime if it satisfies one of the following equivalent statements:

- (1) I is a prime ideal and L(R/I) = 0, where L is the Levitzki radical map, i.e., the ring R/I has no nonzero locally nilpotent ideals;
 - (i) if $a, b \notin I$, then $(a)(b) \notin I$ where (a) denotes principal ideal and
 - (ii) if $a \notin I$, then (a) is not locally nilpotent modulo I;
- (2) given a, b ∉ I, there exists elements a₁, a₂, ..., a_n ∈ (a) and b₁, b₂, ..., b_m ∈ (b) such that for every p > 1 there exists a product of N ≥ p factors, consisting of a'_is and b'_js, which is not in I.

A set *L* of elements of a ring *R* is an *l*-system [17] if to every element $a \in L$ is assigned a finite number of elements $a_1, a_2, \dots, a_{n(a)} \in (a)$, such that the following condition is satisfied: If $a, b \in L$, then for every m > 1 there exists a product of $N \geq m$ factors, consisting of a_i and b_i 's, which is in *L*.

From [2], the intersection of all *l*-prime ideals coincides with the Levitzki radical of a ring (the sum of all locally nilpotent ideals of a ring). The notion of *l*-prime ideals and *l*-systems of near-rings was defined and studied by Groenewald and Potgieter in [9]. In this paper we generalize the Levitzki radical of rings to modules by defining *l*-prime submodules and having the Levitzki radical $\mathcal{L}(M)$ of a module M as the intersection of all *l*-prime submodules of M.

2. *l*-prime submodules

Definition 2.1. A proper submodule P of an R-module M is an l-prime submodule if for any $\mathcal{A} \triangleleft R$, $N \leq M$ and for every $\{a_1, a_2, \dots, a_n\} \subseteq \mathcal{A}$ there exists $m \in \mathbb{N}$ such that for any product $a_{1i}a_{2i}\cdots a_{mi}$ of elements from $\{a_1, a_2, \dots, a_n\}$, $a_{1i}a_{2i}\cdots a_{mi}N \subseteq P$ implies $N \subseteq P$ or $\mathcal{A}M \subseteq P$.

Proposition 2.2. If $P \leq M$, then the following statements are equivalent:

- (1) *P* is an *l*-prime submodule;
- (2) P is a prime submodule and for all $\mathcal{A} \triangleleft R$ with $\mathcal{A}M \not\subseteq P$ there exists $F = \{a_1, a_2, \cdots, a_n\} \subseteq \mathcal{A} \setminus (P : M)$ such that $a_{i1}a_{i2} \cdots a_{ii}M \not\subseteq P$ for all $1 \leq i \in \mathbb{N}$ where $a_{ij} \in F$;
- (3) P is a prime submodule and $\mathcal{L}(R/(P:M)) = 0$;
- (4) *P* is a prime submodule and $\mathcal{L}(R/(P:N)) = 0$ for all $N \leq M$ with $N \not\subseteq P$;
- (5) for all m ∈ M, for each a ∈ R and for every finite set F = {a₁, ..., a_n} ⊆
 (a) there exists n ∈ N such that for any product of elements a_{i1}a_{i2}...a_{in} from F, a_{i1}a_{i2}...a_{in} <m>⊆ P implies m ∈ P or aM ⊆ P, where <m> denotes the submodule of M generated by m;
- (6) P is a prime submodule of M and (P:M) is an l-prime ideal of R;

(7) P is a prime submodule of M and (P:N) is an l-prime ideal of R for all $N \leq M$ with $N \not\subseteq P$.

Proof. (1) \Rightarrow (2) Let $\mathcal{A} \triangleleft R$, $N \leq M$ such that $\mathcal{A}N \subseteq P$. For any finite subset $\{a_1, a_2, \dots, a_n\} \subseteq \mathcal{A}$, and for any $t \in \mathbb{N}$, $a_{i1}a_{i2}\cdots a_{it}N \subseteq P$ for $a_{ij} \in \{a_1, a_2, \dots, a_n\}$. Since P is l-prime we have $N \subseteq P$ or $\mathcal{A}M \subseteq P$. Hence P is a prime submodule. Let $\mathcal{A} \triangleleft R$ such that $\mathcal{A}M \not\subseteq P$. $\mathcal{A}m \not\subseteq P$ for some $m \in M$. Since P is l-prime, there exists $\{a_1, a_2, \dots, a_n\} \subseteq \mathcal{A}$ such that $a_{i1}a_{i2}\cdots a_{ii}\mathcal{A}m \not\subseteq P$ for any $i \geq 1$, where $a_{ij} \in \mathcal{A}$. Hence, $a_{i1}a_{i2}\cdots a_{ii}M \not\subseteq P$ for any $i \geq 1$ and $a_{ij} \in \mathcal{A}$.

 $(2) \Rightarrow (1)$ Let $\mathcal{A} \triangleleft R$ and $N \leq M$ such that $N \not\subseteq P$ and $\mathcal{A}M \not\subseteq P$. Since P is prime, (P:M) = (P:N). From our assumption, there exists a finite subset $F = \{a_1, a_2, \cdots, a_n\} \subseteq \mathcal{A}$ such that $a_{i1}a_{i2}\cdots a_{ii}M \not\subseteq P$ for every natural number $i \geq 1$ and $a_{ij} \in F$. Hence, $a_{i1}a_{i2}\cdots a_{ii}N \not\subseteq P$ for all $1 \leq i \in \mathbb{N}$ and $a_{ij} \in F$. Thus, P is an l-prime submodule.

