COMPLETE HOMOMORPHISMS BETWEEN MODULE LATTICES

Patrick F. Smith

Received: 18 October 2013; Revised: 25 May 2014
Communicated by Christian Lomp

For my good friend John Clark on his 70th birthday

Abstract. We examine the properties of certain mappings between the lattice $\mathcal{L}(R)$ of ideals of a commutative ring R and the lattice $\mathcal{L}(R M)$ of submodules of an R-module M, in particular considering when these mappings are complete homomorphisms of the lattices. We prove that the mapping λ from $\mathcal{L}(R)$ to $\mathcal{L}(R M)$ defined by $\lambda(B) = BM$ for every ideal B of R is a complete homomorphism if M is a faithful multiplication module. A ring R is semiperfect (respectively, a finite direct sum of chain rings) if and only if this mapping $\lambda: \mathcal{L}(R) \to \mathcal{L}(R M)$ is a complete homomorphism for every simple (respectively, cyclic) R-module M. A Noetherian ring R is an Artinian principal ideal ring if and only if, for every R-module M, the mapping $\lambda: \mathcal{L}(R) \to \mathcal{L}(R M)$ is a complete homomorphism.

Mathematics Subject Classification 2010: 06B23, 06B10, 16D10, 16D80
Keywords: Lattice of ideals, lattice of submodules, multiplication modules, complete lattice, complete homomorphism

1. Introduction

In this paper we continue the discussion in [7] concerning mappings, in particular homomorphisms, between the lattice of ideals of a commutative ring and the lattice of submodules of a module over that ring.

A lattice L is called complete provided every non-empty subset S has a least upper bound $\vee S$ and a greatest lower bound $\wedge S$. Given complete lattices L and L' we say that a mapping $\varphi: L \to L'$ is a complete homomorphism provided

$$\varphi(\vee S) = \vee \{\varphi(x) : x \in S\} \text{ and } \varphi(\wedge S) = \wedge \{\varphi(x) : x \in S\},$$

for every non-empty subset S of L. A complete homomorphism which is a bijection (respectively, injection, surjection) will be called a complete isomorphism (respectively, complete monomorphism, complete epimorphism). The first result is standard and easy to prove.
Lemma 1.1. The following statements are equivalent for a bijection \(\varphi \) from a complete lattice \(L \) to a complete lattice \(L' \).

(i) \(\varphi \) is a complete isomorphism.

(ii) \(\varphi(\vee S) = \vee\{\varphi(x) : x \in S\} \) for every non-empty subset \(S \) of \(L \).

(iii) \(\varphi(\wedge S) = \wedge\{\varphi(x) : x \in S\} \) for every non-empty subset \(S \) of \(L \).

Moreover, in this case the inverse mapping \(\varphi^{-1} : L' \rightarrow L \) is also a complete isomorphism.

An element \(x \) of a complete lattice \(L \) is called compact in case whenever \(x \leq \vee S \), for some non-empty subset \(S \) of \(L \), there exists a finite subset \(F \) of \(S \) such that \(x \leq \vee F \). The next result is also easy to prove.

Lemma 1.2. Let \(\varphi : L \rightarrow L' \) be a complete isomorphism from a complete lattice \(L \) to a complete lattice \(L' \) and let \(x \) be a compact element of \(L \). Then \(\varphi(x) \) is a compact element of \(L' \).

A lattice \(L \) is called distributive in case

\[
x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),
\]

for all elements \(x, y, z \) in \(L \). The next result is also well known and easy to prove. It states that a lattice is distributive if and only if its dual lattice is distributive.

Lemma 1.3. A lattice \(L \) is distributive if and only if \(x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) \) for all \(x, y, z \) in \(L \).

Throughout this note all rings will be commutative with identity and all modules will be unital. Let \(R \) be a ring and \(M \) be any \(R \)-module. Let \(\mathcal{L}(R) \) denote the lattice of all ideals of the ring \(R \) and let \(\mathcal{L}(R M) \) denote the lattice of all submodules of the \(R \)-module \(M \). In [7] we investigate the mapping \(\lambda : \mathcal{L}(R) \rightarrow \mathcal{L}(R M) \) defined by \(\lambda(B) = BM \) for every ideal \(B \) of \(R \) and the mapping \(\mu : \mathcal{L}(R M) \rightarrow \mathcal{L}(R) \) defined by \(\mu(N) = (N :_R M) \) for every submodule \(N \) of \(M \), where \((N :_R M) \) denotes the set of elements \(r \in R \) such that \(rM \subseteq N \). The module \(M \) is called a \(\lambda \)-module in [7] in case \(\lambda : \mathcal{L}(R) \rightarrow \mathcal{L}(R M) \) is a homomorphism. Similarly, in [7] the module \(M \) is called a \(\mu \)-module if the above mapping \(\mu \) is a homomorphism. For any unexplained terminology and notation, please see [7].

