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Abstract. We study the structure of the indecomposable direct summands of tensor prod-

ucts of two restricted rational simple modules for the algebraic group SL3(K), where K is an

algebraically closed field of characteristic p ≥ 5. We also give a characteristic-free algorithm

for the decomposition of such a tensor product into indecomposable direct summands. The

p < 5 case was studied in the authors’ earlier paper [4]. We find that for characteristics p ≥ 5

all the indecomposable summands are rigid, in contrast to the characteristic 3 case.
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Introduction

Let G = SL3(K) where K is an algebraically closed field of characteristic p ≥ 5. The pur-

pose of this paper, which is a continuation of [4], is to describe the family F of indecomposable

direct summands of a tensor product L⊗L′ of two simple G-modules L,L′ of p-restricted high-

est weights. (All modules considered are rational.) We give a characteristic-free algorithm for

the computation of the decomposition multiplicities of such a tensor product into indecompos-

able modules and give structural information about the indecomposable summands. Thanks

to Steinberg’s tensor product theorem, such information provides a first approximation toward

a description of the indecomposable direct summands of a general tensor product of two (not

necessarily restricted) simple G-modules. Similar questions were previously studied for charac-

teristic p < 5 in [4], where sharper results were obtained. The current paper and its prequel [4]

were motivated by [11], which studied the SL2(K) case.

Our main results are summarized in Theorems A and B in Section 3. The aforementioned

algorithm is given in 7.4 and 8.9. In contrast to what happens in characteristic p = 3, in

characteristics p ≥ 5 we find that all the indecomposable summands are rigid modules (socle

series and radical series coincide). All of the indecomposable summands are in fact tilting

modules, except for certain non-tilting simple modules and a certain family of non-highest

weight modules, which had also been observed in the p = 3 case. The first examples of non-

rigid tilting modules for algebraic groups were exhibited in [4]; further examples and a general

positive rigidity result for tilting modules are now available in [2].

We had hoped that determining the indecomposable summands of L ⊗ L′ in the restricted

case would lead to their determination in general, by some sort of generalized tensor product

result; e.g., see Lemma 1.1 in [4]. However, our results show this is not the case, and the general

(unrestricted) decomposition problem remains open. Although our results do in principle give a

partial decomposition in the unrestricted case, using formula (1.1.3) of [4], the summands there
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will not always be indecomposable, and the problem of finding all splittings of those summands

remains in general unsolved.

1. Preliminaries

We adopt the notational conventions of [4]. Throughout this paper G = SL3(K) where K is an

algebraically closed field of characteristic p ≥ 5. This means that p ≥ 2h− 2 where h = 3 is the

Coxeter number of the underlying root system, so general results on algebraic groups that are

known to hold only for p ≥ 2h− 2 are available.

1.1. Weight notations. Sometimes we need to use both GL3 and SL3 weight notation for

calculations. Any GL3-module is an SL3-module by restriction. A given SL3-module M may

be lifted to a GL3-module in many ways, but all such lifts differ by a power of the determinant

representation, and which lift we choose makes no difference for our results. It is sometimes

convenient to work with GL3-modules in order to apply, for example, the Littlewood–Richardson

rule. We adopt the notation of II.1.21 of [16]. In particular, {ε1, ε2, ε3} is the standard basis

of X(TGL3
) ' Z3 where TGL3

is the diagonal torus in GL3. We identify a GL3-weight χ =

a1ε1 + a2ε2 + a3ε3 with the 3-tuple ((a1, a2, a3)) ∈ Z3. The inclusion SL3 ⊂ GL3 induces

an embedding TSL3 ⊂ TGL3 of their diagonal subgroups, which in turn induces a surjection

X(TGL3) � X(TSL3) given by restricting characters from TGL3 to TSL3 , with kernel generated

by ε1 + ε2 + ε3. This map sends a1ε1 + a2ε2 + a3ε3 onto (a1 − a2)$1 + (a2 − a3)$2, where

$1, $2 are the fundamental weights in X(TSL3
). We shall identify an SL3-weight λ1$1 + λ2$2

in X(TSL3
) ' Z2 with the ordered pair (λ1, λ2). In terms of these identifications, the map

X(TGL3
) � X(TSL3

) is given by

((a1, a2, a3))→ (a1 − a2, a2 − a3).

We use double brackets (( , , )) versus single brackets ( , ) in order to easily distinguish

between GL3 and SL3-weights. Given an element χ in X(TGL3
) we shall denote its image under

the restriction map X(TGL3) � X(TSL3) by χ. In particular, we shall need the SL3-weights

ε1 = (1, 0), ε2 = (−1, 1), and ε3 = (0,−1) coming from the GL3-weights ε1 = ((1, 0, 0)),

ε2 = ((0, 1, 0)), and ε3 = ((0, 0, 1)) forming the standard basis of X(TGL3
). As usual, ρ =

$1 +$2 = (1, 1) is one-half the sum of the positive roots for SL3.

1.2. Until further notice we use only SL3 notation for weights. Thus X+ = {(a, b) : a, b ≥ 0}
the set of dominant weights. The simple roots are α1 = (2,−1), α2 = (−1, 2). As in [4], T (λ)

is the indecomposable tilting module of highest weight λ, ∆(λ) the Weyl module of highest

weight λ, ∇(λ) its contravariant dual, and L(λ) the simple head of ∆(λ). We also denote the

Steinberg module ∆(p − 1, p − 1) = L(p − 1, p − 1) by St. In case ∇(λ) = L(λ) is simple, we

have T (λ) = ∆(λ) = ∇(λ) = L(λ); this applies in particular to the Steinberg module St, the

natural module E = ∆(1, 0) and its linear dual E∗ = ∆(0, 1). The tilting modules T (λ) are

always contravariantly self-dual, and a tensor product of two tilting modules is again tilting.

By F(∆) we mean the category of G-modules admitting a ∆-filtration, and, dually, by F(∇)

we mean the category of G-modules admitting a ∇-filtration. We note that T (λ) is the unique

indecomposable module of highest weight λ in F(∆) ∩ F(∇).

1.3. It is useful to regard a given G-module as a module for some generalized Schur algebra

S(π), where π is an appropriate finite saturated poset of dominant weights; see [8] or Chapter

II.A in [16] for details on generalized Schur algebras. The fact that S(π) is quasi-hereditary is
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used repeatedly. For any S(π) we let Pπ(λ) denote the projective cover of L(λ) in the category

of S(π)-modules. We may drop the subscript π in case the set π is fixed by the context. The

contravariant dual of Pπ(λ) is isomorphic to the injective hull of L(λ) in the category of S(π)-

modules.

It is known that P (µ) ∈ F(∆). Let [P (µ) : ∆(λ)] denote the number of subquotients isomor-

phic to ∆(λ) in a ∆-filtration of P (µ); this number is known to be independent of the choice

of ∆-filtration. For any finite dimensional S(π)-module M let [M : L(µ)] be the multiplicity of

L(µ) in a composition series of M . See Proposition A2.2(iv) of [10] or Theorem 2.6 of [7] for

the following basic reciprocity property, which will be used repeatedly.

Proposition 1. Let S(π) be the generalized Schur algebra determined by a finite saturated set

π ⊂ X+. Then [P (µ) : ∆(λ)] = [∇(λ) : L(µ)] for all λ, µ ∈ π.

This is sometimes called Brauer–Humphreys reciprocity. The Schur algebra setting also allows

us to make use of the following refinement of Proposition 1 from [5]. Let radi P (µ) be the ith

radical layer of P (µ).

Proposition 2. Let S(π) be a generalized Schur algebra, where π ⊂ X+ is a finite saturated

set. Then for any λ, µ ∈ π we have:

[radi P (µ) : L(λ)] = [radi P (λ) : L(µ)].

This reciprocity respects the ∆-filtration of the projective modules:

[radi P (µ) : head ∆(λ)] = [radi ∆(λ) : L(µ)].

By [radi P (µ) : head ∆(λ)] we mean the number of successive quotients ∆(λj) in a given fixed

∆-filtration of P (µ) such that λj = λ and there is a surjection radi P (µ)→ ∆(λ) which carries

the subquotient ∆(λj) onto ∆(λ). It is easily checked that this is independent of the choice of

∆-filtration. See 5.2 for an example.

Remark. The contravariant dual of the above theorem relates the socle layers of injective modules,

and gives information about where ∇-modules occur in a ∇-filtration of an injective module. This

will also be used where needed.

We will need the following basic result from the theory of quasi-hereditary algebras. This

follows for instance from Proposition A2.2 of [10].

Proposition 3. For any λ, µ ∈ X+, we have:

(a) If Ext1(∆(λ),∆(µ)) 6= 0 then µ > λ.

(b) dimK HomG(M,N) =
∑
ν∈X+ [M : ∆(ν)][N : ∇(ν)], for any M ∈ F(∆), N ∈ F(∇).

1.4. Let X1 = {(a, b) : 0 ≤ a, b ≤ p− 1} be the set of restricted weights. Let w0 be the longest

element in the Weyl group W . By Jantzen [15] we have for any λ ∈ X1 that

T (2(p− 1)ρ+ w0λ) ∼= Pπ(λ), (1)

an isomorphism of S(π)-modules, where π = {λ ∈ X+ : λ ≤ 2(p− 1)ρ+ w0λ)}.
This fact will be used repeatedly in the proof of our results. Any projective tilting module for

S(π) is also injective, since tilting modules are contravariantly self-dual, so the above module is

projective, injective, and tilting, for any λ ∈ X1.
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For p ≥ 5, there is a twisted tensor product theorem for tilting modules, due to Donkin [9,

(2.1) Proposition]. Every λ ∈ X+ has a unique expression in the form

λ =
∑m
j=0 aj(λ) pj (2)

with a0(λ), . . . , am−1(λ) ∈ (p− 1)ρ+X1 and 〈am(λ), α∨〉 < p− 1 for at least one simple root α.