(2) \Leftrightarrow (3) This is clear since $\mathcal{L}(R/(P:M)) = 0$ if and only if R/(P:M) contains no nonzero locally nilpotent ideals.

(3) \Rightarrow (4) Let *P* is a prime submodule such that $\mathcal{L}(R/(P:N) = 0$. Now let $N \leq P$ such that $N \not\subseteq P$. Since *P* is a prime submodule, we have (P:N) = (P:M) and from our assumption $\mathcal{L}(R/(P:N)) = \mathcal{L}(R/(P:M)) = 0$. This proves 4.

 $(4) \Rightarrow (3)$ Let P is a prime submodule such that $\mathcal{L}(R/(P:N) = 0$ for all $N \leq P$ such that $N \not\subseteq P$. Since P is a prime submodule and $N \not\subseteq P$, we have (P:N) = (P:M) and from our assumption $\mathcal{L}(R/(P:N)) = \mathcal{L}(R/(P:M)) = 0$. This proves 3.

 $(5) \Rightarrow (1)$ Let $\mathcal{A} \triangleleft R, N \leq M$ such that $\mathcal{A}M \not\subseteq P$ and $N \not\subseteq P$. There exists $a \in \mathcal{A}$ such that $aM \not\subseteq P$ and $m \in N \setminus P$. So, there exists $F = \{a_1, \dots, a_n\} \subseteq (a) \subseteq \mathcal{A}$ such that $a_{i1} \cdots a_{ii} < m > \not\subseteq P$ for all $i \geq 1$. Hence $a_{i1}a_{i2} \cdots a_{ii}N \not\subseteq P$ for all $i \geq 1$. Therefore P is l-prime.

 $(1) \Rightarrow (5)$ Suppose $m \in M \setminus P$ and $a \in R$ such that $aM \not\subseteq P$. Then $(a)M \not\subseteq P$ and $\langle m \rangle \not\subseteq P$. Since P is *l*-prime there exists $F = \{a_1, \dots, a_n\} \subseteq (a)$ such that $a_{i1}a_{i2}\cdots a_{ii} \langle m \rangle \not\subseteq P$ for all $i \geq 1$.

(6) \Rightarrow (3) Suppose *P* is a prime submodule and (*P* : *M*) is an *l*-prime ideal of *R*. By definition of *l*-prime ideals, (*P* : *M*) is a prime ideal and $\mathcal{L}(R/(P:M)) = 0$. It follows that *P* is a prime submodule and $\mathcal{L}(R/(P:M)) = 0$ which is 3.

 $(3) \Rightarrow (6)$ Suppose that P is a prime submodule of M and $\mathcal{L}(R/(P:M)) = 0$. Then (P:M) is a prime ideal of R and $\mathcal{L}(R/(P:M)) = 0$. So, by definition (P:M) is an *l*-prime ideal of R.

 $(6) \Rightarrow (7)$ Let P be a prime submodule of M and (P:M) an *l*-prime ideal of R. Now, let $N \leq M$ with $N \not\subseteq P$. Since P is a prime submodule and $N \not\subseteq P$, we have (P:N) = (P:M) and from our assumption (P:N) is an *l*-prime ideal of R. $(7) \Rightarrow (6)$. Let P be a prime submodule of M and (P:N) is an *l*-prime ideal of R for all $N \leq M$ with $N \not\subseteq P$. Since P is a prime submodule and $N \not\subseteq P$, we have (P:N) = (P:M) and from our assumption (P:M) is an *l*-prime ideal of R. \Box

P is an *l*-prime submodule of M if and only if M/P is an *l*-prime module.

Definition 2.3. A module M is *prime* if the zero submodule of M is a prime submodule.

Proposition 2.4. If R is a unital ring, then R is l-prime if and only if $_{R}R$ is an l-prime module.

Proof. We know that R is a prime ring if and only if $_RR$ is a prime module. R prime implies (0:R) = 0. Hence, whenever R is prime, $\mathcal{L}(R) = 0$ if and only if $\mathcal{L}(R/(0:R)) = 0$. It follows that: R is prime and $\mathcal{L}(R) = 0$ if and only if $_RR$ is prime and $\mathcal{L}(R/(0:R)) = 0$, i.e., R is l-prime if and only if $_RR$ is l-prime.

Corollary 2.5. For any unital ring R, $\mathcal{L}(R) = \mathcal{L}(_RR)$.

Example 2.6. Any maximal submodule is *l*-prime, hence any simple module is *l*-prime.

Proposition 2.7. For any submodule P of $_RM$,

s-prime $\Rightarrow l$ -prime $\Rightarrow p$ rime.

Proof. Suppose P is prime and $\mathcal{U}(R/(P:M)) = 0$. Since for rings $\mathcal{L} \subseteq \mathcal{U}$, we have $\mathcal{L}(R/(P:M)) = 0$. So, P is *l*-prime. The last implication is trivial. \Box

Corollary 2.8. For any module M,

$$\beta(M) \subseteq \mathcal{L}(M) \subseteq \mathcal{U}(M).$$

Example 2.9. Any strictly prime submodule (as defined by Dauns in [6]) is sprime (see [11]). Hence, it is l-prime by Proposition 2.7.