Note that the lattice \(\mathcal{L}(R M) \) is complete when we define

\[
\wedge S = \cap_{N \in S} N \quad \text{and} \quad \vee S = \sum_{N \in S} N,
\]
for every non-empty collection S of submodules of M. In particular the lattice $\mathcal{L}(R)$ is complete. The module M will be called λ-complete in case the above mapping $\lambda : \mathcal{L}(R) \to \mathcal{L}(R M)$ is a complete homomorphism. Similarly the module M will be called μ-complete if $\mu : \mathcal{L}(R M) \to \mathcal{L}(R)$ is a complete homomorphism. It is clear that every λ-complete module is a λ-module and every μ-complete module is a μ-module but, in each case, the converse is false in general, as we can easily show.

For example, let \mathbb{Z} denote the ring of rational integers and let p be any prime in \mathbb{Z}. Then the simple \mathbb{Z}-module $U = \mathbb{Z}/\mathbb{Z}p$ is a λ-module. Let q be any prime in \mathbb{Z} other than p and let S denote the collection of ideals of \mathbb{Z} of the form $\mathbb{Z}q^n$ for all positive integers n. Then

$$\lambda(\wedge S) = \lambda(\cap_{n \geq 1} \mathbb{Z}q^n) = \lambda(0) = 0,$$

but

$$\wedge\{\lambda(B) : B \in S\} = \cap_{n \geq 1} q^n U = U.$$

Thus U is not λ-complete.

Now let $\mathbb{Z}(p^\infty)$ denote the Prüfer p-group for any prime p in \mathbb{Z}. Let $V = \mathbb{Z}(p^\infty)$. Then the \mathbb{Z}-module V is a μ-module (see [7, Example 3.11]). However V contains an infinite collection T of proper submodules $V_i (i \in I)$ such that $V = \cup_{i \in I} V_i$. Thus

$$\mu(\vee T) = \mu(V) = (V : \mathbb{Z} V) = \mathbb{Z},$$

but

$$\vee\{\mu(W) : W \in T\} = \sum_{i \in I} \mu(V_i) = \sum_{i \in I} (V_i : \mathbb{Z} V) = 0.$$

Thus the \mathbb{Z}-module V is not μ-complete.

Proposition 1.4. Given any ring R and R-module M the following statements are equivalent.

(i) The mapping $\lambda : \mathcal{L}(R) \to \mathcal{L}(R M)$ is a complete isomorphism.

(ii) The mapping $\mu : \mathcal{L}(R M) \to \mathcal{L}(R)$ is a complete isomorphism.

Moreover, in this case M is a faithful R-module.

Proof. (i) \Leftrightarrow (ii) By Lemma 1.1 and [7, Corollary 1.5].

Now suppose that (i) holds. Let $A = \text{ann}_R(M)$. Then $\lambda(A) = AM = 0 = 0M = \lambda(0)$ so that $A = 0$ and M is faithful. \square

Again let R be a ring and let M be an R-module. Let $A = \text{ann}_R(M)$. By defining

$$(r + A)m = rm \quad (r \in R, m \in M),$$

M becomes a faithful (R/A)-module with the property that a subset X of M is an R-submodule of M if and only if X is an (R/A)-submodule of M. Thus the lattice $L_{(R/A)M}$ is identical to the lattice $L_{(R/A)M}$. The mapping $\lambda : L(R/A) \rightarrow L(R/A)M$ will be denoted by $\overline{\lambda}$. Note that if \overline{B} is any ideal of the ring R/A then $\overline{B} = B/A$ for a unique ideal B of R containing A and hence

$$\overline{\lambda}(\overline{B}) = \overline{\lambda}(B/A) = (B/A)M = BM.$$

In addition, the mapping $\mu : L_{(R/A)M} \rightarrow L(R/A)$ is denoted by $\overline{\mu}$ so that

$$\overline{\mu}(N) = (N :_{R/A} M) = (N :_{R} M)/A,$$

for every submodule N of M, noting that, of course, $A \subseteq (N :_{R} M)$ for every submodule N of M.

Let R be any ring. An R-module M is called a multiplication module in case for each submodule N of M there exists an ideal B of R such that $N = BM$. Cyclic modules are multiplication modules as are projective ideals of R or ideals of R generated by idempotent elements (see [2]). We prove that for any ring R an R-module M is μ-complete if and only if M is a finitely generated multiplication module (Theorem 2.2). An easy consequence is that the mapping μ (respectively, λ) is a complete isomorphism if and only if M is a finitely generated faithful multiplication module (Corollary 2.4).

For any ring R, projective modules are λ-complete (Corollary 3.4) as are faithful multiplication modules (Theorem 3.6). We prove that a ring R is arithmetical if and only if every R-module is a λ-module (Theorem 4.6). The ring R is semiperfect if and only if every simple R-module is λ-complete (Theorem 4.2). On the other hand, R is a direct sum of chain rings if and only if every cyclic R-module M is λ-complete (Theorem 4.7). Note that we do not yet know which rings R have the property that every R-module is λ-complete. It is proved that a Noetherian ring R is an Artinian principal ideal ring if and only if every R-module is λ-complete (Theorem 4.12).