Given λ ∈ X+, express λ in the form above. There is an isomorphism of G-modules

T (λ) '
⊗m

j=0 T (aj(λ))[j]. (3)

2. Facets and alcoves for G = SL3

We now introduce a labelling scheme for keeping track of the various alcoves and facets needed

in our calculations.

2.1. The Euclidean space associated to the root system of G is X⊗ZR ∼= R2. The Weyl group

W = 〈s1, s2〉 is isomorphic to the symmetric group on 3 letters. Here s1, s2 are reflections in

lines orthogonal to the simple roots α1, α2 respectively.

2.2. The map V 7→ V ∗, where V ∗ is the linear dual of V , is an involution on the set of

G-modules. If V is a highest weight module of highest weight λ, the highest weight of V ∗ is

−w0(λ), so this involution on G-modules induces a corresponding involution λ 7→ −w0(λ) on

the set X+, where w0 = s1s2s1 is the longest element of W . We refer to this involution as

symmetry, and we generally will omit stating results that can be obtained ‘by symmetry’ from

results already stated.

2.3. Let ρ = α1 + α2 = (1, 1). Recall that the dot action of Wp on X is defined by the rule

w · λ = w(λ+ ρ)− ρ. The bottom alcove C1 is defined by

C1 = {v ∈ R2 : 0 < 〈v + ρ, α∨〉 < p for all positive roots α}.

As depicted in Figure 1, C1 is the interior of an equilateral triangle in R2 with one vertex at the

point −ρ. The affine Weyl group Wp is generated by the reflections in the walls of C1.

Any translate w · C1 of C1 under the dot action of Wp is called an alcove. The closure of

an alcove Ci will be denoted by Ci. In Figure 1 below we number the alcoves, which we call

fundamental alcoves, that arise in our study. Alcoves i and i′ are in symmetry according to the

involution of 2.2. We let Fi|j = Ci ∩ Cj denote the wall between any pair Ci, Cj of adjacent

alcoves; this wall is a facet in the sense of [16, II.6.2]. The reflection in the wall Fi|j will be

denoted by si|j . In this notation the generators of Wp are s1|2 along with the elements s1, s2

defined in 2.1.

2.4. The points at intersections of very light grid lines in Figure 1 are weights. The region of

highest weights of composition factors that can occur in a p-restricted tensor product L⊗ L′ is

the set of all dominant weights λ such that λ ≤ (2p− 2)ρ; this is the set of weights on or below

the dashed lines in Figure 1. The alcoves in question are the numbered ones in the figure.

In case p < 7, not all of the labelled alcoves in Figure 1 actually appear in restricted tensor

product decompositions. The degeneracies for p < 7 are caused by fewer points appearing in

each alcove; to understand this the reader is encouraged to draw the analogue of Figure 1 for

the smaller primes, after which the degeneracies are apparent.
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Figure 1. Labelled alcoves for p = 7. The southernmost vertex is −ρ. The

origin o = (0, 0) is the marked point directly above it in alcove 1. The unlabelled

marked point in alcove 7 is 2(p − 1)ρ. The region of dominant weights λ with

λ ≤ 2(p − 1)ρ is bounded above by the two dashed lines emanating from that

point. The labelled alcoves, and walls between them, contain all the points in

the region. The coloured region of points is the restricted region X1. The simple

root α1 (respectively α2) is orthogonal to the wall of C1 pointing northeast

(respectively, northwest) from −ρ.

3. Main results

In this section we give the two main results of the paper. The first main result describes the

members of the family F = F(G) of indecomposable direct summands of a tensor product of

two restricted simple G-modules. The second main result is a description of the structure of

the modules in F, as far as we can deduce structural information by current methodology. The

highest weight modules in F are either simple modules L(λ) or indecomposable tilting modules

T (λ) for various λ, however there are non highest weight modules M(λ) which occur in F.

3.1. Notational conventions. We assume the reader is familiar with Jantzen’s translation

principle [16], which in particular implies an equivalence of module structure for highest weight

modules of the form L(λ), ∆(λ), ∇(λ), or T (λ) belonging to the same facet. We will therefore

adopt facet notation for highest weight modules whenever convenient. This replaces a highest

weight λ ∈ X+ by its corresponding alcove label j whenever λ ∈ Cj . Thus, for example, given

λ ∈ C1 ∩X, L(λ) is denoted by L(1), ∆(λ) is denoted by ∆(1), T (λ) is denoted by T (1), and

so on. Furthermore, within module diagrams, for each label j the simple module L(j) will be
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identified with its alcove label j. For p-singular weights λ ∈ Fi|j lying on the wall common to

two alcoves i and j (but not a vertex of any alcove) we use the notation i|j to denote the facet,

and use the notation L(i|j), ∆(i|j), T (i|j) for the highest weight modules L(λ), ∆(λ), T (λ)

respectively. Similar to the above, within module diagrams, for each facet label i|j the simple

module L(i|j) will be identified with its facet label i|j.

3.2. Corresponding to each weight λ ∈ C2, there is a unique indecomposable module M(λ)

in F which is not generated by a single highest weight vector. For λ ∈ C2, the module M(λ)

has a simple socle and head isomorphic to L(λ), with the quotient radM(λ)/ socM(λ) of the

radical by the socle a semisimple module isomorphic to L(s2|3′ · λ) ⊕ L(s2|3 · λ) ⊕ L(s1|2 · λ).

The module M(λ) may be constructed as a submodule of the tilting module T (s3|4 · s2|3 · λ) or,

symmetrically, as a submodule of the tilting module T (s3′|4′ ·s2|3′ ·λ). We construct it in section

6.3 as a quotient of an appropriate generalized Schur algebra. Similar modules (with identical

structure diagrams) already appeared in [4] for p = 3.

Making use of our convention (from 3.1) of replacing highest weights by their alcove or facet

labels we often write M(2) instead of M(λ) for λ ∈ C2. In this notation, M(2) is isomorphic to

a submodule of T (4) or T (4′). The Alperin diagram of M(2) is

M(2)=

2

3 1 3′

2

and this is a strong Alperin diagram. (Recall from [4] that a diagram is said to be strong if it

determines the socle as well as radical series.) Although M(2) is not a highest weight module,

it still has simple head isomorphic to L(2), so this notation should not cause confusion. The

module M(2) is rigid and self-dual under contravariant duality.

Let F = F(SL3) be the family of isomorphism classes of indecomposable direct summands of

a p-restricted tensor product L ⊗ L′, where L,L′ are p-restricted simple modules. We studied

this family in [4] for p = 2, 3. For p = 2 we found [4, Prop. 3.2] that F is precisely the set

FR = {T (λ) : 0 ≤ 〈λ+ ρ, α∨〉 ≤ 2p− 2, for all simple roots α}.

For p = 3, we found [4, Proposition 4.2] that FR ⊂ F, but there are also a few other modules in

F, which we called ‘exceptional’. It turns out that FR is contained in F for every characteristic

p. We call the members of FR regular and all other members of F exceptional. In the following,

we have incorporated part of the results of [4] in order to summarize our results for all p.

Theorem A. Let the characteristic p > 0 of K be arbitrary. Let F = F(SL3) be the family of

isomorphism classes of indecomposable direct summands of a p-restricted tensor product L⊗L′,
where L,L′ are p-restricted simple modules. Then F consists of the following indecomposable

modules:

(a) The set FR of regular tilting modules.

(b) The exceptional modules L(λ) and M(λ), for each λ ∈ C2.

(c) A finite list, depending on p, of exceptional tilting modules of the form T (λ), for various

λ not already listed in part (a). For p = 2 there are no exceptional tilting modules; for

p = 3 there are precisely four (see [4, Propositions 3.2 and 4.2]) of highest weight lying on

the boundary of C6; for larger p the number of exceptional modules grows with p with the
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highest weight of such modules lying in the region C6 ∪ C8 ∪ C9 (and those obtained by

symmetry).

Remarks. (1) One can explicitly determine the decomposition of a tensor product of two

p-restricted irreducible modules, by an algorithm described in Section 7.

(2) We include results of [4] for p = 2, 3 in the theorem, for completeness. In case p = 2

the alcove C2 is empty, so part (b) of the theorem is vacuous, and thus for p = 2 the

members of F are just the tilting modules listed in part (a).

For p ≥ 3 there are three vertices (points common to the closure of six alcoves) in the

admissible region of weights defined in Figure 1, and each of them gives the highest weight of a

(simple) tilting member of F. These are the Steinberg module St = T ((p − 1)ρ) = L((p − 1)ρ)

and the two modules T (p$1 + (p− 1)ρ) = L(p$1 + (p− 1)ρ) ∼= E[1] ⊗ St, T (p$2 + (p− 1)ρ) =

L(p$2 + (p− 1)ρ) ∼= (E∗)[1] ⊗ St.

Our second main result describes the structure of the other tilting members of F, of highest

weight lying in alcoves or on walls between a pair of alcoves, assuming p ≥ 5.

