LIE CENTRAL TRIPLE RACKS

Guy Roger Biyogmam

Received: 18 February 2014; Revised 2 September 2014 Communicated by A. Çiğdem Özcan

ABSTRACT. This paper introduces Lie \mathfrak{c} -triple racks. These triple systems generalize both left and right racks to ternary algebras, and locally differentiates to \mathfrak{gb} -triple systems [3].

Mathematics Subject Classification (2010): 05B07, 18E10, 17A99

 $\mathbf{Keywords}:\ gb ext{-Triple}$ systems, Lie triple systems, Lie racks

1. Introduction

The generalization of Lie algebras to algebras such as Lie triple systems, Jordan triple systems [8] and 3-Lie algebras [7] suggests a natural generalization of Leibniz algebras (non commutative Lie algebras) [11] to ternary algebras. One generalization is provided by Leibniz 3-algebras [5] for which the characteristic identity expresses the adjoint action as a derivation of the algebra. A second generalization of Leibniz algebras to ternary algebras is provided by Leibniz triple systems [4]. They are defined in such a way that Lie triple systems are a particular case. Recently, the author introduced gb-triple systems [3], another generalization of Leibniz algebras in which the ternary operation $T: \mathfrak{g}^{\otimes 3} \to \mathfrak{g}$ expresses the map $T_{a,b}(x) = T(a,x,b)$ as a derivation of \mathfrak{g} for all $a,b \in \mathfrak{g}$.

The local integration problem of these algebras generated from Lie's third theorem, which states that every finite-dimensional Lie algebra over the real numbers is associated with a Lie group. Partial solutions to this problem for Leibniz algebras (dubbed by Loday as the Coquecigrue problem) have been provided by several authors (see M. Kinyon [10], S. Covez [6]). The author extended Kinyon's results to Leibniz 3-algebras using Lie 3-racks [2]. In this paper we open the problem of integration of gb-triple systems. We follow Kinyon's approach [10] to open a path to a solution by defining an algebraic structure that locally differentiates to a gb-triple systems. We refer to these algebras as Lie \mathfrak{c} -triple racks. They appear to generalize both left and right Lie racks to ternary algebras; a particularity not supported by Lie 3-racks.

For the remainder of this paper, we assume that $\mathfrak K$ is a field of characteristic different to 2.

2. c-Triple racks

In this section we define c-triple racks and provide some examples. We also provide funtorial connections with the category of groups and the category of racks.

Recall that a *gb-triple system* [3] is a \mathfrak{K} -vector space \mathfrak{g} equipped with a trilinear operation $[-,-,-]_{\mathfrak{g}}:\mathfrak{g}^{\otimes 3}\longrightarrow\mathfrak{g}$ satisfying the identity

$$[A,B,[X,C,Y]_{\mathfrak{g}}]_{\mathfrak{g}}=[X,[A,B,C]_{\mathfrak{g}},Y]_{\mathfrak{g}}-[[X,A,Y]_{\mathfrak{g}},B,C]_{\mathfrak{g}}-[A,[X,B,Y]_{\mathfrak{g}},C]_{\mathfrak{g}} \ (1)$$

Definition 2.1. A c-triple rack $(R, [-, -, -]_R)$ is a set R together with a ternary operation $[-, -, -]_R : R \times R \times R \longrightarrow R$ satisfying the following conditions:

- (1) $[x, [a, b, c]_R, y]_R = [[x, a, y]_R, [x, b, y]_R, [x, c, y]_R]_R$ (c-distributive property),
- (2) Given $a, c, d \in R$, there exists a unique $x \in R$ such that $[a, x, c,]_R = d$.

Definition 2.2. A c-triple rack $(R, [-, -, -]_R)$ is said to be *pointed* if there is a distinguished element $1 \in R$ satisfying

$$[1, y, 1]_R = y$$
 and $[a, 1, b]_R = 1$ for all $a, b \in R$.

A c-triple rack is said to be a weak c-triple quandle if it satisfies

$$[x, x, x]_R = x$$
 for all $x \in R$.

A c-triple rack is a c-triple quandle if it satisfies

$$[a, y, b]_R = y$$
 if $a = y$ or $b = y$.

Note that these generalize the notions of racks and quandles [9] to ternary operations. It is also clear that c-triple quandles are weak c-triple quandles but the converse is not true. See Example 2.4.