2. μ-complete modules

Let R be a ring and let M be an R-module. In this section we shall investigate μ-complete modules. We begin with the following basic result.

Lemma 2.1. Given any ring R, an R-module M is μ-complete if and only if

$$(\sum_{N \in T} N :_{R} M) = \sum_{N \in T} (N :_{R} M)$$

for any non-empty collection T of submodules of M.
Proof. Let \(\mathcal{T} \) be any non-empty collection of submodules of \(M \). Then
\[
\mu(\wedge \mathcal{T}) = \mu(\cap_{N \in \mathcal{T}} N) = (\cap_{N \in \mathcal{T}} N :_R M) = \wedge \{ \mu(N) : N \in \mathcal{T} \}.
\]
On the other hand
\[
\mu(\vee \mathcal{T}) = \mu(\sum_{N \in \mathcal{T}} N) = (\sum_{N \in \mathcal{T}} N :_R M),
\]
and
\[
\vee \{ \mu(N) : N \in \mathcal{T} \} = \sum_{N \in \mathcal{T}} (N :_R M).
\]
The result follows. \(\square \)

Note that, given any ring \(R \) and \(R \)-module \(M \), the mapping \(\mu \) is not a surjection in case \(M \) is not a faithful \(R \)-module because in this case no submodule \(N \) of \(M \) has the property that \((N :_R M) = 0 \). The next result characterizes \(\mu \)-complete modules.

Theorem 2.2. Given any ring \(R \), the following statements are equivalent for an \(R \)-module \(M \) with annihilator \(A \) in \(R \).

(i) \(M \) is \(\mu \)-complete.

(ii) \(M \) is a finitely generated multiplication module.

(iii) The mapping \(\overline{\mu} : \mathcal{L}(R/A M) \to \mathcal{L}(R/A) \) is a complete isomorphism.

(iv) The mapping \(\overline{\lambda} : \mathcal{L}(R/A) \to \mathcal{L}(R/AM) \) is a complete isomorphism.

Moreover in this case the mapping \(\mu : \mathcal{L}(RM) \to \mathcal{L}(R) \) is a monomorphism.

Proof. (i) \(\Rightarrow \) (ii) Let \(\mathcal{T} \) denote the collection of all cyclic submodules of the \(\mu \)-complete module \(M \). Then \(M = \sum_{N \in \mathcal{T}} N \). By Lemma 2.1,
\[
R = (M :_R M) = (\sum_{N \in \mathcal{T}} N :_R M) = \sum_{N \in \mathcal{T}} (N :_R M),
\]
and hence \(R = (Rm_1 :_R M) + \cdots + (Rm_n :_R M) \) for some positive integer \(n \) and elements \(m_i \in M \) (1 \(\leq \) \(i \) \(\leq \) \(n \)). It follows that
\[
M = RM = (Rm_1 :_R M)M + \cdots + (Rm_n :_R M)M \subseteq Rm_1 + \cdots + Rm_n \subseteq M.
\]
Therefore \(M = Rm_1 + \cdots + Rm_n \). In other words, \(M \) is finitely generated. By [7, Theorem 3.8], \(M \) is also a multiplication module.

(ii) \(\Rightarrow \) (i) Suppose that \(M \) is a finitely generated multiplication module. By [7, Lemma 3.1 and Theorem 3.8] and induction,
\[
(K_1 + \cdots + K_n :_R M) = (K_1 :_R M) + \cdots + (K_n :_R M),
\]
for every positive integer n and submodules $K_i \ (1 \leq i \leq n)$. Let $L_i \ (i \in I)$ be any non-empty collection of submodules of M. Clearly,

$$\sum_{i \in I} (L_i :_R M) \subseteq (\sum_{i \in I} L_i :_R M).$$

Let $r \in (\sum_{i \in I} L_i :_R M)$. Then rM is a finitely generated submodule of $\sum_{i \in I} L_i$. There exists a finite subset I' of I such that $rM \subseteq \sum_{i \in I'} L_i$. Hence

$$r \in (\sum_{i \in I'} L_i :_R M) = \sum_{i \in I'} (L_i :_R M) \subseteq \sum_{i \in I} (L_i :_R M) = (\sum_{i \in I} L_i :_R M).$$

Thus $(\sum_{i \in I} L_i :_R M) \subseteq \sum_{i \in I'} (L_i :_R M)$ and we have proved that $(\sum_{i \in I} L_i :_R M) = \sum_{i \in I} (L_i :_R M)$. By Lemma 2.1, M is μ-complete.

(ii) \Rightarrow (iii) By [7, Lemma 2.9], the (R/A)-module M is a finitely generated faithful multiplication module and hence the mapping $\overline{\mu}$ is a bijection by [7, Theorem 4.3].

By the proof of (ii) \Rightarrow (i), the mapping $\overline{\mu}$ is a complete isomorphism.

(iii) \Leftrightarrow (iv) By Proposition 1.4.

