EXTENSIONS OF GENERALIZED n-LIKE RINGS

Rui Qin and Orhan Gürgün
Received: 29 May 2013; Revised: 30 November 2013
Communicated by Abdullah Harmancı
Dedicated to the memory of Professor Efraim P. Armendariz

Abstract

Let n be a fixed positive integer. A ring R is a J - n-like ring provided that $\left(a-a^{n}\right)\left(b-b^{n}\right) \in J(R)$ for all a, b in R. If $\left(a-a^{n}\right)\left(b-b^{n}\right) \in P(R)$ for all $a, b \in R$, then R is called a P-n-like ring. If $R=\mathbb{Z}_{(p)} \cap \mathbb{Z}_{(q)}=$ $\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\, m, n \in \mathbb{Z}, p \nmid n, q \nmid n\right\}$, where p, q are distinct prime integers, then it is shown that R is a $J-((p-1)(q-1)+1)$-like ring. R is a P - n-like ring if and only if R is a J - n-like ring and $J(R)=P(R)$. Also, if $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{s}^{r_{s}}$, where $p_{1}, p_{2}, \cdots, p_{s}$ are distinct primes, and $r_{1}, r_{2}, \cdots, r_{s} \in \mathbb{N}$, then we prove that \mathbb{Z}_{n} is a $P-\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring.

Mathematics Subject Classification (2010): 16D25, 16E50, 16N40.
Keywords: Generalized n-like rings, J - n-like rings, Jacobson radical, P - n-like rings, Prime radical.

1. Introduction

In [1], Foster introduced the concept of Boolean-like rings. Later, Yaqub concerned with a new class of rings which are called p-like rings ([2]). In fact, Booleanlike rings are easily seen to reduced to 2 -like rings. Then, Yaqub extended p-like rings to n-like rings ([3]), where n is assumed to be any integer ($n>1$), but not necessarily prime. In 1980, Moore continued to introduce generalized n-like rings, as an extension of n-like rings ([4]). In 1981, Tominaga and Yaqub characterized generalized n-like rings ([5]). After that, Yasuyuki Hirano and Takashi Suenaga also investigated generalized n-like rings and their properties ([6]).

In this paper, we introduce J - n-like rings and P - n-like rings, so as to extensions of these preceding rings. Let n be a fixed integer, a ring R is a J-n-like ring provided that $\left(a-a^{n}\right)\left(b-b^{n}\right) \in J(R)$ for all $a, b \in J(R)$, and if $\left(a-a^{n}\right)(b-$ $\left.b^{n}\right) \in P(R)$, then R is called a P-n-like ring. We show if $R=\mathbb{Z}_{(p)} \cap \mathbb{Z}_{(q)}=$ $\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\, m, n \in \mathbb{Z}, p \nmid n, q \nmid n\right\}$ where p, q are distinct primes, then R is a J - $((p-$ $1)(q-1)+1)$-like ring. Furthermore, R is a P - n-like ring if and only if R is a J-nlike ring and $P(R)=J(R)$. In particular, let $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{s}^{r_{s}}$ where $p_{1}, p_{2}, \cdots, p_{s}$
are distinct primes, and $r_{1}, r_{2}, \cdots, r_{s} \in \mathbb{N}$. Then \mathbb{Z}_{n} is a $P-\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring. Some related results are also obtained.

In what follows $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{n}, R[[x]], P(R), N i l(R), U(R)$ and $J(R)$ denote the natural numbers, integers, rational numbers, the ring of integers modulo n, the power series ring over a ring R, the prime radical, the set of nilpotent elements, the set of all invertible elements and the Jacobson radical of R, respectively.

2. J - n-like rings

We begin this section with the following definition.

Definition 2.1. Let n be a fixed integer. A ring R is called a J - n-like ring provided that $\left(a-a^{n}\right)\left(b-b^{n}\right) \in J(R)$ for all a, b in R.

Recall that a ring R is called a generalized n-like ring if R satisfies the polynomial identity $(x y)^{n}-x y^{n}-x^{n} y+x y=0$ for an integer $n>1$. It is well known that R is a generalized n-like ring if and only if R satisfies the polynomial identities $(x y)^{n}=x^{n} y^{n}$ and $\left(x-x^{n}\right)\left(y-y^{n}\right)=0$ (see [8, Lemma 3]). Clearly, every generalized n-like ring is a J - n-like ring. On the other hand if R is $J-n$-like, then R need not be generalized n-like ring (see Example 2.17).

Proposition 2.2. If R is a J-n-like ring, then $R / J(R)$ is commutative.
Proof. Let $x, y \in R$. Since R is a J - n-like ring, we have $\left(x-x^{n}\right)\left(y-y^{n}\right) \in J(R)$; that is, in $R / J(R)$, we get $\overline{\left(x-x^{n}\right)\left(y-y^{n}\right)}=\overline{0}$. Since $R / J(R)$ is semi-primitive, similar to the proof of [8, Lemma $1(3)]$, we see that $R / J(R)$ is commutative.

Corollary 2.3. Let R be a ring. Then R is a J-n-like ring if and only if $R / J(R)$ is a generalized n-like ring.