Definition 2.3. Let R and R' be two \mathfrak{c} -triple racks. A function $\alpha: R \longrightarrow R'$ is said to be a homomorphism of \mathfrak{c} -triple racks if

$$\alpha([x,y,z]_R) = [\alpha(x), \alpha(y), \alpha(z)]_{R'}$$
 for all $x, y, z \in R$.

This provides a category $_{c}pRACK$ of pointed $\mathfrak{c}\text{-triple}$ racks and pointed $\mathfrak{c}\text{-triple}$ rack homomorphisms.

Example 2.4. Let $\Gamma := \mathbf{Z}[t^{\pm 1}, s]/(2s^2 + ts - s)$. Any Γ -module M together with the ternary operation $[-, -, -]_M$ defined by

$$[a, b, c]_M = sa + tb + sc$$

is a c-triple rack. Indeed,

$$\begin{aligned} [[x,a,y]_R,[x,b,y]_R,[x,c,y]_R]_R &= s(sx+ta+sy) + t(sx+tb+sy) + s(sx+tc+sy) \\ &= (2s^2+st)(x+y) + ts(a+c) + t^2b \\ &= [x,[a,b,c]_R,y]_R \ since \ 2s^2+st = s. \end{aligned}$$

Therefore the \mathfrak{c} -distributive property is satisfied. For the second axiom, given $a, c, d \in R$ one checks that $x := t^{-1}(d - s(a + c))$ uniquely satisfies $[a, x, c]_M = d$. Note that M is a weak \mathfrak{c} -triple quandle that is not a \mathfrak{c} -triple quandle.

Example 2.5. Let G be a group with identity 1, and define on G the operation $[-,-,-]_G$ by

$$[a, b, c]_G = acbc^{-1}a^{-1}.$$

Then (G, [-, -, -], 1) is a pointed weak \mathfrak{c} -triple quandle. Indeed, we have on one hand

$$[x, [a, b, c]_G, y]_G = xy[a, b, c]_G y^{-1} x^{-1} = xyacb^{-1} c^{-1} a^{-1} y^{-1} x^{-1}.$$

On the other hand,

Therefore the \mathfrak{c} -distributive property is satisfied. For the second axiom, given $a, c, d \in G$ one checks that $x := c^{-1}a^{-1}dac$ uniquely satisfies $[a, x, c]_M = d$. Finally, it is clear that $[x, x, x]_R = x$ for all $x \in R$.

As a consequence, we have the following:

Proposition 2.6. There is a faithful functor \mathfrak{F} from the category of groups to the category of pointed \mathfrak{c} -triple racks.

Proof. Define \mathfrak{F} by $\mathfrak{F}(G) = (G, [-, -, -], 1)$ as in Example 2.5. Its left adjoint \mathfrak{F}' is defined as follows: Given a pointed \mathfrak{c} -triple rack R, consider the quotient group

$$G_R = \langle R \rangle /I$$

where $\langle R \rangle$ is the free group on R and I is the normal subgroup of $\langle R \rangle$ generated by the set $\{(a^{-1}c^{-1}b^{-1}ca)([a,b,c]_R): \text{ with } a,b,c\in R\}$. Indeed, given a morphism of \mathfrak{c} -triple racks $\alpha:R\longrightarrow \mathfrak{F}(G)$, there is a unique morphism of groups $\beta:\langle R\rangle\longrightarrow G$ such that $\alpha=\beta|_R$ by the universal property of free groups. So

$$\beta((a^{-1}c^{-1}b^{-1}ca)([a,b,c]_R)) = \alpha((a^{-1}c^{-1}b^{-1}ca)([a,b,c]_R)) = 1 \text{ for all } a,b,c \in R.$$

Now by the universal property of quotient groups, there is a unique morphism of groups $\alpha_* : \mathfrak{F}'(R) \longrightarrow G$ such that the following diagram commutes.

$$\mathfrak{F}'(R) \xrightarrow{\alpha_*} G$$

$$\downarrow id$$

$$R \xrightarrow{\alpha} \mathfrak{F}(G)$$

Example 2.7. Let $(R, \circ, 1)$ be a pointed rack. Then define on R the ternary operation by

$$[a, b, c]_R = a \circ (c \circ b).$$

It is easy to show that (R, [-, -, -], 1) is a pointed \mathfrak{c} -triple rack.