(iii) \Rightarrow (ii) By the proof of (i) \Rightarrow (ii), the (R/A)-module M is a finitely generated multiplication module and hence the R-module M is a finitely generated multiplication module by [7, Lemma 2.9].

Finally, suppose that there exist submodules N and L of M such that $\mu(N) = \mu(L)$. By [2, p. 756],

$$N = (N :_R M)M = \mu(N)M = \mu(L)M = (L :_R M)M = L.$$

Thus μ is a monomorphism. \square

Given a ring R and an R-module M, note that Theorem 2.2 shows that whenever the mapping $\mu : \mathcal{L}(R)M \to \mathcal{L}(R)$ is a complete homomorphism then it is a monomorphism. This is not true if μ is merely a homomorphism (see, for example, [7, Example 3.11 and Proposition 3.12]).

Corollary 2.3. Every homomorphic image of a μ-complete module M is μ-complete.

Proof. By Theorem 2.2. \square

In contrast to Corollary 2.3 homomorphic images of λ-complete modules need not be λ-complete. For example, the \mathbb{Z}-module \mathbb{Z} is λ-complete but we have already noted that the simple \mathbb{Z}-module $\mathbb{Z}/2p$ is not λ-complete for every prime p in \mathbb{Z}. (Note that every homomorphic image of a λ-module over the ring \mathbb{Z} is also a λ-module by [7, Theorem 2.3]).

Corollary 2.4. Given a ring R, the following statements are equivalent for an R-module M.
(i) The mapping $\lambda : \mathcal{L}(R) \rightarrow \mathcal{L}(R M)$ is a complete isomorphism.
(ii) The mapping $\mu : \mathcal{L}(R M) \rightarrow \mathcal{L}(R)$ is a complete isomorphism.
(iii) The R-module M is a finitely generated faithful multiplication module.

Proof. By Proposition 1.4 and Theorem 2.2.

Corollary 2.5. Let R be a ring and let M be any μ-complete R-module with $A = \text{ann}_R(M)$. Then the (R/A)-module M is a λ-complete module.

Proof. By [7, Lemma 2.9], Theorem 2.2 and Corollary 2.4.

Note that in general μ-complete modules are not λ-complete. For, let R be a domain that is not Prüfer. By [7, Theorem 2.3], there exists a cyclic R-module M which is not a λ-module and hence is not λ-complete. However, every cyclic module over any ring is a finitely generated multiplication module.

3. λ-complete modules

In contrast to the case of μ-complete modules, the situation for (non-faithful) λ-complete modules is more complex. We already know that simple modules over \mathbb{Z} are not λ-complete although they are clearly finitely generated multiplication modules. First we prove an elementary result characterizing λ-complete modules.

Lemma 3.1. Let R be a ring. Then an R-module M is λ-complete if and only if
\[\lambda(\bigvee S) = \bigvee \{ \lambda(B) : B \in S \} \]
\[\lambda(\bigwedge S) = \bigwedge \{ \lambda(B) : B \in S \} \]
for every non-empty collection S of ideals of R.

Proof. Let S be any non-empty collection of ideals of R. Then
\[\lambda(\bigvee S) = (\bigvee_{B \in S} B)M = \sum_{B \in S} (BM) = \bigvee \{ \lambda(B) : B \in S \}. \]
In addition, \(\lambda(\bigwedge S) = (\bigwedge_{B \in S} B)M \) and $\bigwedge \{ \lambda(B) : B \in S \} = \bigwedge_{B \in S} (BM)$. The result follows.

Corollary 3.2. Let A be any ideal of a ring R. Then the R-module R/A is λ-complete if and only if $\bigcap_{B \in S} (A + B) = A + \bigcap_{B \in S} B$ for every non-empty collection S of ideals of R.

Proof. Apply Lemma 3.1 to the module $M = R/A$.

Lemma 3.3. Let R be any ring. Then
(a) Every direct summand of a λ-complete module is λ-complete.
(b) Every direct sum of λ-complete modules is also λ-complete.
By Lemma 3.1 \(K \) is a \(\lambda \)-complete module.

(b) Let \(L_i (i \in I) \) be any collection of \(\lambda \)-complete modules and let \(L = \oplus_{i \in I} L_i \).

Given any non-empty collection \(S \) of ideals of \(R \) we have:

\[
(\bigcap_{B \in S} B)L = \oplus_{i \in I} (\bigcap_{B \in S} B)L_i = \oplus_{i \in I} (\bigcap_{B \in S} (BL_i)) = \bigcap_{B \in S} (BL).
\]

By Lemma 3.1 \(L \) is \(\lambda \)-complete.

\[\square \]

Corollary 3.4. Given any ring \(R \), every projective \(R \)-module is \(\lambda \)-complete.

\[\square \]

Proof. Clearly the \(R \)-module \(R \) is \(\lambda \)-complete. Apply Lemma 3.3.

Recall the following result (see [2, Theorem 1.2] or [7, Lemma 2.10]).