Theorem B. Assume that the characteristic of K is p ≥ 5.

(a) The p-singular tilting modules in F = F(SL3) of highest weight lying on walls are all rigid,

with structure as follows. The uniserial modules of highest weight lying on walls are:

T (1|2) = [(1|2)]; T (2|3) = [(2|3)];

T (3|4) = [(2|3′), (3|4), (2|3′)]; T (4|6) = [(1|2), (4|6), (1|2)]

along with their symmetric versions.

The non-uniserial modules of highest weight lying on walls are T (4|5), T (8|9), T (6|8),

T (5|7) and T (7|9), with structure given by the following strong Alperin diagrams, respectively:

(2|3)

(3′|4′)

(4|5) (2|3)

(3′|4′)

(2|3)

(4|6)

(5|7) (1|2)

(4|6) (8|9) (4′|6′)

(5|7) (1|2)

(4|6)

(4|5) (2|3)

(6|8) (3′|4′)

(4|5) (2|3)

(1|2)

(4′|6′) (4|6)

(1|2) (5|7) (1|2)

(4′|6′) (4|6)

(1,2)

(4|5)

(3′|4′) (6|8)

(2|3) (7|9) (4|5)

(3′|4′) (6|8)

(4,5)

along with their symmetric versions.

(b) The p-regular tilting modules in F are all rigid. The uniserial ones have the following

structure: T (1) = [1]; T (2) = [1, 2, 1].
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The non-uniserial ones for which the structure can be completely worked out are T (3), T (4),

and T (6) with the following strong Alperin diagrams, respectively:

2

3 1

2

2

3 1 3′

2 4 2

3′ 1 3

2

1

4 2

1 3 6 3′ 1

2 4

1

along with their symmetric versions. In the larger cases we give only the Loewy structure of

the tilting modules. We highlight the Weyl filtrations below for T (5) and T (7), respectively:

2

3 1 3′

2 4 4′ 2

3 1 3′ 5 3 1 3′

2 4′ 4 2

3 1 3′

2

1

4 2 4′

6 3 1 3′ 1 5 3 1 3′ 6′

4 2 7 4′ 4 2 4′

1 6 3 5 3′ 6′ 3 1 3′ 1

4 4′ 2

1

and below we provide the Weyl filtrations of T (9) and T (8), respectively:

4

6 3 1 3′ 5

7 4 2 8 4 4′

6 3 5 3′ 6′ 1 9 5 3 6 3 1 3′

4′ 4 8 7 4 2

1 3 5 6 3′

4

2 4

1 3 6 5 3 1 3′

2 4 8 4 4′ 2

1 3 5 6 3 1 3′

4 2

where the symmetric versions of these modules are not listed, as usual.

Note that all members of F have a simple p-restricted G1T -socle (and head) except for T (8)

and T (6|8) for p ≥ 5. Therefore every direct summand in the decomposition (1.1.3) of [4] is

indecomposable, unless it involves a factor of the form T (λ), for λ ∈ C8 ∪ F6|8. Because of the

upper bound constraint of 2(p− 1)ρ on the highest weights of tilting members of F, when p = 5

there are no members T (λ) in F with λ ∈ C8 ∪C9, although such modules do appear for p > 5.

The rest of the paper is devoted to the proof of these results. The proof of Theorem B is

given in Sections 5 and 6. The proof of Theorem A is given in Sections 7 and 8. First we need

the structure of certain Weyl modules, which are summarized in the next section.

4. The structure of certain Weyl modules

In [18] the p-filtration structure of Weyl modules for SL3(K) is determined for all primes. When

these layers are semisimple this gives the radical structure of the Weyl modules. Therefore when

p ≥ 5 and we consider weights from the first p2-alcove this re-derives the generic structures
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calculated in [12] and [14], which we shall recall below. The p-filtrations are semisimple for all

but three of the Weyl modules considered in [4]. For a given prime these calculations can also

be checked using the Weyl module GAP package available on the second author’s web page.

We remind the reader of the notational conventions of 2.3 and in particular that in diagrams

we will identify simple modules with their facet label. The structure of the p-singular Weyl

modules in question is given by the following strong Alperin diagrams, where as in [11], [4] we

use the notation [L1, L2, . . . , Ls] to depict the structure of the unique uniserial module M with

composition factors L1, . . . , Ls arranged so that radiM ∼= Li for all i.

∆(1|2) = [(1|2)], ∆(2|3) = [(2|3)],

∆(3|4) = [(3|4), (2|3′)], ∆(4|6) = [(4|6), (1|2)],

∆(4|5) = [(4|5), (3′|4′), (2|3)], ∆(6|8) = [(6|8), (4|5)],

∆(8|9) = [(8|9), (5|7), (4|6)],

∆(5|7) =

(5|7)

(4′|6′) (4|6)

(1|2)

, ∆(7|9) =

(7|9)

(6|8) (3′|4′)

(4|5)

.

The structure of the p-regular Weyl modules we need is as follows, where once again each diagram

is a strong Alperin diagram.

∆(1) = [1], ∆(2) = [2, 1], ∆(3) = [3, 2], ∆(6) = [6, 4, 1],

∆(4) =

4

3 1 3′

2

, ∆(8) =

8

3 5 6

4

,

∆(5) =

5

4 4′

3 1 3′

2

, ∆(7) =

7

6 3 5 3′ 6′

4 4′

1

, ∆(9) =

9

8 7

3 5 6 3′

4

.

All of these Weyl modules, including the p-singular ones, are rigid.

5. The p-singular tilting modules

We now begin the proof of Theorem B. The characters of the tilting modules for G = SL3 are

known [17,19] (see also [6]) so our task is just to prove the structural results in Theorem B. This

proof is split over the next two sections. The present section considers only the p-singular case

while the next considers the p-regular case.

5.1. It turns out that most tilting modules T (λ) that we consider are projective for the gener-

alized Schur algebra S(≤ λ). To prove injectivity (and hence projectivity) one need only check

that

(a) the socle of the tilting module is simple, and

(b) the character of the relevant projective module (given by Proposition 1) coincides with

the tilting character.
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Note that part (a) can usually be done by constructing an injection into a tilting module of the

form T (2(p− 1)ρ+$0λ) for λ ∈ X1 and applying 1.4.

We begin with the p-singular tilting modules, not only because their structures tend to be less

complicated, but also because their images under translation functors provide useful filtrations

of the p-regular tilting modules considered in the next section.

5.2. We shall build the tilting modules T (2|3), T (3′|4′) and T (4|5) as modules for the Schur

algebra S(π) corresponding to the poset π = {(2|3) < (3′|4′) < (4|5)}. We begin with T (4|5).

By 1.4 the tilting module T (4|5) = P (2|3) is the projective cover of L(2|3). By Proposition 1 and

the Weyl module structure in Section 4, the projective module P (2|3) has a ∆-filtration with

∆-factors ∆(2|3), ∆(3′|4′), and ∆(4|5) each occurring with multiplicity one. Using Proposition

2 we can locate where the heads of the ∆-modules occur in a radical filtration of T (4|5). The

diagram below gives the radical structure of the module

(2|3)

(3′|4′)

(4|5) (2|3)

(3′|4′)

(2|3)

in which the connected components are the layers in the ∆-filtration. Since rad1(∆(2|3)) =

L(2|3), rad2(∆(3′|4′)) = L(2|3) and rad3(∆(4|5)) = L(2|3), by Proposition 2 the heads of the

∆-modules ∆(2|3), ∆(3′|4′) and ∆(4|5) appear in the first, second, and third layers of P (2|3)

respectively (as pictured above). Note that rad4(P (2|3)) = L(3′|4′), however this module is not

the head of a ∆-module in a ∆-filtration. Considering also the ∇-filtration gives the Alperin

diagram

(2|3)

(3′|4′)

(4|5) (2|3)

(3′|4′)

(2|3)

of T (4|5) shown above. This is projective-injective and so Proposition 2 (and the subsequent

remark) give both the radical and socle structure. Hence T (4|5) is rigid and the above diagram

is a strong Alperin diagram.

The above also gives us the structure of T (3′|4′), which appears as a quotient of T (4|5). To

see this, notice that the module P (2|3) = T (4|5) has a uniserial quotient module isomorphic to

[(2|3), (3′|4′), (2|3)]; this quotient has both ∆ and ∇ filtrations, hence is tilting and isomorphic

to T (3′|4′). Moreover, since ∆(2|3) = L(2|3) = ∇(2|3), the module T (2|3) = L(2|3) is a simple

tilting module.

We now determine the structure of T (6|8). The calculation is similar to that given above,

so we only sketch it. We have that ∆(6|8) = [(6|8), (4|5)], so ∆(4|5) must appear at the top.

Contravariant duality and our knowledge of the other Weyl modules in the linkage class give us
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the ∆-filtration

(4|5) (2|3)

(6|8) (3′|4′)

(4|5) (2|3)

of T (6|8) as shown above. Finally, consideration of the ∇-filtration gives us the full structure

diagram as depicted in Theorem B.

We now consider T (7|9). By (3) we have an isomorphism T (7|9) ∼= T (4′|5) ⊗ E(1), and by

comparing characters (or composition factors) we see that T (7|9) = P (4|5), as S(≤ 7|9)-modules.

Therefore T (7|9) is rigid by Proposition 2. The full Alperin diagram can then be deduced from

the ∆ and ∇-filtrations.