Example 2.10. In [18, Section 2.2], an example of a ring R which is prime and locally nilpotent was constructed. Hence R is prime but not l-prime. Thus, the module $M = {}_{R}R$ is prime but not l-prime.

Example 2.11. In [18, Section 2.3], an example of a prime nil ring R which is not locally nilpotent was constructed. Hence R is l-prime but not s-prime. Thus, the module $M = {}_{R}R$ is l-prime but not s-prime.

Theorem 2.12. For modules over commutative rings,

s-prime \Leftrightarrow l-prime \Leftrightarrow prime.

Hence,

$$\beta(M) = \mathcal{L}(M) = \mathcal{U}(M).$$

Proof. Follows from Proposition 2.7 and the fact that prime and *s*-prime are the same for modules over commutative rings, see [10]. \Box

3. Semi *l*-prime submodules

An ideal \mathcal{I} of a ring R is semi *s*-prime (resp. semi *l*-prime) if $\mathcal{U}(R/I) = 0$ (resp. $\mathcal{L}(R/I) = 0$). A submodule P of an R-module M is a semi *s*-prime [15] submodule if for all $\mathcal{A} \triangleleft R$ and every $N \leq M$ with $a \in \mathcal{A}$ and $N \not\subseteq P$ such that $a^n N \subseteq P$ for some $n \in \mathbb{N}$, then $\mathcal{A}N \subseteq P$. It was shown in [15] that P is a semi *s*-prime submodule if and only if $\mathcal{U}(R/(P:N)) = 0$ for all $N \leq M$ with $N \not\subseteq P$.

Definition 3.1. *P* is a *semi l-prime* submodule of *M*, if for all $A \triangleleft R$, for all $N \leq M$ such that $N \not\subseteq P$ and for every finite subset $F = \{a_1, a_2, \dots, a_n\} \subseteq A$, there exists $T = T(F) \in \mathbb{N}$ such that for any product of *m* elements (*m* less or equal to *T*) consisting of the a_i 's we have $a_{i1} \cdots a_{im} N \subseteq P$ implies $AN \subseteq P$.

Proposition 3.2. For any submodule P of an R-module M, the following statements are equivalent:

- (1) P is a semi *l*-prime submodule of $_RM$;
- (2) $\mathcal{L}(R/(P:N)) = 0$ for all $N \leq M$ with $N \not\subseteq P$.

Proof. Follows from the definition of a semi *l*-prime submodule and the notion of a locally nilpotent ideal. \Box

Theorem 3.3. A submodule P of $_RM$ is l-prime if and only if P is prime and semi l-prime.

Proof. Follows from Proposition 2.2 and Proposition 3.2.

Proposition 3.4. For any module $_RM$,

- (1) $\mathcal{L}(M) = \cap \{P : P \leq M, P \text{ l-prime submodule of } M\}$ is a semi l-prime submodule;
- (2) *P* is a semi *l*-prime submodule of $_RM$ if and only if (P:N) is a semi *l*-prime ideal of *R* for any $N \leq M$ with $N \not\subseteq P$.

Proof. (1) Let $\mathcal{A} \triangleleft R$, $N \leq M$ such that $\mathcal{A}N \not\subseteq \mathcal{L}(M)$. Then there exists an *l*-prime submodule P such that $\mathcal{A}N \not\subseteq P$. From Proposition 2.2, there exists a finite subset $F = \{a_1, a_2, \cdots, a_n\} \subseteq \mathcal{A} \setminus (P:N)$ such that $a_{i1}a_{i2} \cdots a_{ii}N \not\subseteq P$ for all $1 \leq i \in \mathbb{N}$ with $a_{ij} \in F$. Hence, $a_{i1}a_{i2} \cdots a_{ii}N \not\subseteq \mathcal{L}(M)$ for all $i \geq 1$ with $a_{ij} \in F$.

(2) Follows from Proposition 3.2 and the definition of semi l-prime ideals. \Box

Definition 3.5. A submodule P of an R-module M is

- (1) semiprime [6] if for all $a \in R$ and every $m \in M$, if $aRam \subseteq P$ then $am \in P$;
- (2) classical semiprime [3] if for all $\mathcal{A} \triangleleft R$ and every $N \leq M$, if $\mathcal{A}^2 N \subseteq P$ then $\mathcal{A}N \subseteq P$.

Remark 3.6. Classical semiprime submodules are called "semiprime" by Behboodi in [3].