Lemma 3.5. Let \(R \) be any ring. Then an \(R \)-module \(M \) is a multiplication module if and only if for each maximal ideal \(P \) of \(R \) either

(a) for each \(m \) in \(M \) there exists \(p \) in \(P \) such that \((1 - p)m = 0 \), or

(b) there exist \(x \) in \(M \) and \(q \) in \(P \) such that \((1 - q)M \subseteq Rx \).

We now strengthen [7, Theorem 2.12].

Theorem 3.6. Let \(R \) be any ring. Then every faithful multiplication \(R \)-module is a \(\lambda \)-complete module.

Proof. Let \(M \) be a faithful multiplication \(R \)-module. Let \(S \) be any non-empty collection of ideals of \(R \). Then \((\bigcap_{B \in S} B)M \subseteq \bigcap_{B \in S} (BM) \). Suppose that there exists \(m \in \bigcap_{B \in S} (BM) \) with \(m \notin (\bigcap_{B \in S} B)M \). Let \(I = \{ r \in R : rm \in (\bigcap_{B \in S} B)M \} \). Then \(I \) is a proper ideal of \(R \). Let \(P \) be a maximal ideal of \(R \) such that \(I \subseteq P \).

Clearly \((1 - p)m = 0 \) for some \(p \in P \) implies that \(1 - p \in I \), a contradiction. By Lemma 3.5 there exist \(x \in M \) and \(q \in P \) such that \((1 - q)M \subseteq Rx \). Note that for each ideal \(B \) in \(S \) \((1 - q)m \in (1 - q)BM = B(1 - q)M \subseteq Bx \). Thus \((1 - q)m = r_Bx \) for some \(r_B \in B \) for each ideal \(B \) in \(S \). If \(B \) and \(C \) are ideals in \(S \) then \((r_B - r_C)x = 0 \) and hence \((1 - q)(r_B - r_C)M = (r_B - r_C)(1 - q)M \subseteq (r_B - r_C)Rx = 0 \). Because \(M \) is faithful we have \((1 - q)(r_B - r_C) = 0 \) and \((1 - q)r_B = (1 - q)r_C \). It follows that \((1 - q)r_C \in \bigcap_{B \in S} B \). Thus \((1 - q)^2m = (1 - q)r_Cx \in (\bigcap_{B \in S} B)M \). This implies that \((1 - q)^2 \in I \subseteq P \), a contradiction. Thus \(\bigcap_{B \in S} (BM) = (\bigcap_{B \in S} B)M \) for every non-empty subset \(S \) of ideals of \(R \). By Lemma 3.1 \(M \) is \(\lambda \)-complete. \(\square \)
We have already noted that for any prime \(p \) in \(\mathbb{Z} \), the simple \(\mathbb{Z} \)-module \(\mathbb{Z}/\mathbb{Z}p \) is a multiplication module which is not \(\lambda \)-complete. Thus Theorem 3.6 requires that the module be faithful as well as a multiplication module.

If \(R \) is any ring and \(M \) the free \(R \)-module \(R \oplus R \), then it is not hard to check that the mapping \(\lambda : \mathcal{L}(R) \to \mathcal{L}(RM) \) is a complete monomorphism which is not an epimorphism. On the other hand, compare the following result with Theorem 2.2.

Proposition 3.7. Let \(R \) be a ring and let \(I \) be a proper ideal of \(R \) which is generated by idempotent elements such that \(\text{ann}_R(I) = 0 \). Then the \(R \)-module \(I \) is a faithful multiplication module and the mapping \(\lambda : \mathcal{L}(R) \to \mathcal{L}(RI) \) is a complete epimorphism but not a monomorphism.

Proof. By [7, Proposition 2.15] and Theorem 3.6. \(\square \)

4. Special rings

Let \(R \) be any ring. Then every cyclic \(R \)-module is \(\mu \)-complete by Theorem 2.2. However, the same theorem shows that the 2-generated \(R \)-module \(M = R \oplus R \) is not \(\mu \)-complete because \(M \) is not a multiplication module. Thus no non-zero ring \(R \) has the property that every finitely generated \(R \)-module is \(\mu \)-complete. We saw in Corollary 3.4 that for every ring \(R \) every projective \(R \)-module is \(\lambda \)-complete. In addition for every ring \(R \), every faithful multiplication module is \(\lambda \)-complete by Theorem 3.6. In this section we investigate rings \(R \) with the property that every module in a certain class of \(R \)-modules is \(\lambda \)-complete. The classes that we shall look at are the classes of simple \(R \)-modules, semisimple \(R \)-modules, cyclic \(R \)-modules, finitely generated \(R \)-modules and all \(R \)-modules.

First we investigate when simple modules are \(\lambda \)-complete. Following [1, p. 303] we call a ring \(R \) with Jacobson radical \(J \) a *semiperfect ring* in case \(R/J \) is semiprime Artinian and idempotents lift modulo \(J \). For properties of semiperfect rings see [1, Theorem 27.6] or [10, Theorem 42.6]. By a *local* ring we mean any (commutative) ring which contains only one maximal ideal. It is well known that a (commutative) ring \(R \) is semiperfect if and only if \(R \) is the (finite) direct sum of local rings (see, for example, [1, Theorem 27.6]). Given any ring \(R \), a submodule \(N \) of an \(R \)-module \(M \) *has a supplement \(K \) in case \(K \) is a submodule of \(M \) minimal with respect to the property that \(M = N + K \).