5.3. Coefficient quivers. To proceed further we need to use methods from the theory of finite

dimensional algebras. This need will come up again in Section 6. Our approach will be similar

to that of Ringel’s Appendix to [4]. In particular, when writing quiver and relations we will

switch to right modules instead of left ones, so that composite paths can be read from left to

right. Recall that by Gabriel’s theorem (see e.g., Proposition 4.1.7 in [3]) the basic algebra of

any finite dimensional algebra is isomorphic to a suitable quotient of the path algebra of the

ext-quiver of the algebra.

We recall the terminology of coefficient quivers. Let K be a field, let Q be a (finite) quiver

and KQ the path algebra of Q over K. Recall that a representation N of Q over K associates

to each vertex i ∈ Q a vector space Ni and to each arrow α : i → j a linear transformation

Ni → Nj . There is a natural correspondence between representations of Q and KQ-modules.

See [21] or [3] for more details.

Given a representation N , let di be the dimension of Ni, and d =
∑
i di; d is called the

dimension of N . A basis B of N is by definition a subset of the disjoint union of the various

K-spaces Ni, such that for any vertex i the set Bi = B∩Ni is a basis of Ni. Let us assume that

such a basis B of N is given. For any arrow α : i→ j, we may express Nα as a (dj × di)-matrix

whose rows are indexed by Bj and whose columns are indexed by Bi. We denote by Nα,B(b, b′)

the corresponding matrix coefficients, where b ∈ Bi, b′ ∈ Bj , these matrix coefficients Nα,B(b, b′)

are defined by Nα(b) =
∑
b′∈BNα,B(b, b′)b′. By definition, the coefficient quiver Γ(N,B) of N

with respect to B is the oriented graph with B as set of vertices, and there is an arrow α : b→ b′

provided Nα,B(b, b′) 6= 0. Usually that arrow would take α as label, but since we deal only with

quivers without multiple arrows, the labels are omitted. We will always arrange our coefficient

quivers so that arrows point downwards; then arrows can be replaced by edges. It should be

noted that the choice of basis can affect the shape of the coefficient quiver.

5.4. We now consider the generalized Schur algebra S(≤ 8|9) = S(π), or rather its basic

algebra. From the structure diagrams of the Weyl modules in Section 4 it follows that the Ext1-

quiver P for S(≤ 8|9) with indexing set π = {1|2, 4|6, 4′|6′, 5|7, 8|9} is as illustrated in Figure

2.

We label the idempotents corresponding to the nodes by e1|2, e4|6, e4′|6′ , e5|7, and e8|9. By

Gabriel’s theorem S(≤ 8|9) is Morita equivalent to a quotient of the path algebra of P .
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Figure 2. The quiver P .

Proposition 4. The basic algebra of the Schur algebra S = S(≤ 8|9) is isomorphic to the path

algebra of P modulo the ideal generated by the following relations:

aa′ = 0, ac′2 = 0, ac′1b1 = 0, ac′1c1 = 0, c′ici = a′a, c′1b1 = c′2b2, c
′
1b1b

′
2 = 0,

b1b
′
1 = c1c

′
1, b1b

′
2 = c1c

′
2, c2a

′ = 0, b2b
′
1 = c2c

′
1, b2b

′
2 = (−1)c2c

′
2, b
′
1c1 = b′2c2.

Proof. By Proposition 1, the projective indecomposable modules for S(≤ 8|9) have the following

∆-filtrations (going downwards)

P (1|2) ∆(1|2)|∆(4|6)⊕∆(4′|6′)|∆(5|7)

P (4|6) ∆(4|6)|∆(5|7)|∆(8|9)

P (4′|6′) ∆(4′|6′)|∆(5|7)

P (5|7) ∆(5|7)|∆(8|9)

P (8|9) ∆(8|9).

By equation (1), we have the isomorphism T (4|5) ∼= P (2|3) and by equation (3) we have T (8|9) ∼=
T (4|5) ⊗ E[1]. This implies that T (8|9) has simple head; it therefore appears as a quotient of

P (4|6). One can check that the character of T (4|5)⊗E[1] is equal to that of P (4|6) given above,

and therefore T (8|9) = P (4|6) for S(≤ 8|9). By equation (1), P (1|2) is isomorphic to the tilting

module T (5|7) for S(≤ 8|9).

The Loewy layers of the module T (8|9) are multiplicity-free and so its structure is given by

(4|6)

(5|7) (1|2)

(4|6) (8|9) (4′|6′)

(5|7) (1|2)

(4|6)

as determined by Proposition 2 for both the ∆ and ∇-filtrations.

A tilting module T (λ) has a unique submodule isomorphic to ∆(λ) and a unique quotient

module isomorphic to ∇(λ). By definition (Section 4 of [4, Appendix]) the core of T (λ) is

C(λ) = Q(λ)/R(λ), where R(λ) is the radical of ∆(λ) and Q(λ) is the kernel of the canonical

quotient map T (λ) → ∇(λ)/L(λ). It is easily checked that R(λ) ⊂ Q(λ) and that L(λ) is a

direct summand of the quotient C(λ) = Q(λ)/R(λ). From the structure of T (8|9), we see that

its core decomposes as a direct sum of L(8|9) and the module pictured in Figure 3.



DECOMPOSITION OF TENSOR PRODUCTS 117

(1|2)

(4|6) (4′|6′)

(1|2)

Figure 3. The non-simple direct summand of the core of T (8|9).

Arguing by symmetry, we can obtain the structure for T (8′|9′) from that of T (8|9) above.

This equals Pπ′(4′|6′) for the generalized Schur algebra S(π′) = S(≤ 8′|9′). It has a unique

submodule isomorphic to ∆(8′|9′) and the corresponding quotient module T (8′|9′)/∆(8′|9′) is

isomorphic to P (4′|6′) for S(≤ 8|9). This determines the structure of P (4′|6′). Furthermore,

by Proposition 3 and considerations of the Loewy structure of P (5|7) we deduce that T (5|7)

embeds in T (8|9). Therefore, the coefficient quivers of P (5|7) and P (4′|6′) are as follows

(5|7)

(4|6) (8|9) (4′|6′)

(5|7) (1|2)

(4|6)

(4′|6′)

(5|7) (1|2)

(4|6) (4′|6′)

(1|2)

.

The diagrams allow us to immediately deduce when a coefficient in the quiver is equal to zero.

The extensions in the diagram all contribute non-zero coefficients.

From P (8|9) = ∆(8|9) = [8|9, 5|7, 4|6], we have that aa′ = ac′2 = 0, ac′1b1 = ac′1c1 = 0. From

the coefficient quiver for P (5|7) we deduce that c′1b1 = c′2b2, c′1b1b
′
2 = 0, and c′1c1 = αa′a,

c′2c2 = βa′a, for some non-zero constants α, β ∈ K.

Consider the projective module P (4|6) = T (8|9) (as pictured above). From the coefficient

quiver for P (4|6), we deduce that b1b
′
j = γjc1c

′
j for non-zero coefficients γj ∈ K where j = 1, 2.

By examining P (4′|6′) in a similar fashion, we deduce that b2b
′
j = δjc2c

′
j for non-zero coefficients

δj ∈ K, but with the additional relation c2a
′ = 0.

Consider the structure of the quotient ∇(5|7) of T (5|7) = P (1|2). By self duality, we have

that b′1b1 = ζb′2b2 for a non-zero coefficient ζ ∈ K. The module ∇(5|7) has coefficient quiver

(1|2)

(4|6) (4′|6′)

(5|7)

.

Choosing a suitable basis of ∇(5|7), we can assume that at least 3 of the non-zero coefficients

are equal to 1 and we look at the remaining coefficient, say that for the arrow c2. It will be

a non-zero scalar k ∈ K. Recall that we have started with a particular generator choice for

the algebra S(≤ 8|9) which we can change. If we replace the element c2 by (1/k)c2, then the

coefficients needed for ∇(5|7) will all be equal to 1. Similarly, the coefficients α, β can to be

chosen to be equal to 1.

Now consider the submodules of P (1|2) generated by the copies of L(1|2) in the third Loewy

layer; we shall use the self-duality of P (1|2) and the homomorphisms from other projective

modules into P (1|2), in order to deduce the values of the coefficients γj , δj ∈ K for j = 1, 2.
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The module P (4|6) = T (8|9) has a unique submodule isomorphic to ∆(8|9). We let P ′(4|6) de-

note the corresponding quotient module P (4|6)/∆(8|9). (The notation reflects that we have triv-

ially inflated the corresponding projective module for S(π′) for π′ = {(1|2), (4|6), (4′|6′), (5|7)}).
By Proposition 3 and considerations of Loewy structure, we deduce that there is an injective

map f1 (respectively f2) from P (4′|6′) (respectively P ′(4|6)) to a submodule of P (1|2). In what

follows we shall identify a simple composition factor of a projective module with the path in

the quiver which terminates at the given simple composition factor. An example of how to

pass between these two pictures (the coefficient quiver and the subspace lattice) is given in [4,

Appendix page 217].