Proposition 3.7. For any submodule P,

 $semi \ s$ -prime \Rightarrow $semi \ l$ -prime \Rightarrow $classical \ semiprime.$

Proof. Suppose P is a semi *s*-prime submodule of M, then $\mathcal{U}(R/(P:N)) = 0$ for all $N \leq M$ with $N \not\subseteq P$. We know $\mathcal{L} \subseteq \mathcal{U}$, hence $\mathcal{L}(R/(P:N)) = 0$ for all $N \leq M$ with $N \not\subseteq P$, i.e., P is semi *l*-prime. Let P be a semi *l*-prime submodule of $_RM$. Suppose $\mathcal{A} \triangleleft R$ and $N \leq M$ such that $\mathcal{A}N \not\subseteq P$. Then there exists $F = \{a_1, \dots a_n\} \subseteq \mathcal{A}$ such that for all $i \geq 1$, $a_{i1}a_{i2} \cdots, a_{ii}N \not\subseteq P$ for $a_{ij} \in F$. Hence for i = 2, there exists $a_{21}, a_{12} \in F$ such that $a_{21}a_{12}N \not\subseteq P$, i.e., $\mathcal{A}^2N \not\subseteq P$ and hence P is classical semiprime. \Box

Proposition 3.8. For modules over a commutative ring,

 $semi \ s$ -prime \Leftrightarrow $semi \ l$ -prime \Leftrightarrow $classical \ semiprime \ \Leftrightarrow$ semiprime.

Proof. Suppose R is commutative and P is classical semiprime. Let $\mathcal{A} \triangleleft R$ and $\mathcal{A}N \not\subseteq P$ for some $N \leq M$. Then there is $a \in \mathcal{A}$ such that $aN \not\subseteq P$. P semiprime implies (P:N) is semiprime and because R is commutative (P:N) is completely semiprime, hence $a^n \notin (P:N)$ for all $n \in \mathbb{N}$, i.e., $a^nN \not\subseteq P$ for all $n \in \mathbb{N}$ which shows that P is semi *s*-prime. The rest follows from Proposition 3.7 and the fact that for commutative rings the notions of semiprime and classical semiprime are the same. \Box

Remark 3.9. We have seen in Proposition 3.4 that any intersection of l-prime submodules is a semi l-prime submodule. The converse does not hold in general. For over a commutative ring, prime is the same as l-prime (see Theorem 2.12) and semiprime is the same as semi l-prime, (see Proposition 3.8). Now, let $R = \mathbb{Z}[x]$ and $F = R \oplus R$. If $f := (2, x) \in F$ and P = 2R + Rx which is a maximal ideal of R, then N = Pf is a semiprime submodule of F which is not an intersection of prime submodules, see [12, p.3600].

Definition 3.10. Let R be a ring and M an R-module. A nonempty set $L \subseteq M \setminus \{0\}$ is called an l-system if, for each $\mathcal{A} \triangleleft R$ and for all $J, K \leq M$, if $(K+J) \cap L \neq \emptyset$ and $(K + \mathcal{A}M) \cap L \neq \emptyset$, then there exists a finite subset $F = \{a_1, a_2, \dots, a_n\} \subseteq \mathcal{A}$ such that $K + (a_{i1}a_{i2} \cdots a_{ii}J) \cap L \neq \emptyset$ for any $i \geq 1$ and $a_{ij} \in F$.

It is easy to see that every s-system as defined in [10] is an *l*-system and any *l*-system is an *m*-system as defined in [4].

Corollary 3.11. Let M be an R-module. A submodule P of M is l-prime if and only if $M \setminus P$ is an l-system of M.

Proof. (\Rightarrow) Suppose $L := M \setminus P$. Let $\mathcal{A} \triangleleft R$ and $K, J \leq M$ such that $(K+J) \cap L \neq \emptyset$ and $(K+\mathcal{A}M) \cap L \neq \emptyset$. Suppose that for every finite subset $F = \{a_1, a_2, \dots a_n\} \subseteq \mathcal{A}$ there exists $t = t(F) \in \mathbb{N}$ such that for any product of t elements $a_{i1}a_{i2} \cdots a_{it}$ from F we have $(K + a_{i1}a_{i2} \cdots a_{it}J) \cap L = \emptyset$. Hence $a_{i1}a_{i2} \cdots a_{it}J \subseteq P$. Since P is l-prime, $J \subseteq P$ or $\mathcal{A}M \subseteq P$. It follows that $(J+K) \cap L = \emptyset$ or $(\mathcal{A}M+K) \cap L = \emptyset$, a contradiction.

(⇐) Suppose $\mathcal{A} \triangleleft R, N \leq M$ and for every finite subset $F = \{a_1, a_2, \cdots, a_n\} \subseteq \mathcal{A}$ there exists $t = t(F) \in \mathbb{N}$ such that for any product of t elements a_{i1}, \cdots, a_{it} from $F, a_{i1}a_{i2}\cdots a_{it}J \subseteq P$. If $J \not\subseteq P$ and $\mathcal{A}M \not\subseteq P, J \cap L \neq \emptyset$ and $\mathcal{A}M \cap L \neq \emptyset$. Since $M \setminus P$ is an l-system, there exists a finite subset $\{b_1, b_2, \cdots, b_m\} \subseteq \mathcal{A}$ such that $b_{i1}b_{i2}\cdots b_{ii}J \cap L \neq \emptyset$ for every $i \geq 1$. This leads to a contradiction. Hence $J \subseteq P$ or $\mathcal{A}M \subseteq P$ and therefore P is an l-prime submodule of M.

Lemma 3.12. Let M be an R-module, $L \subseteq M$ an l-system and P a submodule of M maximal with respect to the property that $P \cap L = \emptyset$. Then, P is an l-prime submodule of M.