Lemma 4.1. Let \(R \) be a ring and let \(U \) be a simple \(R \)-module with annihilator \(P \). Then the \(R \)-module \(U \) is \(\lambda \)-complete if and only if \(P \) has a supplement in \(R \mathcal{R} \).
Proof. Suppose first that U is λ-complete. Let S denote the collection of ideals B of R such that $R = P + B$. By Corollary 3.2 $R = P + C$ where $C = \bigcap_{B \in S} B$. Clearly C is a supplement of P in R. Conversely, suppose that P has a supplement G in R. Let T be any non-empty collection of ideals of R. Then

$$P + \left(\bigcap_{D \in T} D \right) = P = \bigcap_{D \in T} (P + D),$$

unless $D \not\subseteq P$ for all $D \in T$. Now suppose that $D \not\subseteq P$ for all $D \in T$. Let $D \in T$. Then $R = P + G = P + D$ implies that $R = P + (D \cap G)$ and hence $G = D \cap G \subseteq D$. It follows that

$$R = P + G \subseteq P + \left(\bigcap_{D \in T} D \right) \subseteq \bigcap_{D \in T} (P + D) \subseteq R.$$

Thus in any case $P + \left(\bigcap_{D \in T} D \right) = \bigcap_{D \in T} (P + D)$. By Corollary 3.2, the R-module U is λ-complete.

Theorem 4.2. The following statements are equivalent for a ring R.

(i) Every semisimple R-module is λ-complete.

(ii) Every simple R-module is λ-complete.

(iii) The ring R is semiperfect.

Proof. (i) \Rightarrow (ii) Clear.

(ii) \Rightarrow (iii) By Lemma 4.1 and [10, Theorem 42.6].

(iii) \Rightarrow (i) By Lemma 4.1 and [10, Theorem 42.6] every simple R-module is λ-complete and by Lemma 3.3 every semisimple R-module is λ-complete.

Next we investigate rings R with the property that every cyclic R-module is λ-complete. First we recall a result of Stephenson (see [9, Theorem 1.6]).

Lemma 4.3. The following statements are equivalent for a module M over a ring R.

(i) The lattice $\mathcal{L}(R M)$ is distributive (i.e. $L \cap (K + N) = (L \cap K) + (L \cap N)$ for all submodules K, L, N of M).

(ii) $K + \left(L \cap N \right) = (K + L) \cap (K + N)$ for all submodules K, L, N of M.

(iii) $R = (Rx :_R Ry) + (Ry :_R Rx)$ for all $x, y \in M$.

Corollary 4.4. The following statements are equivalent for a module M over a ring R.

(i) The lattice $\mathcal{L}(R M)$ is distributive.

(ii) Every finitely generated submodule of M is a μ-module.

(iii) Every 2-generated submodule of M is a μ-module.
(iv) \(R = (N :_R L) + (L :_R N) \) for all finitely generated submodules \(N \) and \(L \) of \(M \).

(v) Every finitely generated submodule of \(M \) is a multiplication module.

Proof. By Lemma 4.3 and [7, Corollary 3.9]. □

The next result is [7, Lemma 2.1].

Lemma 4.5. An \(R \)-module \(M \) is a \(\lambda \)-module if and only if \((B \cap C)M = BM \cap CM \) for all (finitely generated) ideals \(B \) and \(C \) of \(R \).

We can now generalize [7, Theorems 2.3 and 3.13]. Recall that a ring \(R \) is called a **chain ring** in case the ideals of \(R \) form a chain, that is, for any ideals \(B \) and \(C \) of \(R \) either \(B \subseteq C \) or \(C \subseteq B \). For any ring \(R \) and prime ideal \(P \) of \(R \) the localization of \(R \) at \(P \) will be denoted by \(R_P \) as usual. (See [6, Chapter 5] for a good account of localization.) In 1949 Fuchs [3] called a ring \(R \) **arithmetical** provided the lattice \(\mathcal{L}(R) \) is distributive and Jensen [4, Lemma 1] showed that a ring \(R \) is arithmetical if and only if the local ring \(R_P \) is a chain ring for every prime ideal \(P \) of \(R \).

Theorem 4.6. The following statements are equivalent for a ring \(R \).

(i) \(R \) is an arithmetical ring.

(ii) Every \(R \)-module is a \(\lambda \)-module.

(iii) Every homomorphic image of a \(\lambda \)-module is a \(\lambda \)-module.

(iv) Every cyclic \(R \)-module is a \(\lambda \)-module.

(v) Every finitely generated ideal of \(R \) is a multiplication \(R \)-module.

(vi) Every finitely generated ideal of \(R \) is a \(\mu \)-module over the ring \(R \).