The injection f1 (respectively, f2) takes the simple head of P (4′|6′) (respectively, of P ′(4|6))

which is labelled by the element e4′|6′ (respectively e4|6) to the simple composition factor L(4′|6′)
in the second radical layer of P (1|2), which is labelled by the path b′1 (respectively b′2). Therefore

f1 (respectively f2) takes the simple composition factor L(1|2) in the second radical layer of

P (4′|6′) (respectively P ′(4|6)) labelled by b1 (respectively b2) to the corresponding simple factor

L(1|2) in the second radical layer of P (1|2) labelled by b′1b1 (respectively b′2b2). From the

diagram of P (4′|6′) (respectively P ′(4|6)) we know that the simple composition factor labelled

by b2 (respectively b1) generates the module with structure as given in Figure 3. We therefore

deduce that the copy of L(1|2) in the third Loewy layer of P (1|2) labelled by the path b′1b1

(respectively b′2b2) generates a submodule isomorphic to the module given in Figure 3.

By the self-duality of P (1|2) we know that [(1|2), (4|6), (1|2)] and [(1|2), (4′|6′), (1|2)] must also

appear as submodules of P (1|2) and are therefore generated by diagonal embeddings of L(1|2)

into the third radical layer of P (1|2), these are labelled by linear combinations of the paths

b′1b1 and b′2b2. Rescaling the generators if necessary, we may choose b′1b1 + b′2b2 (respectively

b′1b1 − b′2b2) as the path labelling the diagonal copy of L(1|2) which generates the submodule

[(1|2), (4|6), (1|2)] (respectively [(1|2), (4′|6′), (1|2)]).

The submodule of P (1|2) generated by the copy of L(1|2) labelled by b′1b1 has composition

factors labelled by the following paths

b′1b1

b′1(b1b
′
1) = γ1b

′
1c1c

′
1

b′1(b1b
′
2) = γ2b

′
1c1c

′
2

b′1(b1b
′
1)b1 = γ1b

′
1c1c

′
1b1,

and the submodule generated by the copy of L(1|2) labelled by b′2b2 has composition factors

labelled by the following paths

b′2b2

b′2b2b
′
1 = δ1b

′
2c2c

′
1 = δ1γ1b

′
1c1c

′
1

b′2b2b
′
2 = δ2b

′
2c2c

′
2 = δ2γ2b

′
1c1c

′
2

(b′2b2)(b′2b2) = ζ2(b′1b1)(b′1b1) = ζ2b′1(b1b
′
1)b1 = ζ2γ1b

′
1c1c

′
1b1.

From our discussion of the embeddings f1 and f2, we deduce that all of these paths are non-zero.

The diagonal copy of L(1|2) labelled by the path b′1b1 + b′2b2 generates the submodule

[(1|2), (4|6), (1|2)]. Therefore, we require that the coefficients satisfy the following identities

γ1 + δ1γ1 6= 0 γ2 + δ2γ2 = 0 .
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Here, the left hand side of these (in)equalities is the coefficient of the path labelling the compo-

sition factor L(4|6) (respectively L(4′|6′)) in the submodule generated by the diagonal copy of

L(1|2) labelled by the path b′1b1 + b′2b2. We require this coefficient to be non-zero (respectively

zero) in order for the submodule generated by the copy of L(1|2) labelled by the path b′1b1 +b′2b2

to be of the form [(1|2), (4|6), (1|2)].

Similar considerations in the case b′1b1 − b′2b2 imply the (in)equalities

γ1 − δ1γ1 = 0 γ2 − δ2γ2 6= 0 .

This implies that the coefficients satisfy δ1 = 1 and δ2 = −1. Rescaling if necessary, we may

choose to take γ1 = γ2 = 1. This completes the proof. �

Remark. Using the“Quivers and Path Algebras” package [20] for GAP [13], we have checked that

the algebra described by quiver and relations in Proposition 4 does have the indicated dimension.

We have also checked that the dimensions and Loewy layers of the indecomposable projectives

computed by the package agree with our results.

We provide the two most symmetric coefficient quivers of T (5|7) below.

(1|2)

(4′|6′) (4|6)

(1|2) (5|7) (1|2)

(4′|6′) (4|6)

(1,2)

(1|2)

(4′|6′) (4|6)

(1|2) (5|7) (1|2)

(4′|6′) (4|6)

(1,2)

.

The only choice to be made is which basis to take for the 2-dimensional space L(1|2) ⊕ L(1|2)

in the third Loewy layer. The left coefficient quiver corresponds to the basis N = {b′1b1, b′2b2}
and the right one corresponds to the basis N ′ = {b′1b1 + b′2b2, b

′
1b1 − b′2b2}.

6. The p-regular tilting modules

Having determined the structure of the p-singular tilting modules, we now turn to the p-regular

ones. This will complete the proof of Theorem B. The structure of the tilting modules T (1),

T (2), and T (3) is easily verified, and is left to the reader, but T (4) is more complicated.

6.1. We first consider the module T (6) as this will be helpful in determining the structure of

T (4). This module can be seen to be projective-injective for S(≤ 6) by application of translation

functors to the embedding T (4|6) ↪→ T (5|7) (and use of Proposition 1 and 1.4). It is therefore

equal to the projective cover of L(1). The diagram of T (6) in Theorem B is obtained using

the equalities dimK Ext1G(L(2), L(1)) = 1 = dimK Ext1G(L(4), L(1)) coming from the structure

of the Weyl modules, and by reconciling the ∆-filtration with the corresponding ∇-filtration.

The Loewy length of this module is 5 and the radical structure is symmetric about the middle,

in other words radi(T (6)) = rad4−i(T (6)). Identical statements hold for the the socle series of

T (6) by way of the remark following Proposition 2. We therefore conclude that the module is

rigid, i.e. radi(T (6)) = soc4−i(T (6)).



120 C. BOWMAN, S. R. DOTY AND S. MARTIN

4

c′1xx

c′2

&&
d′

��
3

b1

&&

c1

88

1

a

��

d

OO

3′

b2
xx

c2

ff

2

a′

OO

b′1

ff
b′2

88

Figure 4. The quiver Q

6.2. To determine the structure of T (4) we will study the generalized Schur algebra S(≤ 4).

From the structure diagrams of the Weyl modules in Section 4 it follows that the Ext1-quiver Q

for S(≤ 4) = S(π) for π = {1, 2, 3, 3′, 4} is as illustrated in Figure 4. By Gabriel’s theorem (see

e.g. Proposition 4.1.7 in [3]) we have that S(≤ 4) is a quotient of the path algebra of the quiver

Q. Notice that applying appropriate translation functors to the embedding T (3|4) ↪→ T (4′|5)

produces an embedding T (4) ↪→ T (5); see [16, II.E.11]. By Propositions 1 and 3 it follows that

T (4) is the projective cover of L(2) as an S(≤ 4)-module.

Before considering the defining relations of S(π) = S(≤ 4) we first consider the simpler

question of describing the Schur algebra S′ = S(π′) for π′ = {1, 2, 3, 3′}, which is a quotient

algebra of S(≤ 4), by quiver and relations. From the Weyl module structure, the Ext1-quiver

for S′ is the full subquiver Q′ = Q(1, 2, 3, 3′) of Q obtained by removing the vertex 4 and the

arrows c1, c
′
1, c2, c

′
2, d, d

′ starting or terminating at that vertex. It will soon become necessary

to compare projective indecomposables for S′ with those for S. Our notational convention is to

use P (j) = Pπ(j) for the projective cover of L(j) in the algebra S = S(π), and P ′(j) = Pπ′(j)

for the corresponding projective cover in S′ = S(π′). We have the following description of the

algebra S′.

Proposition 5. The basic algebra of the Schur algebra S′ = S(π′) is isomorphic to the path

algebra of Q′ modulo the ideal generated by the following relations:

ab′i = 0, aa′a = 0, bia
′ = bib

′
i = bib

′
j = 0, a′a = b′1b1 + b′2b2.

where i 6= j.

Proof. By Proposition 1, the projective indecomposable modules for S′ have the following

∆-factors (going downwards)

P ′(1) ∆(1)|∆(2)

P ′(2) ∆(2)|∆(3)⊕∆(3′)

P ′(3) ∆(3)

P ′(3′) ∆(3′).

From the structure of the Weyl modules and Proposition 2 it follows that P ′(1), P ′(3), and P ′(3′)

are uniserial with structure P ′(1) = [1, 2, 1], P ′(3) = ∆(3) = [3, 2], P ′(3′) = ∆(3′) = [3′, 2]. This

implies the first three relations in the proposition.

We now address the remaining relation a′a = b′1b1 + b′2b2. For this we need structural

information about P ′(2). Proposition 2 gives the Loewy structure of P ′(2) as pictured below

2

3 1 3′

2 2
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which has a ∆-filtration with subquotients isomorphic to ∆(3), ∆(3′) and ∆(2). It is immediate

that a′a = β1b
′
1b1 + β2b

′
2b2 where β1, β2 are scalars, since otherwise the independence of the

paths a′a, b′1b1, b′2b2 would force [P ′(2) : L(2)] > 3, which is a contradiction.

By Proposition 3 we have dimK HomG(P ′(2), T (3)) = 2. The Loewy structure of P ′(2)

implies that one of the two homomorphisms is given by projection of the head of P ′(2) onto the

socle of T (3), and the other homomorphism is a surjection of P ′(2) onto T (3). Therefore T (3) is

a quotient module of P ′(2) and β1 6= 0. We also have that β2 6= 0 by symmetry. Finally, fixing

our choice of a, a′, b1, b2 and adjusting our choice for b′1, b
′
2 if necessary, we can pick β1 and β2

to both be 1. This concludes the proof. �

6.3. Definition. Let M(2) denote the quotient module defined by

M(2) = P ′(2)/(b′1b1 − b′2b2).