Proof. Assume that R is a J-n-like ring. Then $R / J(R)$ is commutative by Proposition 2.2. So R satisfies the polynomial identities $(\overline{a b})^{n}=\bar{a}^{n} \bar{b}^{n}$ and $\left(\bar{a}-\bar{a}^{n}\right)\left(\bar{b}-\bar{b}^{n}\right)=$ $\overline{0}$. Conversely, suppose that $R / J(R)$ is a generalized n-like ring. Then for every element a, b in R, we get $\left(\bar{a}-\bar{a}^{n}\right)\left(\bar{b}-\bar{b}^{n}\right)=\overline{0}$. Therefore $\left(a-a^{n}\right)\left(b-b^{n}\right) \in J(R)$. We readily obtain R is a $J-n$-like ring. The proof is completed.

Proposition 2.4. A ring R is J-n-like if and only if $R[[x]]$ is J-n-like.
Proof. It is clear by Corollary 2.3 because $R / J(R) \cong R[[x]] / J(R[[x]])$.
Corollary 2.5. If R is a J-n-like ring, then $\operatorname{Nil}(R) \subseteq J(R)$.

Proof. Let $a \in \operatorname{Nil}(R)$ with $a^{m}=0$ for some integer m. Then we obtain $\overline{a^{m}}=\overline{0}$ in $R / J(R)$. It follows, by Proposition $2.2, \bar{a} \in \operatorname{Nil}(R / J(R)) \subseteq J(R / J(R))=0$, so $a \in J(R)$. Hence $\operatorname{Nil}(R) \subseteq J(R)$.

Let $J^{\#}(R)$ denote the subset $\left\{x \in R \mid \exists n \in \mathbb{N}\right.$ such that $\left.x^{n} \in J(R)\right\}$ of R. The commutant of $a \in R$ is defined by $\operatorname{comm}(a)=\{x \in R \mid x a=a x\}$. If $R^{\text {qnil }}=\{a \in R \mid 1+a x \in U(R)$ for every $x \in \operatorname{comm}(a)\}$ and $a \in R^{q n i l}$, then a is said to be quasinilpotent [3]. It is obvious that $J(R) \subseteq J^{\#}(R) \subseteq R^{\text {qnil }}$ and $N i l(R) \subseteq J^{\#}(R) \subseteq R^{q n i l}$.

Lemma 2.6. If R is a J-n-like ring, then $J^{\#}(R)=R^{\text {qnil }}=\left\{a \in R \mid a^{2} \in J(R)\right\}$.
Proof. Let $a \in R^{\text {qnil }}$. By assumption, we have $\left(a-a^{n}\right)^{2}=a^{2}\left(1-a^{n-1}\right)^{2} \in J(R)$. Since a is quasinilpotent, we get $1-a^{n-1} \in U(R)$ and so $a^{2} \in J(R)$. This implies that $J^{\#}(R)=R^{\text {qnil }}=\left\{a \in R \mid a^{2} \in J(R)\right\}$.

Remark 2.7. By Corollary 2.5 and Lemma 2.6, if R is a J-n-like ring, then we have $\operatorname{Nil}(R) \subseteq J(R) \subseteq J^{\#}(R)=R^{\text {qnil }}$.

Proposition 2.8. A ring R is J-n-like if and only if eRe is J-n-like for all idempotent $e \in R$.

Proof. Let eae, ebe $\in e R e$. Then $\left(e a e-(e a e)^{n}\right)\left(e b e-(e b e)^{n}\right)=e\left[\left(e a e-(e a e)^{n}\right)(e b e-\right.$ $\left.\left.(e b e)^{n}\right)\right] e$. Since R is a J - n-like ring and $J(R)$ is an ideal, we have $\left(e a e-(e a e)^{n}\right)(e b e-$ $\left.(e b e)^{n}\right) \in J(R)$, therefore $e\left[\left(e a e-(e a e)^{n}\right)\left(e b e-(e b e)^{n}\right)\right] e \in e J(R) e=J(e R e)$; that is, $\left(e a e-(e a e)^{n}\right)\left(e b e-(e b e)^{n}\right) \in J(e R e)$. Thus the ring $e R e$ is also a J - n-like ring. The converse is trivial.

Lemma 2.9. If R_{1}, R_{2} are two J-n-like rings, then $R=R_{1} \oplus R_{2}$ is a J-n-like ring.

Proof. Let $(a, b),(c, d) \in R_{1} \oplus R_{2}$. Then

$$
\left((a, b)-(a, b)^{n}\right)\left((c, d)-(c, d)^{n}\right)=\left(\left(a-a^{n}\right)\left(c-c^{n}\right),\left(b-b^{n}\right)\left(d-d^{n}\right)\right)
$$

Since R_{1}, R_{2} are J - n-like rings, we get $\left(a-a^{n}\right)\left(c-c^{n}\right) \in J\left(R_{1}\right),\left(b-b^{n}\right)\left(d-d^{n}\right) \in$ $J\left(R_{2}\right)$, therefore

$$
\left(\left(a-a^{n}\right)\left(c-c^{n}\right),\left(b-b^{n}\right)\left(d-d^{n}\right)\right) \in J\left(R_{1}\right) \oplus J\left(R_{2}\right)=J\left(R_{1} \oplus R_{2}\right),
$$

so $\left((a, b)-(a, b)^{n}\right)\left((c, d)-(c, d)^{n}\right) \in J\left(R_{1} \oplus R_{2}\right)$, thus $R=R_{1} \oplus R_{2}$ is a J-n-like ring. We complete the proof.