Proof. (i) ⇒ (ii) Let \(B \) and \(C \) be any finitely generated ideals of \(R \). By Corollary 4.4, \(R = (B :_R C) + (C :_R B) \). Then

\[
BM \cap CM = [(B :_R C) + (C :_R B)](BM \cap CM) \\
\subseteq (B :_R C)CM + (C :_R B)BM \subseteq (B \cap C)M.
\]

It follows that \(BM \cap CM = (B \cap C)M \). By Lemma 4.5 the \(R \)-module \(M \) is a \(\lambda \)-module.

(ii) ⇒ (iii) Clear.

(iii) ⇒ (iv) Because \(R \) is a \(\lambda \)-module.

(iv) ⇒ (i) Let \(A, B \) and \(C \) be any ideals of \(R \). Then the cyclic \(R \)-module \(R/A \) being a \(\lambda \)-module implies, by Lemma 4.5, \((B \cap C)(R/A) = (B(R/A)) \cap (C(R/A)) \) and hence \(((B \cap C) + A)/A = ((B + A)/A) \cap ((C + A)/A) \). It follows that \((A + B) \cap (A + C) = A + (B \cap C) \). By Lemma 4.3, \(R \) is an arithmetical ring.
Theorem 4.6 applies to Prüfer domains because every finitely generated ideal is invertible and hence a multiplication module. More generally, if R is a semihereditary ring (that is, every finitely generated ideal of R is a projective R-module), then every finitely generated ideal of R is a multiplication module by [8, Theorem 1] and hence Theorem 4.6 applies to R. It also applies to von Neumann regular rings because every ideal of such a ring is generated by idempotent elements and hence is a multiplication module (see [2, Corollary 1.3]).

Corollary 4.7. The following statements are equivalent for a ring R.

(i) Every cyclic R-module is λ-complete.

(ii) The ring $R = R_1 \oplus \cdots \oplus R_n$ is the direct sum of chain rings $R_i (1 \leq i \leq n)$ for some positive integer n.

Proof. (i) \Rightarrow (ii) By Theorem 4.2 and [1, Theorem 27.6], the ring $R = R_1 \oplus \cdots \oplus R_n$ is the direct sum of local rings $R_i (1 \leq i \leq n)$ for some positive integer n. By Theorem 4.6 and [4, Lemma 1], R_i is a chain ring for all $1 \leq i \leq n$.

(ii) \Rightarrow (i) Without loss of generality we can suppose that R is a chain ring. Let A be any ideal of the chain ring R and let S be any non-empty collection of ideals of R. Then $A \subseteq \bigcap_{B \in S} B$ or $\bigcap_{B \in S} B \subseteq A$. Suppose first that $A \subseteq \bigcap_{B \in S} B$. Then

$$A + \left(\bigcap_{B \in S} B\right) = \bigcap_{B \in S} B = \bigcap_{B \in S} (A + B).$$

Now suppose that $\bigcap_{B \in S} B \subset A$. Then there exists an ideal C in S such that $A \not\subseteq C$ and hence $C \subseteq A$ because R is a chain ring. In this case, it is easy to see that

$$A + \left(\bigcap_{B \in S} B\right) = A = \bigcap_{B \in S} (A + B).$$

In any case, we have proved that $A + \left(\bigcap_{B \in S} B\right) = \bigcap_{B \in S} (A + B)$. By Corollary 3.2 every cyclic R-module is λ-complete, as required.

Now we consider finitely generated modules and ask the question: Which rings R have the property that every finitely generated module is λ-complete? Are these precisely the rings for which every cyclic module is λ-complete? This amounts to asking whether chain rings R have the property that every finitely generated R-module is λ-complete. Some chain rings do have this property. Contrast the following result with Theorem 4.6.

Theorem 4.8. Let R be a local principal ideal domain. Then R is a chain ring such that every finitely generated R-module is λ-complete but no non-zero injective R-module is λ-complete.
Proof. It is well known that if \(P \) is the unique maximal ideal of \(R \) then the only ideals of \(R \) are the ideals \(R, P^n \ (n \geq 1) \) and \(0 = \cap_{n \geq 1} P^n \). Thus \(R \) is a chain ring. Let \(M \) be any finitely generated \(R \)-module. Then \(M \) is a finite direct sum of cyclic \(R \)-modules (see, for example, [6, Theorem 10.30]) and hence \(M \) is \(\lambda \)-complete by Theorem 4.7 and Lemma 3.3. Now let \(X \) be any non-zero injective \(R \)-module. By [5, Proposition 2.6] and [6, Corollary 8.27],

\[
\cap_{n \geq 1}(P^nX) = X \neq 0 = (\cap_{n \geq 1} P^n)X.
\]

Thus \(X \) is not \(\lambda \)-complete by Lemma 3.1. □

Finally in this section we consider rings \(R \) with the property that every \(R \)-module is \(\lambda \)-complete. Note first the following simple fact which can be contrasted with Corollary 2.3.

Proposition 4.9. The following statements are equivalent for a ring \(R \).

(i) Every \(R \)-module is \(\lambda \)-complete.