It is clear that M(2) has strong Alperin diagram

M(2)=

2

3 1 3′

2

as already mentioned in 3.2. For any λ ∈ C2 we therefore have a module M(λ) with similar

structure, as described in 3.2.

We are interested in the structure of T (4) and hence wish to consider the modules which

appear as both quotients and submodules of T (4). This leads us to consider the quotient

modules of P ′(2) which have simple socle isomorphic to L(2). These are given by taking the

quotients corresponding to setting b′2 = 0, b′1 = 0, b′1b1 − b′2b2 = 0 , b′1b1 + b′2b2 = 0 or a′ = 0.

The resulting modules have coefficient quivers depicted in Figure 5. Each of these five modules

has a corresponding coefficient quiver, with basis Bi for i = 1, . . . , 5 respectively.

2

3 1

2

2

1 3′

2

2

3 1 3′

2

2

3 1 3′

2

2

3 3′

2

Figure 5. The coefficient quivers of quotient modules of P ′(2) corresponding

b′2 = 0, b′1 = 0, b′1b1 − b′2b2 = 0, b′1b1 + b′2b2 = 0 or a′ = 0 respectively.

Numbering from left to right, let Bi denote the basis of the ith coefficient

quiver for i = 1, . . . , 5. The non-trivial coefficients are Na,B3
(a′, b′1b1) = 2,

Nb2,B4(b′2, b
′
1b1) = −1, and Nb2,B5(b′2, b

′
1b1) = −1. All other coefficients may be

chosen to be equal to 1.

6.4. We now turn our attention to computing the defining relations for S(≤ 4) = S(π) with

π = {1, 2, 3, 3′, 4}. The algebra S(≤ 4) is the direct sum of its projective indecomposables

P (1), P (2), P (3), P (3′) and P (4) and the corresponding projective indecomposables in S′ are

homomorphic images of these. By character considerations or otherwise it is easy to see that

P (2) = T (4). We will soon need the following fact.
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Lemma 1. The tilting module T (4) has three filtrations as depicted in the diagrams below

2

3 1 3′

2 4 2

3 1 3′

2

2

3 1 3′

2 4 2

3′ 1 3

2

2

3 1 3′

2 4 2

3 1 3′

2

in which the connected components in each diagram identify successive subquotients of the filtra-

tions.

Proof. The first filtration, depicted in the leftmost diagram above, is a ∆-filtration whose

structure is determined by Proposition 2.

To obtain the second filtration, first pick a weight ν ∈ F(3|4) so that ν + ε1 ∈ C4. (See 1.1

for the notation ε1.) In what follows, fix all alcove weights to be elements of the linkage classes

ν + εj for j = 1, 2, 3 (There are only two such linkage classes involved, as ν + ε1 is linked to

ν+ε3.) Note that T (3|4) = [(2|3′), (3|4), (2|3′)] is uniserial. Therefore the p-regular linkage class

of E ⊗ T (3|4) has a filtration with layers given by the p-regular linkage classes of E ⊗ L(2|3′),
E ⊗ L(3|4) and E ⊗ L(2|3′). Since L(2|3′) is tilting, it follows by character considerations that

the p-regular linkage class of E ⊗ L(2|3′) is equal to T (3′). This justifies the top and bottom

connected components in the middle diagram above. It remains to show that the p-regular

linkage class of E ⊗ L(3|4) is uniserial. It is enough to show that

dimK(Hom(L(3), E ⊗ L(3|4))) = 1.

This is equivalent to showing that dimK(Hom(L(3) ⊗ E∗, L(3|4))) = 1, which is easily seen to

hold, as L(3)⊗ E∗ has exactly one composition factor isomorphic to L(3|4).

To obtain the third filtration, we switch temporarily to highest weight notation, and consider

for example the tensor product T (p− 2, p− 2)⊗ T (p, 0), which is tilting, hence a direct sum of

indecomposable tilting modules, with T (2p − 2, p − 2) = T (4) occurring with multiplicity one.

Since T (p − 2, p − 2) = [K,L(p − 2, p − 2),K] we see that the tensor product has a filtration

with layers

T (p, 0)

L(p− 2, p− 2)⊗ L(p− 2, 1)

L(p− 2, p− 2)⊗ (L(p, 0)⊕ L(p− 3, 0))

L(p− 2, p− 2)⊗ L(p− 2, 1)

T (p, 0)

where every layer is contravariantly self-dual (as it is a tensor product of contravariantly self-

dual modules). The simple module L(2p− 2, p− 2) = L(p− 2, p− 2)⊗L(p, 0) of highest weight

appears as a direct summand of the third layer; it must extend both above and below to result in

a module isomorphic to T (2p−2, p−2), i.e. there must exist modules N1 and N2 which are direct

summands of T (p, 0) and L(p− 2, p− 2)⊗L(p− 2, 1) respectively such that N1|N2|L(4)|N2|N1

is a filtration of T (4). We do not insist that both N1 and N2 are non-zero.

By assumption, N1 is either equal to T (p, 0) or zero. Assume that N1 = T (p, 0) for a

contradiction. Then (by character considerations) we have that N2 = L(0, 2p − 3), this results

in a filtration of T (2p− 2, p− 2) with layers given by

T (p, 0)|L(0, 2p− 3)|L(2p− 2, p− 2)|L(0, 2p− 3)|T (p, 0).
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Now, setting V = L(p− 2, p− 2) to ease the notation, we have

Hom(V ⊗ L(p− 2, 1), L(0, 2p− 3)) = Hom(V,L(1, p− 2)⊗ L(0, p− 3)⊗ (E∗)[1]). (4)

We shall show that the right hand side in the above is equal to zero and thus arrive at a

contradiction.

By Lemma 4 of Section 7, the tensor product L(1, p− 2)⊗L(0, p− 2) decomposes as a direct

sum of indecomposable tilting modules labelled by highest weights in alcoves 1, 2, 3, 4, 4′ along

with a number of p-restricted simple modules. (The proof of Lemma 4 is independent of this

subsection.) We have constructed injections of all of these modules into modules of the form

T (2(p − 1)ρ + w0λ) for λ ∈ X1 and therefore by Donkin’s tilting tensor product theorem none

of the summands of (L(1, p− 2)⊗ L(0, p− 2))⊗ L(0, 1)[1] have a p-restricted simple module in

their socle. Therefore, the right hand side of (4) is zero, as claimed. Therefore N1 6= T (p, 0).

This leaves us in the case that N1 = 0, and it remains to deduce the structure of N2. We

know that N2 is a self-dual quotient of P ′(2) and therefore has head and socle isomorphic to

L(2). Therefore N2 appears in the list of modules in Figure 5. There are only two modules in

Figure 5 with the correct character: namely the third and fourth. But only the former module

is contravariantly self-dual, so we conclude that it is N2. This shows that N2 = M(p − 3, 1).

Therefore T (2p− 2, p− 2) does possess the required third filtration. One may conclude that the

desired filtration exists for any T (λ) such that λ ∈ C4, by Jantzen’s translation principle. This

completes the proof. �

Remark. The proof of Lemma 1 shows that the module M(ν) for ν ∈ C2 sometimes appears

as a direct summand of some tensor product of the form L(λ) ⊗ L(µ) for λ, µ ∈ X1. We shall

see later that this is the case for all ν ∈ C2 and that these are the only non-simple, non-tilting

indecomposable modules which can appear as a direct summand in such a tensor product.

Proposition 6. Let π = {1, 2, 3, 3′, 4}. The basic algebra of the Schur algebra S = S(π) = S(≤
4) is isomorphic to the path algebra of Q modulo the ideal generated by the following relations:

c′ici = d′d = 0, c′ibi = d′a, d′ab′i = d′aa′ = 0, aa′a = 0, ab′1 = −dc′1, ab′2 = dc′2, bib
′
i = 0,

b1a
′ = c1d

′, b1b
′
2 = c1c

′
2, b2a

′ = −c2d′, b2b′1 = −c2c′1, b′1b1 + b′2b2 = a′a, b′ici = a′d,

where i 6= j.

Proof. By Proposition 1, the projective indecomposable modules for S have the following ∆-

factors (going downwards)

P (1) ∆(1)|∆(2)|∆(4)

P (2) ∆(2)|∆(3)⊕∆(3′)|∆(4)

P (3) ∆(3)|∆(4)

P (3′) ∆(3′)|∆(4)

P (4) ∆(4).

The structure of P (4) = ∆(4) ensures that the relations c′ici = d′d = 0, d′ab′i = d′aa′ = 0,

d′ab′i = d′aa′ = 0 all hold. We also see that c′ibi, d
′a are all equal up to scalar multiplication,

and we may choose to take these coefficients to be equal to 1.

The tilting module T (6) is projective for the generalized Schur algebra S(σ) for

σ = {1, 2, 3, 3′, 4, 6}, and its structure has already been calculated. We let eπ denote the idem-

potent corresponding to the subset of weights π ⊂ ρ in which we are interested. Applying the
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idempotent truncation map we see that eπT (6) = P (1). Hence P (1) has the following coefficient

quiver

1

2 4

1 3 1 3′

2

Therefore aa′a = 0, ab′1 = α1dc
′
1, ab

′
2 = α2dc

′
2 where the αi ∈ K are non-zero constants which

are yet to be determined.