Proof. Let $\mathcal{A} \triangleleft R$ and $J \leq M$. Suppose that for any finite subset $F = \{a_1, a_2, \cdots, a_n\}$ $\subseteq \mathcal{A}$ there exists a natural number n such that for the product of any n elements a_{i1}, \cdots, a_{in} from F we have $a_{i1}a_{i2}\cdots a_{in}J \subseteq P$. If $J \not\subseteq P$ and $\mathcal{A}M \not\subseteq P$ then $(J+P) \cap L \neq \emptyset$ and $(\mathcal{A}M+P) \cap L \neq \emptyset$. Since L is an l-system, there exists $\{b_1, b_2, \cdots b_m\} \subseteq \mathcal{A}$ such that $(b_{i1}b_{i2}\cdots b_{ii}J+P) \cap L \neq \emptyset$ for every $i \geq 1$ and $b_{ij} \in \{b_1, \cdots b_m\}$. But for this finite subset $\{b_1, \cdots b_m\}$ it follows from above that there exists a natural number n such that for the product of any n elements from the set $b_{i1}b_{i2}\cdots b_{in}J \subseteq P$. Hence $P \cap L \neq \emptyset$. Thus, we must have $J \subseteq P$ or $\mathcal{A}M \subseteq P$ and therefore P must be an l-prime submodule. \Box

Definition 3.13. Let R be a ring and M an R-module. For $N \leq M$, if there is an l-prime submodule containing N, then we define

 $l.\sqrt{N} := \{m \in M : \text{ every } l\text{-system of } M \text{ containing } m \text{ meets } N\}.$

We write $l.\sqrt{N} = M$ whenever there are no *l*-prime submodules of *M* containing *N*.

Theorem 3.14. Let M be an R-module and $N \leq M$. Then, either $l.\sqrt{N} = M$ or $l.\sqrt{N}$ equals the intersection of all *l*-prime submodules of M containing N.

Proof. Suppose $l \cdot \sqrt{N} \neq M$. This means

 $\beta^l(N) := \cap \{P : P \text{ is an } l \text{-prime submodule of } M \text{ and } N \subseteq P\} \neq \emptyset.$

Both $l.\sqrt{N}$ and N are contained in the same *l*-prime submodules. By definition of $l.\sqrt{N}$ it is clear that $N \subseteq l.\sqrt{N}$. Hence, any *l*-prime submodule of M which contains $l.\sqrt{N}$ must necessarily contain N. Suppose P is an *l*-prime submodule of M such

that $N \subseteq P$, and let $t \in l.\sqrt{N}$. If $t \notin P$, then the complement of P, C(P) in M is an l-system containing t and therefore we would have $C(P) \cap N \neq \emptyset$. However, since $N \subseteq P$, $C(P) \cap P = \emptyset$ and this contradiction shows that $t \in P$. Hence $l.\sqrt{N} \subseteq P$ as we wished to show. From this we have $l.\sqrt{N} \subseteq \beta^l(N)$. Conversely, assume $s \notin l.\sqrt{N}$. Then there exists an l-system L such that $l \in L$ and $L \cap N = \emptyset$. From Zorn's lemma, there exists a submodule $P \supseteq N$ which is maximal with respect to $P \cap L = \emptyset$. From Lemma 3.12, P is an l-prime submodule of M and $l \notin P$, as desired.

Proposition 3.15. If $\mathcal{P} \triangleleft R$, then there is an *l*-prime R -module M with $\mathcal{P} = (0 : M)$ if and only if \mathcal{P} is an *l*-prime ideal of R.

Proof. Suppose M is an l-prime module. Then by Proposition 2.2, $\mathcal{P} = (0:M)$ is an l-prime ideal of R. For the converse, let \mathcal{P} be an l-prime ideal of R. $M = R/\mathcal{P}$ is an R-module with the usual operation and $\mathcal{P} = (0:M)$. (0:M) l-prime implies (0:M) is prime and $\mathcal{L}(R/(0:M)) = 0$. From [8, Proposition 3.14.16] (0:M) prime implies M is a prime module. Thus M is a prime module and $\mathcal{L}(R/(0:M)) = 0$ which proves that M is an l-prime module.

Corollary 3.16. A ring R is an l-prime ring if and only if there exists a faithful l-prime R-module.

Example 3.17. If R is a domain, then $_RR$ is a faithful l-prime module since every domain is an l-prime ring.

Throughout the remaining part of this section rings have unity and all modules are unital left modules.

For any module M, we define the Levitzki radical $\mathcal{L}(M)$ as $\mathcal{L}(0)$, i.e.,

 $\mathcal{L}(0) := \{m \in M, \text{ every } l\text{-system in } M \text{ which contains } m \text{ also contains } 0\}.$

From Theorem 3.14, we have

$$\mathcal{L}(M) = \bigcap \{ K : K \le M, M/K \text{ is } l\text{-prime} \}$$

which is a radical by [13, Proposition 1] since *l*-prime modules are closed under taking non-zero submodules.

Proposition 3.18. For any R-module M,

- (1) $\mathcal{L}(\mathcal{L}(M)) = \mathcal{L}(M)$, *i.e.*, \mathcal{L} is idempotent;
- (2) $\mathcal{L}(M)$ is a characteristic submodule of M;
- (3) If M is projective then $\mathcal{L}(R)M = \mathcal{L}(M)$.

Proof. Follows from [5, Proposition 1.1.3].