Proposition 2.10. Every finite direct product of J-n-like rings is also a J-n-like ring.

Proof. As $J\left(R_{1}\right) \oplus J\left(R_{2}\right) \oplus \cdots \oplus J\left(R_{n}\right)=J\left(R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}\right)$, by a similar discussion of Lemma 2.9 and inductive method, we can easily get the conclusion.

Lemma 2.11. Suppose R_{1}, R_{2} are two J-n-like rings, then the subdirect product R of R_{1}, R_{2} is also a J-n-like ring.

Proof. Let $\varphi: R \rightarrow R_{1}, \psi: R \rightarrow R_{2}$ be epimorphisms given by hypothesis. Then $R / \operatorname{ker}(\varphi) \cong R_{1}, R / \operatorname{ker}(\psi) \cong R_{2}$. Let $I=\operatorname{ker}(\varphi), K=\operatorname{ker}(\psi)$. For every element a, b in R, we have $\overline{\left(a-a^{n}\right)\left(b-b^{n}\right)} \in J(R / I)$. Hence for any $r \in R$, $\overline{1-\left(a-a^{n}\right)\left(b-b^{n}\right) r} \in U(R / I)$ then there exists s in R such that

$$
\begin{equation*}
1-\left(1-\left(a-a^{n}\right)\left(b-b^{n}\right) r\right) s \in I \tag{1}
\end{equation*}
$$

Similarly, there is $\overline{\left(a-a^{n}\right)\left(b-b^{n}\right)} \in J(R / K)$ in R / K, then $\overline{1-\left(a-a^{n}\right)\left(b-b^{n}\right) r} \in$ $U(R / K)$, and so we have an element t in R such that

$$
\begin{equation*}
1-\left(1-\left(a-a^{n}\right)\left(b-b^{n}\right) r\right) t \in K \tag{2}
\end{equation*}
$$

Multiply (1) by (2), we get $\left(1-\left(1-\left(a-a^{n}\right)\left(b-b^{n}\right) r\right) s\right)\left(1-\left(1-\left(a-a^{n}\right)\left(b-b^{n}\right) r\right) t\right) \in$ $I K \subseteq I \cap K$. Since R is the subdirect product of R_{1}, R_{2}, we have $I \cap K=0$. Clearly, $1-\left(1-\left(a-a^{n}\right)\left(b-b^{n}\right) r\right) d=0$ for a d in R. We infer that $\left(a-a^{n}\right)\left(b-b^{n}\right) \in J(R)$, so R is also a J - n-like ring.

Proposition 2.12. Every finite subdirect product of J-n-like rings is also a J-n-like ring.

Proof. It is obvious by Lemma 2.11.
Recall that an ideal of a ring is said to be a nil, if each of its elements is nilpotent.
Theorem 2.13. Let I be a nil ideal of R. Then R is a J-n-like ring if and only if R / I is a J-n-like ring.

Proof. \Rightarrow : Let $\varphi: R \rightarrow R / I$ denote the natural epimorphism, $\varphi(J(R)) \subseteq J(R / I)$. Let $\bar{x}, \bar{y} \in R / I$, since R is a J - n-like ring, then $\left(x-x^{n}\right)\left(y-y^{n}\right) \in J(R)$, therefore $\overline{\left(x-x^{n}\right)\left(y-y^{n}\right)} \in \varphi(J(R)) \subseteq J(R / I)$. Accordingly R / I is a J - n-like ring.
$\Leftarrow:$ For any $a, b \in R$, since R / I is a J-n-like ring, then $\overline{\left(a-a^{n}\right)\left(a-b^{n}\right)} \in J(R / I)$. Thus, for any element $x \in R, \overline{1-\left(a-a^{n}\right)\left(b-b^{n}\right) x} \in U(R / I)$, so there is a $y \in R$ such that $\overline{\left(1-\left(a-a^{n}\right)\left(b-b^{n}\right) x\right) y}=\overline{1}$, hence we have $1-\left(1-\left(a-a^{n}\right)\left(b-b^{n}\right) x\right) y \in I$. Let $c=\left(a-a^{n}\right)\left(b-b^{n}\right)$, as I is nil, $(1-(1-c x) y)^{m}=0$ for some $m \in \mathbb{N}$, it follows that $1-(1-c x) d=0$ for some $d \in R$; that is $(1-c x) d=1$, so we get $1-c x$ is invertible and $c \in J(R)$. As a result $\left(a-a^{n}\right)\left(b-b^{n}\right) \in J(R)$, hence R is a J - n-like ring.

Proposition 2.14. Let R be a ring. Then the following are equivalent.
(1) R is a J-n-like ring.
(2) $S=\left\{\left.\left[\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right] \right\rvert\, a, a_{i j} \in R(i<j)\right\}$ is a J-n-like ring.

Proof. $(1) \Rightarrow(2)$ It is obvious from Proposition 2.8.
$(2) \Rightarrow(1)$ Choose

$$
I=\left\{\left.\left[\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & 0 & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] \right\rvert\, a_{i j} \in R(i<j)\right\}
$$

Then $I^{n}=0$ and $S / I \cong R$. Hence, we complete the proof by Theorem 2.13.
Let S and T be any rings, M an S - T-bimodule and R the formal triangular matrix ring $\left[\begin{array}{cc}S & M \\ 0 & T\end{array}\right]$. It is well-known that $J(R)=\left[\begin{array}{cc}J(S) & M \\ 0 & J(T)\end{array}\right]$.