As a consequence we have the following:

Proposition 2.8. There is a faithful functor \mathfrak{H} from the category of pointed racks to the category of \mathfrak{c} -triple racks.

Proof. Define \mathfrak{H} by $\mathfrak{H}((R, \circ, 1)) = (R, [-, -, -], 1)$ as in Example 2.7. Now, given a pointed \mathfrak{c} -triple rack (R, [-, -, -], 1), one easily checks that the set $R^{\times(3)}$ together with the binary operation

$$(a, b, c) \circ (x, y, z) = ([a, x, c]_R, [a, y, c]_R, [a, z, c]_R)$$

is a rack pointed at (1,1,1). We then define the left adjoint \mathfrak{H}' of \mathfrak{H} by

$$\mathfrak{H}'((R, [-, -, -], 1)) = (R^{\times (3)}, \circ, (1, 1, 1)).$$

Let us observe that in the proof of Proposition 2.8 the set $R^{\times(3)}$ is a quandle if R is a \mathfrak{c} -triple quandle.

3. From Lie c-triple racks to gb-triple systems

In this section we define the notion of Lie \mathfrak{c} -triple racks. We show that the tangent functor T_1 locally (at a specific point) maps Lie \mathfrak{c} -triple racks to gb-triple system.

Definition 3.1. A pointed \mathfrak{c} -triple rack $(R, [-, -, -]_R, 1)$ is called a *Lie* \mathfrak{c} -triple rack if the underlying set R is a differentiable manifold and the ternary operation $[-, -, -]_R : R \times R \times R \longrightarrow R$ is a smooth mapping.

Note that this definition appears to extend both left and right Lie racks [1] to ternary operations.

Example 3.2. Let G be a Lie group endowed with the operation

$$[a, b, c]_G = acbc^{-1}a^{-1}.$$

It follows by Example 2.5 that G is a Lie c-triple rack.

Example 3.3. Let $(H, \{-, -, -\})$ be a group endowed with an antisymmetric ternary operation and V an H-module. Define the ternary operation $[-, -, -]_R$ on $R := V \times H$ by

$$[(a, A), (b, B), (c, C)]_R := (\{A, B, C\}b, ACBC^{-1}A^{-1}),$$

where $a, b, c \in V$ and $A, B, C \in H$. Then $(R, [-, -, -]_R, (0, 1))$ is a Lie \mathfrak{c} -triple rack.

For a pointed \mathfrak{c} -triple rack R, consider

$$Aut(R) := \{ \xi : R \to R, \ \xi \ smooth \ bijection : \ \xi([a,b,c]_R) = [\xi(a),\xi(b),\xi(c)]_R \}$$

and let $\phi: R \times R \times R \to R$ be the mapping given by $\phi(a,b,c) = [a,b,c]_R$. We have as a consequence of the second axiom of Definition 2.1 that the map $D: R \times R \longrightarrow Aut(R)$, $(a,c) \mapsto D(a,c) = \phi_{(a,c)}$ where $\phi_{(a,c)}(x) = [a,x,c]_R$ for all $x \in R$, is well-defined differentiable map. Let $D_*: \mathfrak{g} \times \mathfrak{g} \longrightarrow gl(\mathfrak{g})$ be the induced map of tangent spaces, where $\mathfrak{g}:=T_1R$ is the tangent space of R at the point 1 and $gl(\mathfrak{g})$ is the Lie algebra associated to $GL(\mathfrak{g})$. Define a trilinear bracket on \mathfrak{g} by

$$[X,Y,Z]_{\mathfrak{g}} = D_*(X,Z)(Y).$$

Proposition 3.4. Let $(R, [-, -, -]_R, 1)$ be a pointed \mathfrak{c} -triple rack. Then $D(a, c) \in Aut(R)$ for all $a, c \in R$.