The coefficients we need to understand the structure of P (3) are β1, β2, β3 ∈ K where b1b
′
1 =

β1c1c
′
1, b1a

′ = β2c1d
′, b1b

′
2 = β3c1c

′
2. We have seen in Lemma 1 that there exists a uniserial

module of the form [3, 4, 3]. Therefore this module occurs as a quotient of the projective P (3),

this implies that β1 = 0. By the structure of P (1), we know that there does not exist a uniserial

module of the form [1, 4, 3] and therefore neither does there exist a module of the form [3, 4, 1];

therefore β2 ∈ K is a non-zero constant that is yet to be determined.

We now show that β3 6= 0. The module P (3) has two quotient modules with socle L(2) =

soc(T (4)), namely [3, 2] and P (2) itself, and dimK Hom(P (3), T (4)) = 2 by Proposition 3.

Therefore P (2) embeds into T (4). In what follows we shall identify a simple composition factor of

a projective module with the path in the quiver which terminates at the given simple composition

factor. The injection f1 takes the simple head of P (3) which is labelled by the element e3 to

the simple composition factor L(3) in the second radical layer of P (2) labelled by the path b′1.

Therefore f1 takes the simple composition factor L(2) in the second radical layer of P (3) labelled

by b1 to the simple composition factor L(2) in the third radical layer of P (2) labelled by b′1b1.

The module P (2) = T (4) is contravariantly self-dual and so each copy of L(2) in the third layer

must extend at least one of the L(3) and L(3′) in the fourth layer. We therefore deduce that

the simple composition factor L(2) in the second Loewy layer of P (3) labelled by the path b1

generates a submodule of P (3) with either an L(3) or L(3′) as a composition factor. We have

already seen that L(3′) is not a composition factor of this module, therefore we conclude that

L(3) is a composition factor and hence β3 6= 0.

Dual arguments hold for all but one of the above statements (allowing us to make conclusions

about P (3′) and the corresponding coefficients γ1, γ2, γ3 ∈ K). The statement which has no

dual comes from the fact that we have not constructed a uniserial module [3′, 4, 3′], i.e. we do

not know if there does or does not exist a uniserial module of the form [3′, 4, 3′]. Therefore the

projective modules P (3) and P (3′) have the following coefficient quivers (where the extension

corresponding to the dashed line may or may not exist),

3

2 4

3′ 1 3

2

3′

2 4

3 1 3′

2

where the non-zero coefficients β2, β3, γ2, γ3 are yet to be determined. The coefficient γ1, corre-

sponding to the dashed line, will later be shown to be equal to zero.

We now consider the final projective module P (2) = T (4). A ∇-filtration of the module T (4)

has ∇(4) at the top, and so the bic
′
i, a
′d are non-zero and span a 1-dimensional space. We may

pick the corresponding coefficients to be equal to 1.
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Arguing as in the proof of Proposition 5, we conclude that a′a = ζ1b
′
1b1 + ζ2b

′
2b2. This is the

final path of length two from vertex 2 to itself. At this point, we make a non-trivial choice by

setting ζ1 = ζ2 = 1, it is this choice that determines the remaining coefficients. In particular,

the quivers of all the self-dual proper quotient of P (2) are given in Lemma 1.

Now consider the coefficients for P (1). There is no submodule of P (1) that is isomorphic

to M(2). This can easily be seen as aa′a = 0. Therefore the submodule of P (1) generated by

the simple module L(2) labelled by the path a is isomorphic to the module P ′(2)/〈b′1b1 + b′2b2〉
depicted in Figure 5. By our assumption on the coefficients above, this implies that ab′1b1 =

(−1)ab′2b2. This implies that α1 = −α2.

We now consider the submodule of T (4) generated by the copy of L(2) in the third Loewy

layer of T (4) labelled by the path b′1b1− b′2b2 (respectively b′1b1 + b′2b2). We have already seen in

Lemma 1 that T (4) has a filtration [M(2), L(4),M(2)]; we have chosen our coefficients so that

the submodule isomorphic to M(2) is generated by the copy of L(2) labelled by b′1b1 − b′2b2.

This submodule has basis B = {b′1b1 − b′2b2, a′dc′1, a′dc′2, a′dd′, a′dd′a} with coefficient quiver

Nb′1,B(b′1b1 − b′2b2, a′dc′1) = −γ1
Na′,B(b′1b1 − b′2b2, a′da′) = β2 − γ2
Nb′2,B(b′1b1 − b′2b2, a′dc′2) = β3 − γ3.

We deduce that −γ1 = β3 − γ3 = σ and β2 − γ2 = 2σ for some choice of σ ∈ K.

We now study the submodule generated by the copy of L(2) labelled by b′1b1 + b′2b2; to do

this we study the image of a homomorphism from P (1) to P (2) = T (4). The homomorphism in

which we are interested is an injection of P (1)/〈aa′〉 into T (4). This takes the simple head of

P (1) labelled by the path e1 to the copy of L(1) in the second Loewy layer of P (2) labelled by a′.

It hence takes the simple composition factor L(2) in the second radical layer of P (1) labelled by

the path a to the simple composition factor L(2) in the third radical layer of P (2) labelled by the

path a′a = b′1b1+b′2b2. From the structure of P (1) we deduce that the simple composition factor

L(2) in the third radical layer of P (1) labelled by the path b′1b1 + b′2b2 generates a submodule

as in the rightmost diagram in Figure 5. Therefore β2 + γ2 = 0 and and we may choose the

coefficients so that ρ = (β1 + γ1) = −(β3 + γ3) for some non-zero constant ρ ∈ K.

The unique solution to this set of relations is β1 = 0, β2 = β3 = k and γ1 = γ2 = −k, γ3 = 0

for k = (σ + ρ)/2. We may now fix k = 1 and we are done. �

Remark. The authors have used the“Quivers and Path Algebras” package [20] for GAP [13]

to verify that the algebra defined by the quiver and relations of Proposition 6 has the correct

dimension and that the projective modules have the correct dimension and Loewy series structure.

We wish to consider the possible bases of coefficient quivers for the tilting module T (4). The

only choice to be made is which basis to take for the 2-dimensional space L(2) ⊕ L(2) in the

third Loewy layer. The most obvious choice of basis is given by

B = {e2, b′1, a′, b′2, b′1b1, a′d, b′2b2, a′dc′2, a′dd′, a′dc′1, a′dd′a}

with respect to this basis the coefficient quiver is the leftmost quiver in Figure 6. The non-trivial

coefficients in this coefficient quiver are given by Nb′1,B(b′2b2, a
′dc′1) = −1 and Na′,B(b′2b2, a

′dd′) =

−1. Here we have taken N = {b′1b1, b′2b2} as the basis for the 2-dimensional space L(2) ⊕ L(2)

in the third Loewy layer.
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An alternative basis for the coefficient quiver is given by substituting N ′ = {b′1b1+b′2b2, b
′
1b1−

b′2b2} as the basis for the 2-dimensional space L(2) ⊕ L(2) in the third Loewy layer. This is

depicted in the rightmost diagram in Figure 6.

2

3 1 3′

2 4 2

3′ 1 3

2

2

3 1 3′

2 4 2

3′ 1 3

2

Figure 6. Two coefficient quivers for the module T (4).

6.5. By [17, Proposition 4.2], the p-regular linkage class of E ⊗ T (6|8) is the module T (8).

Arguing as we did for the second filtration in the proof of Lemma 1, the head of T (8) can be

seen to be L(2)⊕ L(4).

We know that ∆(3) must extend ∆(2) by Proposition 3 and therefore these subquotients

are correctly placed within the diagram in Theorem B(b). We know the character of P (4) by

Proposition 1. We now consider HomS(≤8)(P (4), T (8)). Since P (4) has a ∆-filtration and T (8)

has a ∇-filtration we may apply Proposition 3 to see that dimK HomS(≤8)(P (4), T (8)) = 4.

This allows us to place the other Weyl modules within the structure diagram of T (8) using

Proposition 2.

6.6. It follows from 1.4 that T (5) and T (7) are projective-injective for suitable generalized

Schur algebras. The projectivity of T (9) can be seen by appealing to Proposition 1. Therefore

Proposition 2 gives the Loewy structures of T (5), T (7) and T (9). The Loewy structures are

symmetric about the middle and so the modules are rigid, as claimed in Theorem B.

Since the radical layers of these tilting modules are not multiplicity-free, determining their

full structure would be quite complicated by these methods, so we do not pursue this further.

7. Restricted tensor product decompositions: one or both factors tilting

We now turn to the proof of Theorem A, which is split over this section and the next. We need

to show that each indecomposable direct summand in a decomposition of a tensor product of

two p-restricted simple modules must have one of the the following forms:

(a) a tilting module of highest weight λ such that λ ≤ (2p− 2)ρ;

(b) a simple module (which is not tilting) of highest weight in C2;

(c) a module of the form M(λ), for λ ∈ C2.

By highest weight considerations, it is easy to see that each of these possibilities actually occurs

in some restricted tensor product, hence the above list provides a complete description of the

isomorphism classes of indecomposable summands of restricted tensor products for G = SL3

(for p ≥ 5). This will prove Theorem A.

We will see that there is an algorithm for the computation of the multiplicities of the in-

decomposable direct summands of any p-restricted tensor product. In this section we freely

switch between alcove and highest weight notation depending on our needs. Highest weights
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will usually be written using SL3 notation but we shall sometimes find it convenient to use GL3

weight notation in certain calculations; our conventions for such transitions are laid out in 1.1.