(ii) Every homomorphic image of every \(\lambda \)-complete module is \(\lambda \)-complete.

Proof. (i) ⇒ (ii) Clear.

(ii) ⇒ (i) Let \(M \) be any \(R \)-module. There exist a free \(R \)-module \(F \) and a submodule \(K \) of \(F \) such that \(M \cong F/K \). By Corollary 3.4 the module \(F \) is \(\lambda \)-complete and hence so too is \(M \). □

In the case of Noetherian rings we can give a complete classification. We shall require the following two lemmas.

Lemma 4.10. Let \(R \) be a ring such that every \(R \)-module is \(\lambda \)-complete and let \(A \) be any ideal of \(R \). Then every \((R/A) \)-module is \(\lambda \)-complete.

Proof. Let \(S \) be any non-empty collection of ideals of the ring \(R/A \). Then every ideal of \(S \) has the form \(B/A \) for some ideal \(B \) of \(R \). Let \(S' \) denote the collection of ideals \(B \) of \(R \) such that \(B/A \) belongs to \(S \). Let \(M \) be any \((R/A) \)-module. Then \(M \) is an \(R \)-module in the usual way and we have

\[
(\cap_{C \in S} C)M = (\cap_{B \in S'} (B/A))M = ((\cap_{B \in S'} B)/A)M = (\cap_{B \in S'} B)M = \cap_{B \in S'} (B/M) = \cap_{B \in S'} ((B/A)M) = \cap_{C \in S} (CM).
\]

By Lemma 3.1, the \((R/A) \)-module \(M \) is \(\lambda \)-complete. □

Lemma 4.11. The following statements are equivalent for a domain \(R \) with field of fractions \(F \).
(i) R is a field.
(ii) Every R-module is λ-complete.
(iii) The R-module F is λ-complete.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) Clear by Lemma 3.1.
(iii) \Rightarrow (i) Let $B_i(i \in I)$ denote the collection of all non-zero ideals of R. Then Lemma 3.1 gives that
\[F = \cap_{i \in I} (B_iF) = (\cap_{i \in I} B_i)F. \]
Thus $\cap_{i \in I} B_i \neq 0$. It follows that R has non-zero socle and hence $R = F$. \Box

Contrast the following result with Theorem 4.8.

Theorem 4.12. A Noetherian ring R has the property that every R-module is λ-complete if and only if R is an Artinian principal ideal ring.

Proof. Suppose first that every R-module is λ-complete. Let P be any prime ideal of R. By Lemma 4.10, every (R/P)-module is λ-complete and hence the domain R/P is a field by Lemma 4.11. Thus every prime ideal of R is maximal. By [5, Theorem 4.6], the ring R is Artinian. Next, by Theorem 4.6 every ideal of R is a multiplication module and hence, by [2, Corollary 2.9] every ideal of R is principal. Thus R is a principal ideal ring.

Conversely, suppose that R is an Artinian principal ideal ring. Let M be any R-module. Let S be any non-empty collection of ideals of R. Because R is Artinian, there exists a finite subset S' of S such that $\cap_{B \in S} B = \cap_{B \in S'} B$. Noting that R is a principal ideal ring and so every ideal of R is a multiplication module, Theorem 4.6 and [7, Lemma 2.1] together give that $(\cap_{B \in S'} B)M = (\cap_{B \in S} B)M$. Thus,
\[\cap_{B \in S} (BM) \subseteq \cap_{B \in S'} (BM) = (\cap_{B \in S'} B)M = (\cap_{B \in S} B)M, \]
and hence $(\cap_{B \in S} B)M = \cap_{B \in S} (BM)$. By Lemma 3.1 the R-module M is λ-complete. \Box

5. Other homomorphisms

In general there will be many complete homomorphisms $\nu : \mathcal{L}(R) \to \mathcal{L}(RM)$ for a given ring R and R-module M (see [7, Section 5]). Note the following result.

Proposition 5.1. Let R be a ring and let M be an R-module such that there exists a complete isomorphism $\nu : \mathcal{L}(R) \to \mathcal{L}(RM)$. Then M is a finitely generated R-module.
Proof. By Lemma 1.2 because M is a finitely generated R-module if and only if M is a compact element of $\mathcal{L}(RM)$. □

Recall that a ring R is called *semilocal* provided it contains only a finite number of maximal ideals.

Corollary 5.2. Let R be a ring and let M be an R-module such that there exists a complete isomorphism $\nu : \mathcal{L}(R) \to \mathcal{L}(RM)$. Suppose further that either

(a) R is a local ring, or
(b) R is a semilocal ring and M is a faithful R-module.

Then M is a cyclic R-module.

Proof. By Proposition 5.1 and [7, Theorem 5.3]. □

Acknowledgment. The author would like to thank the referee for various helpful suggestions and in particular for bringing references [3] and [4] to his attention.

References

Patrick F. Smith
Department of Mathematics
University of Glasgow
Glasgow G12 8QW
Scotland UK
e-mail: Patrick.Smith@glasgow.ac.uk