Proof.

$$\begin{split} D(a,c)([x,y,x]_R) &= \phi(a,c)([x,y,z]_R) \\ &= [a,[x,y,z]_R,c]_R \\ &= [[a,x,c]_R,[a,y,c]_R,[a,z,c]_R]_R \text{ by Definition 2.1} \\ &= [\phi_{(a,c)}(x),\phi_{(a,c)}(y),\phi_{(a,c)}(z)]_R \\ &= [D(a,c)(x),D(a,c)(y),D(a,c)(z)]_R. \end{split}$$

Remark 3.5. Note that for all $a, c \in R$, R acts on itself (considered as a differentiable manifold) via the maps $\phi_{(a,c)}$ by Proposition 3.4. Also, $\phi_{(a,c)}(1) = [a,1,c]_R = 1$. So the tangent functor T_1 applied to $\phi_{(a,c)}: R \longrightarrow R$ yields a linear map $\phi_{(a,c)*}: T_1R \longrightarrow T_1R$. Since $\phi(a,c) \in Aut(R)$ by Proposition 3.4, it follows that $\phi_{(a,c)*} \in GL(T_1R)$. Now let $X \in T_1R$ and denote by $X_1 := \phi_{(a,c)*}(X)$ the vector field extension of X. Then X_1 is generated by a one-parameter family of

diffeomorphisms $\gamma_X : \mathbb{R} \to R$ with initial point $\gamma_X(0) = 1$ and initial tangent vector $d\gamma_X(0) = X$. The corresponding exponential map (see [12, Chapter 9]) denoted $exp_1 : T_1(R) \to R$ is then defined by $exp_1(X) = \gamma_X(1)$.

Theorem 3.6. Let $(R, [-, -, -]_R, 1)$ be a Lie \mathfrak{c} -triple rack and $\mathfrak{g} := T_1 R$. Then for all $a, c \in R$, the tangent mapping $\phi_{(a,c)*} = T_1(\phi_{(a,c)})$ is an automorphism of \mathfrak{g} .

Proof. Let $X, Y, Z \in \mathfrak{g}$ and let x, y, z be respectively the images of X, Y and Z by the exponential map exp_1 (see Remark 3.5). By the \mathfrak{c} -distributive property of \mathfrak{c} -triple racks, we have

$$\phi_{(a,c)}(\phi_{(x,z)}(y)) = \phi_{(\phi_{(a,c)}(x),\phi_{(a,c)}(z))}(\phi_{(a,c)}(y))$$

which when successively differentiated at $1 \in R$ with respect to the parameter γ_Y then γ_Z then γ_X yields

$$\phi_{(a,c)*}([X,Y,Z]_{\mathfrak{g}}) = [\phi_{(a,c)*}(X), \phi_{(a,c)*}(Y), \phi_{(a,c)*}(Z)]_{\mathfrak{g}}$$
(2).

Theorem 3.7. Let R be a Lie \mathfrak{c} -triple rack and $A, C \in \mathfrak{g} := T_1R$. Let a, c be respectively the images of A and C by the exponential map \exp_1 . Then the mapping $D_{(A,C)*}:\mathfrak{g} \longrightarrow gl(\mathfrak{g})$ is a derivation of \mathfrak{g} . Moreover, $D_{(A,C)*}$ is exactly $T_1(\Phi)$, where Φ is the mapping $\Phi: R \times R \longrightarrow GL(\mathfrak{g})$ defined by $\Phi(a,c) = \phi_{(a,c)*}$.

Proof. From the proof of Theorem 3.6, $\phi_{(a,c)*} \in GL(\mathfrak{g})$. In addition, we have $\phi_{(1,1)*} = I$, where I is the identity of $GL(\mathfrak{g})$. Now differentiating Φ at (1,1) gives a map $T_{(1,1)}(\Phi): T_1(R \times R) \longrightarrow gl(\mathfrak{g})$. Also differentiating the identity (2) above at (1,1) with respect to $\gamma_{(A,C)}$ yields

$$\begin{split} D_{(A,C)*}(D_{(X,Z)*}(Y)) &= [A,[X,Y,Z]_{\mathfrak{g}},C]_{\mathfrak{g}} \\ &= [[A,X,C]_{\mathfrak{g}},Y,Z]_{\mathfrak{g}} + [X,[A,Y,C]_{\mathfrak{g}},Z]_{\mathfrak{g}} + [X,Y[A,Z,C]_{\mathfrak{g}}]_{\mathfrak{g}} \\ &= D_{(D_{(A,C)*}(X),Z)*}(Y) + D_{(X,Z)*}(D_{(A,C)*}(Y)) \\ &+ D_{(X,D_{(A,C)*}(Z))*}(Y). \end{split}$$

Hence $D_{(A,C)*}$ is a derivation of \mathfrak{g} and the map $T_1(\Phi)$ is exactly $D_{(A,C)*}$.