Proposition 3.19. For any $M \in R$ -mod,

(1) if $M = \bigoplus_{\lambda} M_{\lambda}$ is a direct sum of submodules $M_{\lambda}(\lambda \in \Lambda)$, then

$$\mathcal{L}(M) = \bigoplus_{\Lambda} \mathcal{L}(M_{\lambda})$$

(2) if $M = \prod_{\Lambda} M_{\lambda}$ is a direct product of submodules $M_{\lambda}(\lambda \in \Lambda)$, then

$$\mathcal{L}(M) \subseteq \prod_{\Lambda} \mathcal{L}(M_{\lambda}).$$

Proof. Follows from [5, Proposition 1.1.2].

4. The radicals $\mathcal{L}(_RR)$ and $\mathcal{L}(R)$

Lemma 4.1. For any associative ring R, $\mathcal{L}(_RR) \subseteq \mathcal{L}(R)$.

Proof. Let $x \in \mathcal{L}(RR)$ and I be an l-prime ideal of R. From Proposition 3.15, we have R/I is an l-prime R-module. Hence, $x \in I$ and we have $x \in \mathcal{L}(R)$, i.e., $\mathcal{L}(RR) \subseteq \mathcal{L}(R)$.

Remark 4.2. In general the containment in Lemma 4.1 is strict.

Example 4.3. Let $R = \{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} : x, y \in \mathbb{Z}_2 \}$ and $M = {}_R R$. It is easy to check that (0) is an l-prime submodule of ${}_R R$. Hence, $\mathcal{L}({}_R R) = 0$. Now, we have $(0:R)_R$ is an l-prime ideal of R, $(0:R)_R \neq (0)$. For if $b \neq 0$, $b \in \mathbb{Z}_2$, then $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} R = 0$. Hence, $\mathcal{L}(R) \subseteq (0:R)_R$. But since $(0:R)_R(0:R)_R = 0 \subseteq \mathcal{L}(R)$ and $\mathcal{L}(R)$ is a semiprime ideal, we have $(0:R)_R \subseteq \mathcal{L}(R)$. Hence, $\mathcal{L}(R) = (0:R)_R \neq 0$.

Lemma 4.4. For any ring R and any R-module M,

$$\mathcal{L}(R) \subseteq (\mathcal{L}(M) : M).$$

Proof. We have $(\mathcal{L}(M) : M) = (\bigcap_{S \leq M} S : M) = \bigcap_{S \leq M} (S : M)$, where S is an *l*-prime submodule of M. Since (S : M) is an *l*-prime ideal of R for each *l*-prime submodule S of M, we get $\mathcal{L}(R) \subseteq (\mathcal{L}(M) : M)$.

Remark 4.5. In general, $\mathcal{L}(R)M \subset \mathcal{L}(M)$ even over a commutative ring. For let $R = \mathbb{Z}$ and $M = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}$. Since R is commutative, $\mathcal{L}(M) = \beta(M)$. From [4, Example 3.4], we have $\beta(M) = \mathbb{Z}_{p^{\infty}}$. But $\beta(R) = \mathcal{L}(R) = 0$. Hence, $0 = \mathcal{L}(R)M \subset \mathcal{L}(M) = \mathbb{Z}_{p^{\infty}}$.

We recall that, the Jacobson radical $\operatorname{Rad}(M)$ of a module M is the intersection of all maximal submodules of M.

85

Theorem 4.6. If M is a module over a left Artinian ring R, then

$$\beta(M) = \mathcal{L}(M) = \mathcal{U}(M) = Rad(M).$$

Proof. Since every maximal submodule is *s*-prime, we have

$$\mathcal{U}(M) \subseteq \operatorname{Rad}(M) = \operatorname{Jac}(R)M.$$

Since R is left Artinian $\mathcal{L}(R) = \operatorname{Jac}(R)$. Hence,

$$\mathcal{L}(M) \subseteq \mathcal{U}(M) \subseteq \operatorname{Rad}(M) = \operatorname{Jac}(R)M = \mathcal{L}(R)M \subseteq \mathcal{L}(M).$$

Proposition 4.7. For any ring R, $\mathcal{L}(R) = (\mathcal{L}(_RR) : R)$.

Proof. From Lemma 4.4, $\mathcal{L}(R) \subseteq (\mathcal{L}(_RR) : R)$. Since $\mathcal{L}(_RR) \subseteq \mathcal{L}(R)$ we have $\mathcal{L}(R) \subseteq (\mathcal{L}(_RR) : R) \subseteq (\mathcal{L}(R) : R)$. Let $x \in (\mathcal{L}(R) : R)$. Hence $xR \subseteq \mathcal{L}(R) = \bigcap_{\substack{\mathcal{P} \ l\text{-prime in } R}} \mathcal{P} \subseteq \mathcal{P}$ for all *l*-prime ideals \mathcal{P} of R. Since $xR \subseteq \mathcal{P}$ for \mathcal{P} *l*-prime, we have $x \in \mathcal{P}$ and $x \in \mathcal{L}(R)$. Hence, $(\mathcal{L}(R) : R) \subseteq \mathcal{L}(R)$.