Proposition 2.15. Let $R=\left[\begin{array}{cc}S & M \\ 0 & T\end{array}\right]$. Then R is J-n-like if and only if S and T are J-n-like.

Proof. One direction is obvious from Proposition 2.8. Assume that S and T are J - n-like and let $A=\left[\begin{array}{ll}a & x \\ 0 & b\end{array}\right], B=\left[\begin{array}{cc}c & y \\ 0 & d\end{array}\right] \in R$. By assumption, we see that $\left(a-a^{n}\right)\left(c-c^{n}\right) \in J(S)$ and $\left(b-b^{n}\right)\left(d-d^{n}\right) \in J(T)$. Then, by direct calculation one sees that $\left(A-A^{n}\right)\left(B-B^{n}\right)=\left[\begin{array}{cc}\left(a-a^{n}\right)\left(c-c^{n}\right) & * \\ 0 & \left(b-b^{n}\right)\left(d-d^{n}\right)\end{array}\right] \in J(R)$. Hence R is a J - n-like ring, as desired.

Theorem 2.16. Let R be a ring and $T_{m}(R)$ be $m \times m$ upper triangular matrices over R. Then the following are equivalent.
(1) R is J-n-like.
(2) $T_{m}(R)$ is J - n-like for all $m \in \mathbb{N}$.

Proof. (1) \Rightarrow (2) Let $\alpha=\left[a_{i j}\right], \beta=\left[b_{i j}\right] \in T_{m}(R)$ for some $m \geq 2$. It is easy to check that $\left(\alpha-\alpha^{n}\right)\left(\beta-\beta^{n}\right)=\left[c_{i j}\right]$ where $c_{i i}=\left(a_{i i}-a_{i i}^{n}\right)\left(b_{i i}-b_{i i}^{n}\right)$ for $i=1,2, \ldots, m$. Since R is J - n-like, we get $\left(a_{i i}-a_{i i}^{n}\right)\left(b_{i i}-b_{i i}^{n}\right) \in J(R)$, and so $\left[c_{i j}\right] \in J\left(T_{m}(R)\right)$. This gives $T_{m}(R)$ is J - n-like for all $m \in \mathbb{N}$.
$(2) \Rightarrow(1)$ It is clear.
Recall that a ring R is called abelian if every idempotent is central. There exists a J - n-like ring which is not generalized n-like as the following example shows.

Example 2.17. It is easy to see that $R=\mathbb{Z}_{3}$ is a J-3-like ring. By Theorem 2.16, $T_{2}(R)$ is J-3-like. If $T_{2}(R)$ is a generalized 3-like ring, then $T_{2}(R)$ is abelian, a contradiction. Hence $T_{2}(R)$ is not generalized 3-like.

We say that B is a subring of a ring A if $\emptyset \neq B \subseteq A$ and for any $x, y \in B$, $x-y, x y \in B$ and $1_{A} \in B$. Let A be a ring and B a subring of A and $R[A, B]$ denote the set $\left\{\left(a_{1}, a_{2}, \cdots, a_{m}, b, b, \cdots\right) \mid a_{i} \in A, b \in B, 1 \leq i \leq m\right\}$. Then $R[A, B]$ is a ring under the componentwise addition and multiplication. Also $J(R[A, B])=$ $R[J(A), J(A) \cap J(B)]$.

Proposition 2.18. Let A be a ring and B a subring of A. The following are equivalent.
(1) A and B are J-n-like.
(2) $R[A, B]$ is J-n-like.

Proof. (1) $\Rightarrow(2)$ Let $\alpha=\left(a_{1}, \cdots, a_{m}, b, b, \cdots\right), \beta=\left(c_{1}, \cdots, c_{m}, d, d, \cdots\right) \in R[A, B]$. Then $\left(\alpha-\alpha^{n}\right)\left(\beta-\beta^{n}\right)=\left(a_{1}-a_{1}^{n}, \cdots, a_{m}-a_{m}^{n}, b-b^{n}, b-b^{n}, \cdots\right)=\left(c_{1}-\right.$ $\left.c_{1}^{n}, \cdots, c_{m}-c_{m}^{n}, d-d^{n}, d-d^{n}, \cdots\right)=\left(\left(a_{1}-a_{1}^{n}\right)\left(c_{1}-c_{1}^{n}\right), \cdots,\left(a_{m}-a_{m}^{n}\right)\left(c_{m}-\right.\right.$ $\left.\left.c_{m}^{n}\right),\left(b-b^{n}\right)\left(d-d^{n}\right),\left(b-b^{n}\right)\left(d-d^{n}\right), \cdots\right)$. By (1), we have $\left(a_{i}-a_{i}^{n}\right)\left(c_{i}-c_{i}^{n}\right) \in J(A)$ and $\left(b-b^{n}\right)\left(d-d^{n}\right) \in J(A) \cap J(B)$. Therefore $\left(\alpha-\alpha^{n}\right)\left(\beta-\beta^{n}\right) \in J(R[A, B])$.
$(2) \Rightarrow(1)$ Let $x, y \in A$ and write $\alpha=(x, 0,0, \cdots), \beta=(y, 0,0, \cdots) \in R[A, B]$. By assumption, we have $\left(\alpha-\alpha^{n}\right)\left(\beta-\beta^{n}\right)=\left(\left(x-x^{n}\right)\left(y-y^{n}\right), 0,0, \cdots\right) \in J(R[A, B])$, and so $\left(x-x^{n}\right)\left(y-y^{n}\right) \in J(A)$. Hence A is a J - n-like ring. Similarly, we show that B is a J - n-like ring. We complete the proof.