From the calculations performed in the proofs of Theorem 3.6 and Theorem 3.7, we deduce that the ternary operation $[-,-,-]_{\mathfrak{g}}$ satisfies the identity (1). We then have the following result:

Corollary 3.8. Let R be a Lie \mathfrak{c} -triple rack and $\mathfrak{g} := T_1R$. Then there exists a trilinear map $[-,-,-]_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathfrak{g}$ such that $(\mathfrak{g},[-,-,-]_{\mathfrak{g}})$ is a gb-triple system.

Remark 3.9. Let G be the Lie \mathfrak{c} -triple rack of Example 3.2 and l the Lie algebra associated to the underlying group G. Then the bracket of the gb-triple system $\mathfrak{g} = T_1(R)$ can be written in terms of the bracket of the Lie algebra l as

$$[X, Y, Z]_{\mathfrak{g}} = [Y, [X, Z]_{l}]_{l}.$$

To check that $[-,-,-]_{\mathfrak{g}}$ satisfies the identity (1), let $X,Y,A,B,C\in\mathfrak{g};$ we have on one hand

$$\begin{split} [X,Y,[A,B,C]_{\mathfrak{g}}]_{\mathfrak{g}} + [[A,X,C]_{\mathfrak{g}},Y,B]_{\mathfrak{g}} &= [Y,[X,[A,B,C]_{\mathfrak{g}}]_{l}]_{l} + [Y,[[A,X,C]_{\mathfrak{g}},B]_{l}]_{l} \\ &= \big[Y,[X,[B,[A,C]_{l}]_{l}]_{l} + [[X,[A,C]_{l}]_{l},B]_{l}\big]_{l} \\ &= \big[Y,[[X,B]_{l},[A,C]_{l}]_{l}\big]_{l}. \end{split}$$

On the other hand,

$$\begin{split} [A,[X,Y,B]_{\mathfrak{g}},C]_{\mathfrak{g}}-[X,[A,Y,C]_{\mathfrak{g}},B]_{\mathfrak{g}} &= \left[[X,Y,B]_{\mathfrak{g}},[A,C]_{l}\right]_{l}-\left[[A,Y,C]_{\mathfrak{g}},[X,B]_{l}\right]_{l} \\ &= \left[[Y,[X,B]_{l}]_{l},[A,C]_{l}\right]_{l}-\left[[Y,[A,C]_{l}]_{l},[X,B]_{l}\right]_{l}. \end{split}$$

The equality holds by the Jacoby identity.

Acknowledgment. The author would like to thank the referee for very helpful comments and suggestions.

References

- N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras, Adv. Math., 178(2) (2003), 177-243.
- [2] G. R. Biyogmam, *Lie n-rack*, C. R. Math. Acad. Sci. Paris, 349(17-18) (2011), 957-960.
- [3] G. R. Biyogmam, Introduction to gb-triple systems, ISRN Algebra 2014, Art. ID 738154, 5 pp.
- [4] M. R. Bremner and J. Sánchez-Ortega, *Leibniz triple systems*, Commun. Contemp. Math., 16(1) (2014), 1350051, 19 pp.
- [5] J. M. Casas, J.-L. Loday and T. Pirashvili, *Leibniz n-algebras*, Forum Math., 14(2) (2002), 189-207.
- [6] S. Covez, The local integration of Leibniz algebras, Ann. Inst. Fourier (Grenoble), 63(1) (2013), 1-35.
- [7] V. T. Filippov, n-Lie algebras, Sibirsk. Mat. Zh., 26(6) (1985), 126-140.
- [8] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math., 71 (1949), 149-170.
- [9] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra, 23(1) (1982), 37-65.

- [10] M. K. Kinyon, Leibniz algebras, Lie racks and digroups, J. Lie Theory, 17(1) (2007), 99-114.
- [11] J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Enseign. Math., 39 (1993), 269-293.
- [12] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. I, (2nd edition) Publish or Perish, Inc., Wilmington, Del., 1979.

Guy Roger Biyogmam

Department of Mathematics Southwestern Oklahoma State University 100 Campus Drive Weatherford, OK 73096, USA e-mail: guy.biyogmam@swosu.edu