Proposition 4.8. For all *R*-modules *M*,

- (1) $\mathcal{L}(M) = \{x \in M : Rx \subseteq \mathcal{L}(M)\};$
- (2) if $\mathcal{L}(R) = R$, then $\mathcal{L}(M) = M$.

Proof. (1) Since $\mathcal{L}(M) \leq M$, we have $R\mathcal{L}(M) \subseteq \mathcal{L}(M)$. Conversely, let $x \in M$ with $Rx \subseteq \mathcal{L}(M)$. Hence $Rx \subseteq P$ for all *l*-prime submodules P of M. Since P is also a prime submodule, we have $x \in P$ and hence $x \in \mathcal{L}(M)$.

(2) $R = \mathcal{L}(R)$ gives $R \subseteq (\mathcal{L}(M) : M)$ from Lemma 4.4. Hence $RM \subseteq \mathcal{L}(M)$ and from (1), we have $M \subseteq \mathcal{L}(M)$, i.e., $M = \mathcal{L}(M)$.

Proposition 4.9. Let R be any ring. Then, any of the following conditions implies $\mathcal{L}(R) = \mathcal{L}(_RR).$

- (1) R is commutative;
- (2) $x \in xR$ for all $x \in R$, e.g., if R has an identity or R is Von Neumann regular.

Proof. (1) Since R is commutative, it follows from Proposition 4.7 and Proposition 4.8 that $\mathcal{L}(R) \subseteq \mathcal{L}(R) \subseteq \mathcal{L}(R)$ and $\mathcal{L}(R) = \mathcal{L}(R)$.

(2) Let $x \in \mathcal{L}(R)$, then from Proposition 4.7, $xR \subseteq \mathcal{L}(R)$ and since $x \in xR$, we get $x \in \mathcal{L}(R)$ such that $\mathcal{L}(R) = \mathcal{L}(R)$.

5. A special class of *l*-prime modules

A class ρ of associative rings is called a special class if ρ is hereditary, consists of prime rings and is closed under essential extensions, cf., [8, p.80]. Andrunakievich and Rjabuhin in [1] extended this notion to modules and showed that prime modules, irreducible modules, simple modules, modules without zero divisors, etc form special classes of modules. De La Rosa and Veldsman in [7] defined a weakly special class of modules. We follow the definition in [7] of a weakly special class of modules to define a special class of modules.

Definition 5.1. For a ring R, let \mathcal{K}_R be a (possibly empty) class of R-modules. Let $\mathcal{K} = \bigcup \{ \mathcal{K}_R : R \text{ a ring} \}$. \mathcal{K} is a special class of modules if it satisfies:

- **S1**. $M \in \mathcal{K}_R$ and $I \triangleleft R$ with $I \subseteq (0:M)_R$ implies $M \in \mathcal{K}_{R/I}$.
- **S2**. If $I \triangleleft R$ and $M \in \mathcal{K}_{R/I}$, then $M \in \mathcal{K}_R$.
- **S3**. $M \in \mathcal{K}_R$ and $I \triangleleft R$ with $IM \neq 0$ implies $M \in \mathcal{K}_I$.
- **S4.** $M \in \mathcal{K}_R$ implies $RM \neq 0$ and $R/(0:M)_R$ is a prime ring.
- **S5.** If $I \triangleleft R$ and $M \in \mathcal{K}_I$, then there exists $N \in \mathcal{K}_R$ such that $(0:N)_I \subseteq (0:M)_I$.

Remark 5.2. It is known that the class of all prime R-modules M with $RM \neq 0$ is special hence satisfies the conditions S1 through S5.

Theorem 5.3. Let R be any ring and

 $\mathcal{M}_R := \{M : M \text{ is an } l\text{-prime } R\text{-module with } RM \neq 0\}.$

If $\mathcal{M} = \bigcup \mathcal{M}_R$, then \mathcal{M} is a special class of R-modules.

Proof. S1. Let $M \in \mathcal{M}_R$ and $I \triangleleft R$ with IM = 0. M is an R/I-module via (r+I)m = rm. Since $M \in \mathcal{M}_R$, M is a prime R-module and $\mathcal{L}(R/(0:M)_R) = 0$. Since M is also a prime R/I-module we only need to show that $\mathcal{L}((R/I)/(0:M)_{R/I}) = 0$. Because

$$(R/I)/(0:M)_{R/I} = (R/I)/((0:M)_R/I) \cong R/(0:M)_R,$$

we have $\mathcal{L}((R/I)/(0:M)_{R/I}) = 0$ and therefore $M \in \mathcal{M}_{R/I}$.

S2. Let $I \triangleleft R$ and $M \in \mathcal{M}_{R/I}$. Then M is a prime R/I-module and $\mathcal{L}((R/I)/(0:M)_{R/I}) = 0$. From

$$(R/I)/(0:M)_{R/I} = (R/I)/((0:M)_R/I) \cong R/(0:M)_R,$$

we get $\mathcal{L}(R/(0:M)_R) = 0$. Thus, $M \in \mathcal{M}_R$.

S3. Suppose $M \in \mathcal{M}_R$ and $I \triangleleft R$ with $IM \neq 0$. Then M is a prime R-module and $\mathcal{L}(R/(0:M)_R) = 0$. Since

$$I/(0:M)_I = I/((0:M)_R \cap I) \cong (I+(0:M)_R)/(0:M)_R \triangleleft R/(0:M)_R$$

and a Levitzki semisimple class is hereditary, we have $\mathcal{L}(I/(0:M)_I) = 0$. Hence, $M \in \mathcal{M}_I$. Therefore, $M \in \mathcal{M}_I$.