Example 2.19. Let R be a J-n-like ring. Then the ring $T=\{(x, y) \mid x-y \in$ $J(R), x, y \in R\}$ is also a J-n-like ring.

Proof. We consider the ring homomorphism $\varphi: T \rightarrow R,(x, y) \mapsto x$ where $(x, y) \in T$. Obviously, for every element x in R, we may find an element (x, x) in T corresponding to x, therefore φ is an epimorphism. Similarly, consider the ring homomorphism $\psi: T \rightarrow R,(x, y) \mapsto x$ where $(x, y) \in T$. In a similar way, ψ is an epimorphism. But $\operatorname{ker}(\varphi) \cap \operatorname{ker}(\psi)=0$, thus T is isomorphic to the subdirect product of R and R. By Proposition 2.12, we ultimately have T is J - n-like.

Lemma 2.20. For every prime integer p, \mathbb{Z}_{p} is a generalized p-like ring.

Proof. For any $a \in \mathbb{Z}_{p}$, by Fermat's Theorem, $a^{p-1}=1$. Then $a-a^{p}=0$. Hence \mathbb{Z}_{p} is a generalized p-like ring.

Example 2.21. \mathbb{Z}_{5} is a generalized 5-like ring, \mathbb{Z}_{13} is a generalized 13-like ring.
Lemma 2.22. If $p_{1}, p_{2}, \cdots, p_{s}$ are distinct prime integers, then $\mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{s}}$ is a generalized $\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring.

Proof. For any $\left(a_{i}\right),\left(b_{i}\right) \in \mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{s}}$, since $a_{i}^{p_{i}-1}(i=1,2, \cdots, s)$ is an idempotent, we have $a_{i}^{p_{i}-1}=a_{i}^{\prod_{i=1}^{s}\left(p_{i}-1\right)}$, thus $a_{i}^{\prod_{i=1}^{s}\left(p_{i}-1\right)+1}=a_{i}^{\left(p_{i}-1\right)+1}=a_{i}^{p_{i}}$. As for each p_{i} is a prime, we have $a_{i}^{p_{i}}=a_{i}$, hence $a_{i}^{\prod_{i=1}^{s}\left(p_{i}-1\right)+1}=a_{i}$, at last $\left(a_{i}-a_{i}^{\prod_{i=1}^{s}\left(p_{i}-1\right)+1}\right)\left(b_{i}-b_{i}^{\prod_{i=1}^{s}\left(p_{i}-1\right)+1}\right)=0$. Therefore, $\mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{s}}$ is a generalized $\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring.

Theorem 2.23. If $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{s}^{r_{s}}$ where $p_{1}, p_{2}, \cdots, p_{s}$ are distinct primes, and $r_{1}, r_{2}, \cdots, r_{s} \in \mathbb{N}$, then \mathbb{Z}_{n} is a J- $\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring.

Proof. By Lemma 2.22, $\mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{s}}$ is a generalized $\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring. Thus,

$$
\begin{aligned}
\mathbb{Z}_{n} / J\left(\mathbb{Z}_{n}\right) & \cong \mathbb{Z}_{p_{1} r_{1}} \oplus \mathbb{Z}_{p_{2} r_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{s} r_{s}} / J\left(\mathbb{Z}_{p_{1} r_{1}}\right) \oplus J\left(\mathbb{Z}_{p_{2} r_{2}}\right) \oplus \cdots \oplus J\left(\mathbb{Z}_{p_{s} r_{s}}\right) \\
& \cong \mathbb{Z}_{p_{1} r_{1}} / J\left(\mathbb{Z}_{p_{1} r_{1}}\right) \oplus \mathbb{Z}_{p_{2} r_{2}} / J\left(\mathbb{Z}_{p_{2} r_{2}}\right) \oplus \cdots \oplus \mathbb{Z}_{p_{s} r_{s}} / J\left(\mathbb{Z}_{p_{s} r_{s}}\right) \\
& \cong \mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{s}}
\end{aligned}
$$

is a generalized $\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring, as

$$
\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1} r_{1}} \oplus \mathbb{Z}_{p_{2} r_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{s} r_{s}}, \quad \text { (see [5]) }
$$

therefore, \mathbb{Z}_{n} is a J - $\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring.
Lemma 2.24. Let p, q be distinct prime integers, and let $R=\mathbb{Z}_{(p)} \cap \mathbb{Z}_{(q)}=$ $\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\, m, n \in \mathbb{Z}, p \nmid n, q \nmid n\right\}$. Then $J(R)=p q R$.