S4. Let $M \in \mathcal{M}_R$. Hence $RM \neq 0$. Since $(0 : M)_R$ is an *l*-prime ideal of R, $R/(0 : M)_R$ is an *l*-prime ring and hence a prime ring.

S5. Let $I \triangleleft R$ and $M \in \mathcal{M}_I$. Since M is an l-prime I-module, $(0:M)_I$ is an l-prime ideal of I. Now, $(0:M)_I \triangleleft I \triangleleft R$ and $I/(0:M)_R$ an l-prime ring implies $(0:M)_I \triangleleft R$. Choose $K/(0:M)_I \triangleleft R/(0:M)_I$ maximal with respect to $I/(0:M)_I \cap K/(0:M)_I = 0$. Then, $I/(0:M)_I \cong (I+K)/K \triangleleft \cdot R/K$ by [8, Lemma 3.2.5]. Since $I/(0:M)_I \triangleleft \cdot R/K$ and $I/(0:M)_I$ an l-prime ring R/K is l-prime. Let N = R/K. N is an R-module. Clearly, $RN \neq 0$. From Proposition 3.15, we have $(0:N)_R = K$. We show $(0:N)_I \subseteq (0:M)_I$. Let $x \in (0:N)_I$. Then xR/K = 0, i.e., $xR \subseteq K$. Now, $xR \subseteq I \cap K$ and from definition of $K/(0:M)_I$, we have $xI \subseteq (0:M)_I$ and $(0:M)_I$. Hence xRM = 0 and since $xIM \subseteq xRM$ we have $xI \subseteq (0:M)_I$.

Proposition 5.4. If \mathcal{M}_s is the special class of *l*-prime modules, then the special radical induced by \mathcal{M}_s on a ring R is \mathcal{L} .

Proof. Let R be a ring. From Proposition 3.15, we have $\mathcal{L}(R) = \cap \{(0:M)_R : M \text{ is an } l\text{-prime } R\text{-module}\} = \cap \{I \triangleleft R : I \text{ is an } l\text{-prime ideal}\}.$

Acknowledgment. We are grateful to the referee for the valuable comments.

References

- V. A Andrunakievich and Ju M. Rjabuhin, Special modules and special radicals, Soviet Math. Dokl., 3 (1962), 1790–1793. Russian original: Dokl. Akad. Nauk SSSR., 147 (1962), 1274–1277.
- [2] A. M. Babic, *Levitzki radical*, Doklady Akad. Nauk. SSSR., 126 (1950), 242-243 (Russian).
- [3] M. Behboodi, A generalization of Baer's lower nilradical for modules, J. Algebra Appl., 6 (2007), 337–353.
- [4] M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar., 122 (2008), 293–306.
- [5] L. Bican, T. Kepka and P. Nemec, Rings, modules and preradicals, Lecture Notes in Pure and Applied Mathematics no.75, Marcel Dekker Inc., New York, 1982.
- [6] J. Dauns, Prime modules, J. Reine. Angew. Math., 298 (1978), 156–181.
- [7] B. De La Rosa and S. Veldsman, A relationship between ring radicals and module radicals, Quaest. Math., 17 (1994), 453–467.

- [8] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, New York: Marcel Dekker, 2004.
- [9] N. J. Groenewald and P. C. Potgieter, A note on the Levitzki radical of a near-ring, J. Austral. Math. Soc. (Series A), 36 (1984), 416-420.
- [10] N. J. Groenewald and D. Ssevviiri, Köthe upper nilradical for modules, Acta Math. Hungar., 138(4) (2013), 295–306.
- [11] N. J. Groenewald and D. Ssevviiri, 2-primal modules, J. Algebra Appl., 12(5) (2013), DOI:10.1142/S021949881250226X.
- [12] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra, 20 (1992), 3593–3602.
- [13] W. K. Nicholson and J. F. Watters, *The strongly prime radical*, Proc. Amer. Math. Soc., 76 (1979), 235–240.
- [14] L. H. Rowen, Ring theory, Academic Press, Inc., San Diego, 1991.
- [15] D. Ssevviiri, A contribution to the theory of prime modules, PhD Thesis, Nelson Mandela Metropolitan University, 2012.
- [16] A. P. J. Van der Walt, Contributions to ideal theory in general rings, Proc. Kon. Ned. Akad. Wetensch., Ser. A., 67 (1964), 68–77.
- [17] A. P. J. Van der Walt, On the Levitzki nil radical, Archiv Math., XVI (1965), 22-24.
- [18] R. Wiegandt, Rings decisive in radical theory, Quaest. Math., 22 (1999), 303-328.

Nico J. Groenewald

Department of Mathematics and Applied Mathematics Nelson Mandela Metropolitan University 77000 Port Elizabeth 6031 South Africa e-mail: nico.groenewald@nmmu.ac.za

David Ssevviiri

Department of Mathematics and Applied Mathematics Nelson Mandela Metropolitan University 77000 Port Elizabeth 6031 South Africa e-mail: david.ssevviiri@nmmu.ac.za