Proof. Straightforward.
Theorem 2.25. Let $R=\mathbb{Z}_{(p)} \cap \mathbb{Z}_{(q)}$ where p, q are distinct primes. Then R is a J - $((p-1)(q-1)+1)$-like ring.

Proof. Let $\frac{m}{n}, \frac{m^{\prime}}{n^{\prime}} \in R=\mathbb{Z}_{(p)} \cap Z_{(q)}$, and $(m, n)=1,\left(m^{\prime}, n^{\prime}\right)=1$. Where $\frac{m}{n}$ can regard as the element in $\mathbb{Z}_{(p)}$, since $\mathbb{Z}_{(p)} / J\left(\mathbb{Z}_{(p)}\right) \cong \mathbb{Z}_{p}, \overline{\left(\frac{m}{n}\right)}=\overline{\left(\frac{m}{n}\right)}^{p}$. Then, we can get $\overline{\left(\frac{m}{n}\right)}^{p-1}$ is an idempotent. Similarly, $\frac{m^{\prime}}{n^{\prime}}$ can regard as the element in $\mathbb{Z}_{(q)}$.
 $k=(p-1)(q-1)+1$. We have $\overline{\left(\frac{m}{n}\right)}^{k}=\left(\overline{\left(\frac{m}{n}\right)}^{p-1}\right)^{(q-1)} \overline{\left(\frac{m}{n}\right)}=\overline{\left(\frac{m}{n}\right)}^{p-1} \overline{\left(\frac{m}{n}\right)}=\overline{\left(\frac{m}{n}\right)}$, that is $\overline{\left(\frac{m}{n}\right)}-\overline{\left(\frac{m}{n}\right)}^{k}=\overline{0}$. Similarly, ${\overline{\left(\frac{m^{\prime}}{n^{\prime}}\right)}}_{-{\overline{\left(\frac{m^{\prime}}{n^{\prime}}\right.}}^{k}=\overline{0} \text {, therefore, } \quad \text {, }{ }^{\prime} \text {. }}$

$$
\left(\frac{m}{n}\right)-\left(\frac{m}{n}\right)^{k} \in J\left(\mathbb{Z}_{(p)}\right),\left(\frac{m^{\prime}}{n^{\prime}}\right)-\left(\frac{m^{\prime}}{n^{\prime}}\right)^{k} \in J\left(\mathbb{Z}_{(q)}\right) .
$$

Let $\left(\frac{m}{n}\right)-\left(\frac{m}{n}\right)^{k}=p \frac{m_{1}}{n_{1}}$, where $\frac{m_{1}}{n_{1}} \in \mathbb{Z}_{(p)}$, hence $p m_{1} n^{k}=n_{1} m\left(n^{k-1}-m^{k-1}\right)$. If $q \mid n_{1}$, then $q \mid p m_{1} n^{k}$, furthermore $q \nmid p, q \nmid n$, so $q \mid m_{1}$, this is a contradiction with $\left(n_{1}, m_{1}\right)=1$, then we get $q \nmid n_{1}$, at last $\frac{m_{1}}{n_{1}} \in Z_{(q)}$. Hence, $\frac{m_{1}}{n_{1}} \in R$. Let $\left(\frac{m^{\prime}}{n^{\prime}}\right)-\left(\frac{m^{\prime}}{n^{\prime}}\right)^{k}=q \frac{m_{2}}{n_{2}}$, similarly, $p \mid n_{2}$, then $\frac{m_{2}}{n_{2}} \in R$. Therefore, by Lemma 2.24, we have $\left.\left.\left(\left(\frac{m}{n}\right)-\left(\frac{m}{n}\right)^{k}\right)\right)\left(\left(\frac{m^{\prime}}{n^{\prime}}\right)-\left(\frac{m^{\prime}}{n^{\prime}}\right)^{k}\right)\right)=p q \frac{m_{1} m_{2}}{n_{1} n_{2}} \in p q R=J(R)$. Consequently, R is a J - $((p-1)(q-1)+1)$-like ring.

3. $P-n$-like rings

Definition 3.1. The prime radical $P(R)$ is the intersection of all the prime ideals in R, equivalently, $P(R)=\{x \in R \mid R x R$ is nilpotent $\}$.

As is well known, $P(R)$ is a semiprime ideal; that is, if for any ideal I of R with $I^{2} \subseteq P(R)$, then $I \subseteq P(R)$ and it is also a nil ideal and $P(R) \subseteq J(R)$.

Definition 3.2. Let n be a fixed integer. A ring R is called a P - n-like ring provided that $\left(a-a^{n}\right)\left(b-b^{n}\right) \in P(R)$ for every element a, b in R.

Recall that an element $a \in R$ is called strongly nilpotent if every sequence $a_{1}, a_{2}, a_{3}, \ldots$ such that $a_{1}=a$ and $a_{i+1} \in a_{i} R a_{i}$ is eventually zero.

Lemma 3.3. Let R be a ring. Then $P(R)=\{x \in R \mid x$ is a strongly nilpotent element $\}$.
Proof. See [6, Exercise 10.17].

Theorem 3.4. A ring R is a P-n-like ring if and only if
(1) R is a J-n-like ring,
(2) $J(R)=P(R)$.

Proof. \Rightarrow : Since $P(R) \subseteq J(R)$, (1) holds. Let $x \in J(R), r \in R$. Then, we get $\left(x-x^{n}\right)\left(r x-(r x)^{n}\right) \in P(R)$, that is

$$
\left(1-x^{n-1}\right) \operatorname{xrx}\left(1-(r x)^{n-1}\right) \in P(R)
$$

As $1-x^{n-1} \in U(R), 1-(r x)^{n-1} \in U(R)$, we have $x R x \in P(R)$, then $x \in P(R)$ because $P(R)$ is a semiprime ideal. Therefore, $J(R) \subseteq P(R) \subseteq J(R)$, as desired. $\Leftarrow:$ As $J(R)=P(R)$, we easily obtain the result.

Recall that a ring R is called to be 2-primal if $P(R)=N i l(R)$.
Corollary 3.5. If a ring R is P-n-like, then R is 2-primal.
Proof. Assume that R is a $P-n$-like ring. Then, by Theorem 3.4, R is J - n-like and $J(R)=P(R)$. According to Corollary 2.5, we get $\operatorname{Nil}(R) \subseteq J(R)$, and so $N i l(R) \subseteq J(R)=P(R) \subseteq N i l(R)$, as asserted.

There are J - n-like rings which are not P - n-like.
Example 3.6. Let $R=\mathbb{Z}_{(2)} \cap \mathbb{Z}_{(3)}$ is a J-3-like ring but not P-3-like.
Proof. By Theorem 3.4, if R is a P - n-like ring, then $P(R)=J(R)$, and so $P(R)=$ $\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, 2 \nmid n, 3 \nmid n\right\}$, there exists $s \in R$ such that $\left(\frac{m}{n}\right)^{s}=0$, then $m^{s}=0 ;$ that is, $m=0$. So $P(R)=0$. But for any $\frac{1}{5}, \frac{1}{7} \in R$, $\left(\frac{1}{5}-\left(\frac{1}{5}\right)^{3}\right)\left(\frac{1}{7}-\left(\frac{1}{7}\right)^{3}\right) \neq 0$, hence R is not a P-3-like ring.

Recall that a ring R is periodic if for any $a \in R$, there exist distinct $m, n \in \mathbb{N}$ such that $a^{m}=a^{n}$.

Theorem 3.7. Every P-n-like ring is a periodic ring.
Proof. Suppose that R is a P - n-like ring and let $a \in R$. Then $\left(a-a^{n}\right)\left(a-a^{n}\right) \in$ $P(R)$. As $P(R)$ is a nil ideal, there exists an integer m such that $\left(a-a^{n}\right)^{2 m}=0$. Hence $a-a^{n} \in \operatorname{Nil}(R)$, by [1], R is a periodic ring. The proof is completed.

Lemma 3.8. Suppose R_{1}, R_{2} are two P-n-like rings. Then $R=R_{1} \oplus R_{2}$ is a P-n-like ring.

Proof. It is suffice to show that $\left(P\left(R_{1}\right), P\left(R_{2}\right)\right) \subseteq P\left(R_{1} \oplus R_{2}\right)$. For any $\left(x_{1}, x_{2}\right) \in$ $\left(P\left(R_{1}\right), P\left(R_{2}\right)\right)$, there exists a sequence $\left(x_{01}, x_{02}\right),\left(x_{11}, x_{12}\right), \cdots,\left(x_{n 1}, x_{n 2}\right)$, where $\left(x_{i 1}, x_{i 2}\right)=\left(x_{i-1,1}, x_{i-2,2}\right)\left(R_{1} \oplus R_{2}\right)\left(x_{i-1,1}, x_{i-2,2}\right),(i=1,2,3, \cdots)$ is eventually zero; that is, $x_{i 1}=x_{i-1,1} R_{1} x_{i-1,1},(i=1,2,3, \cdots)$, this implies that $x_{n 1}=0, x_{i 2}=$ $x_{i-1,2} R_{2} x_{i-1,2},(i=1,2,3, \cdots)$, and this yields that $x_{m 2}=0$. Let $k=\max \{n, m\}$. Then $x_{k 1}=0, x_{k 2}=0$. Hence, $\left(x_{k 1}, x_{k 2}\right)=0$. Thus, $\left(x_{1}, x_{2}\right) \in\left(P\left(R_{1}\right) \oplus P\left(R_{2}\right)\right)$, the conclusion is obvious.

Proposition 3.9. Every finite direct product of P-n-like rings is also P-n-like.
Proof. It is obvious by Lemma 3.8.

Proposition 3.10. Every subring of a P-n-like ring is also a P-n-like ring.
Proof. Let R be a P - n-like ring and let $x, y \in S \subseteq R$. Then $\left(x-x^{n}\right)\left(y-y^{n}\right) \in$ $P(R) \cap S$. For any element $x \in P(R) \cap S$, and a sequence $x_{0}, x_{1}, \cdots, x_{n}, \cdots$ in R where $x=x_{0}, x_{n} \in x_{n-1} R x_{n-1}$ for each n, hence $x_{m}=0$ for some m, so $x \in P(S)$; that is, $P(R) \cap S \subseteq P(S)$. Hence $\left(x-x^{n}\right)\left(y-y^{n}\right) \in P(S)$.

Proposition 3.11. Every finite subdirect product of P - n-like rings is also a $P-n$ like ring.

Proof. It is obvious by Proposition 3.9 and 3.10.
Lemma 3.12. Let K be an ideal of a ring R with $K^{2}=0$. If R / K is a $P-n$-like ring, then R is a P-n-like ring.

Proof. Let $x, y \in R$, then $\bar{x}, \bar{y} \in R / K$, as R / K is a P - n-like ring, we have

$$
\left(\bar{x}-\bar{x}^{n}\right)\left(\bar{y}-\bar{y}^{n}\right) \in P(R / K) .
$$

For any sequence $x_{0}, x_{1}, \cdots, x_{n}, \cdots \in R$, where $x_{0}=\left(x-x^{n}\right)\left(y-y^{n}\right), x_{i} \in$ $x_{i-1} R x_{i-1}$, then $\overline{x_{0}}, \overline{x_{1}}, \cdots, \overline{x_{n}} \in R / K$, as R / K is a $P-n$-like ring. Thus, we have $\overline{x_{m}}=0$ for some $m \in N$. As $K^{2}=0$, then $x_{n+1} \in x_{n} K x_{n}=0$, hence x_{0} is a strongly nilpotent, that is $x_{0} \in P(R)$, thus $\left(x-x^{n}\right)\left(y-y^{n}\right) \in P(R)$. Therefore, R is a P - n-like ring.

Theorem 3.13. Let $R / I, R / J$ be P-n-like rings where I, J are the ideals of R. Then $R /(I J)$ is a P-n-like ring.

Proof. We construct a ring homomorphism $\varphi: R /(I \cap J) \rightarrow R / J$, where $x+I \cap J \mapsto$ $x+J . \psi: R /(I \cap J) \rightarrow R / I$, where $x+I \cap J \mapsto x+I$. Obviously, φ and ψ are two epimorphisms. $\operatorname{ker}(\varphi) \cap \operatorname{ker}(\psi)=0$, then $R /(I \cap J)$ is the subdirect products of R / J and R / I, by Proposition 3.9, we have $R /(I \cap J)$ is a P - n-like ring by Lemma 3.12. Clearly, we see

$$
R /(I \cap J) \cong R /(I J) /(I \cap J) /(I J)
$$

as $I J \subseteq I \cap J$, thus $((I \cap J) /(I J))^{2}=0$, then we have $R /(I J)$ is a P - n-like ring.
Corollary 3.14. Let I be an ideal of a ring R. If R is a P - n-like ring, then so is R / I^{m} for all $m \in \mathbb{N}$.

Example 3.15. $\mathbb{Z}_{p^{r}}$ is a P-p-like ring, since for every element $a \in \mathbb{Z}_{p^{r}}$, we have $a-a^{p}=0$, and $\left(J\left(\mathbb{Z}_{p^{r}}\right)\right)=\left(p \mathbb{Z}_{p^{r}}\right)^{r}=0$.

Theorem 3.16. Let $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{s}^{r_{s}}$ where $p_{1}, p_{2}, \cdots, p_{s}$ are distinct prime integers, and $r_{1}, r_{2}, \cdots, r_{s} \in \mathbb{N}$. Then \mathbb{Z}_{n} is a $P-\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring.

Proof. Since $\mathbb{Z}_{p^{r}}$ is commutative, we can get $J\left(\mathbb{Z}_{p^{r}}\right)=p \mathbb{Z}_{p^{r}}=\operatorname{Nil}\left(\mathbb{Z}_{p^{r}}\right)=P\left(\mathbb{Z}_{p^{r}}\right)$, by Theorem $2.23, \mathbb{Z}_{n}$ is a $P-\left(\prod_{i=1}^{s}\left(p_{i}-1\right)+1\right)$-like ring.
Acknowledgment. The authors express their thankfulness to the anonymous referee for his/her valuable comments for improving the quality of the manuscript.

References

[1] M. Chacron, On a theorem of Herstein, Canad. J. Math., 21 (1976), 1348-1353.
[2] A. L. Foster, The theory of Boolean-like rings, Trans. Amer. Math. Soc., 59 (1946), 166-187.
[3] R. E. Harte, On quasinilpotents in rings, Panam. Math. J., 1 (1991), 10-16.
[4] Y. Hirano and T. Suenaga, Generalizations of von Neumann regular rings and n-like rings, Comment. Math. Univ. St. Paul., 37(2) (1988), 145-149.
[5] T. Hungerford, Algebra, Graduate Texts in Mathematics, Springer-Verlag, New York, 1974.
[6] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, Springer-Verlag, New York, 1991.
[7] H. G. Moore, Generalized n-like rings and commutativity, Canad. Math. Bull, 23 (1980), 449-452.
[8] H. Tominaga and A. Yaqub, On generalized n-like rings and related rings, Math. J. Okayama Univ., 23 (1981), 199-202.
[9] A. Yaqub, A note on p-like rings, Mathematics Magazine, 33 (1960), 287-290.
[10] A. Yaqub, A generalization of certain rings of A. L. Foster, Canad. Math. Bull, 6 (1963), 55-60.

Rui Qin

Department of Mathematics
Hangzhou Normal University
Hangzhou 310036, People's Republic of China
email : bhqinrui@126.com

Orhan Gürgün,

Department of Mathematics
Ankara University
Ankara, Turkey
email : orhangurgun@gmail.com