Consider the set of p-restricted simple modules L(λ) for SL3. If λ /∈ C2 then L(λ) is tilting;

otherwise not. These two cases therefore guide the calculation. The present section considers

the indecomposable direct summands of L(λ)⊗L(µ) in case one or both of the factors is tilting.

The more difficult case, in which both factors are not tilting, is considered in the next section.

7.1. For convenience, we work in the representation ring R = Repk(SL3), which is the quotient

of the free abelian group on the set [L(λ)], as λ varies over X+, by the subgroup generated by

all expressions of the form [M ] − [M ′] − [M ′′] such that 0 → M ′ → M → M ′′ → 0 is a short

exact sequence of finite-dimensional G-modules.

We have a ring homomorphism from R into the character ring Z[X]W , for either case X =

X(TGL3
) or X = X(TSL3

), defined by sending [M ] for any module M to its formal character

chM ∈ Z[X]W . This homomorphism is injective; i.e., chM = chN implies [M ] = [N ] for any

finite-dimensional modules M,N . From highest weight considerations we know that any of the

sets

{[L(λ)] : λ ∈ X+}, {[∆(λ)] : λ ∈ X+}, {[∇(λ)] : λ ∈ X+}, {[T (λ)] : λ ∈ X+}

is a Z-basis for R. By highest weight theory, if M is a highest weight module of highest weight

λ, then in R we have [M ] =
∑
µ≤λmµ[L(µ)].

7.2. Both factors are tilting. Since the tensor product of two tilting modules is tilting,

any tensor product L(λ) ⊗ L(µ) of two p-restricted simples such that λ, µ /∈ C2 is tilting, and

thus decomposes as a direct sum of indecomposable tilting modules. Furthermore, in this case

the modules L(λ) = ∆(λ), L(µ) = ∆(µ) are also Weyl modules, therefore the (non-negative)

coefficients cνλ,µ in the expression

[L(λ)⊗ L(µ)] = [∆(λ)⊗∆(µ)] =
∑
ν∈X+

cνλ,µ[∆(ν)] (5)

are determined by the Littlewood–Richardson rule. We know the characters of the tilting mod-

ules by [17,19]; they also appear implicitly in Section 5. Thus we know the coefficients in the

expression

[T (ν)] =
∑

ν′∈X+

tν,ν′ [∆(ν′)]. (6)

Note that tν,ν = 1 since the highest weight space of any indecomposable tilting module is known

to have dimension 1, and furthermore tν,ν′ = 0 unless ν′ ≤ ν.

This allows us to determine the multiplicities of the indecomposable direct summands of

L(λ) ⊗ L(µ) by highest weight theory, as follows: choose any ν which is maximal among

the set of all ν′ such that cν
′

λ,µ 6= 0 in the finite sum in the right hand side of (5). Then

T (ν) must occur exactly cνλ,µ times as a direct summand of L(λ) ⊗ L(µ). Thus we subtract

cνλ,µ[T (ν)] =
∑
ν′∈X+ cνλ,µ tν,ν′ [∆(ν′)] from the expression in the right hand side of (5), and

repeat the procedure on the difference. The process terminates when the expression becomes

zero, and termination after a finite number of such steps is guaranteed.

Example. Let p = 5 and consider L(1, 1)⊗L(4, 0). By applying the Pieri rule for GL3 to the pair

of partitions ((2, 1, 0)) and ((4)) and restricting to SL3 (see 1.1 for the notation and conventions)
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we see that [L(1, 1)⊗ L(4, 0)] = [∆(1, 1)⊗∆(4, 0)] = [∆(5, 1)] + [∆(3, 2)] + [∆(4, 0)] + [∆(2, 1)].

From the known ∆-filtration multiplicities of the tilting modules, it follows that

L(1, 1)⊗ L(4, 0) ' T (5, 1)⊕ T (4, 0)⊕ T (2, 1)

as [T (5, 1) = [∆(5, 1)] + [∆(3, 2)], [T (4, 0)] = [∆(4, 0)], and [T (2, 1)] = [∆(2, 1)].

7.3. Only one factor is tilting. We now consider the tensor product of L(λ) for λ ∈ C2

with any p-restricted simple tilting module L(µ). Thus, µ is a p-restricted dominant weight

belonging to C1 or one of the walls F1|2, F2|3, F2|3′ of alcove C2 (see Figure 1), or L(µ) = St is

the Steinberg module.

Since L(µ) is tilting, highest weight theory guarantees that it is isomorphic to a direct sum-

mand of the tilting module E⊗µ1 ⊗ (E∗)⊗µ2 , where µ = (µ1, µ2). Therefore we consider the

tensor products L(λ)⊗ E and L(λ)⊗ E∗.
The following describes the Weyl filtration of a Weyl module tensored by E or E∗.

Lemma 2. Let λ ∈ X+ be any dominant weight. Recall that εj for j = 1, 2, 3 are the weights

of E. The weights of E∗ are −εj for j = 1, 2, 3. In the representation ring R we have:

(a) [∆(λ)⊗ E] =
∑3
j=1[∆(λ+ εj)];

(b) [∆(λ)⊗ E∗] =
∑3
j=1[∆(λ− εj)]

with the stipulation that in the right hand side of each equality, we omit any summand [∆(λ±εj)]
of non-dominant highest weight λ± εj.

Proof. Let λ = (λ1, λ2). We regard λ as arising from the partition ((λ1 + λ2, λ2, 0)) written

as a GL3-weight with three components for the sake of emphasis. Tensoring by E we apply

the Pieri rule to get the decomposition with ∆-factors of highest GL3-weight the partitions

((λ1 + λ2 + 1, λ2, 0)), ((λ1 + λ2, λ2 + 1, 0)), and ((λ1 + λ2, λ2, 1)) except the last one does not

occur if λ2 = 0 and the second one doesn’t appear if λ1 = 0. Part (a) then follows by passing

to SL3-weight notation.

Given (a), we can apply it to decompose the tensor product ∆(−w0(λ))⊗ E, which gives

[∆(−w0(λ))⊗ E] =
∑3
j=1[∆(−w0(λ) + εj)]

with the stated stipulation. Now formula (b) follows after applying the symmetry involution

−w0 to the weights of the above decomposition. Note that −w0(εj) = −ε4−j for each j = 1, 2, 3.

Thus −w0(−w0(λ) + εj) = λ− ε4−j for each j, and (b) follows. �

Lemma 3. For any λ ∈ C2 we have the decompositions

(a) L(λ)⊗ E '

L(λ+ ε1)⊕ L(λ+ ε2)⊕ L(λ+ ε3), if λ+ ε3 /∈ F1|2

L(λ+ ε1)⊕ L(λ+ ε2) if λ+ ε3 ∈ F1|2.

(b) L(λ)⊗ E∗ '

L(λ− ε1)⊕ L(λ− ε2)⊕ L(λ− ε3), if λ− ε1 /∈ F1|2

L(λ− ε2)⊕ L(λ− ε3) if λ− ε1 ∈ F1|2.

Proof. For any λ ∈ C2 we have [L(λ)] = [∆(λ)]− [∆(s1|2 ·λ)]. Thus we can compute [L(λ)⊗E]

and [L(λ)⊗E∗] by the preceding lemma. The stated decompositions now follow from the linkage

principle, which guarantees that the simple constituents of the tensor products cannot extend

one another. �
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We remark that the lemma holds for all primes p ≥ 3, although we will need it only in

characteristics p ≥ 5.

Examining the direct summands on the right hand side of either decomposition (a) or (b) in

Lemma 3, we observe (since p ≥ 5) that at most one of them can be tilting. In case (a) this

happens if and only if λ+ ε1 ∈ F2|3 or λ+ ε2 ∈ F2|3′ , and in case (b) it happens if and only if

λ− ε2 ∈ F2|3 or λ− ε3 ∈ F2|3′ . Furthermore, all the non-tilting direct summands are of highest

weight belonging to the alcove C2. So if we now tensor by another E or E∗ then, applying

Lemma 3 again to the non-tilting summands, we see that the module can be written as a direct

sum of simple modules of highest weight in C2, with one additional summand which is either a

tilting module or zero.

By induction on µ1 and µ2 it follows that the tensor product L(λ) ⊗ Eµ1 ⊗ (E∗)µ2 can

be decomposed into a direct sum of simple modules of highest weight belonging to C2, modulo

tilting summands. Since L = L(µ) is a direct summand of Eµ1⊗(E∗)µ2 , the module L(λ)⊗L(µ)

is a direct summand of L(λ)⊗Eµ1 ⊗ (E∗)µ2 , and it follows that L(λ)⊗L(µ) is isomorphic to a

direct sum of simple modules of highest weight belonging to C2, modulo tilting summands. Let

us record these observations.

Lemma 4. For any λ ∈ C2 and any p-restricted µ = (µ1, µ2) such that L(µ) = T (µ) we have:

(a) L(λ)⊗ E⊗µ1 ⊗ (E∗)µ2 is a direct sum of simple modules of highest weight in C2 modulo

tilting summands.

(b) The same statement applies to L(λ)⊗ L(µ).

Next we need to analyze the highest weights of the indecomposable tilting summands that

can occur. The main point is that they all have highest weight some ν such that ν /∈ C1.

Lemma 5. If T (ν) is an indecomposable tilting summand of the tensor product in (a) or (b) of

the preceding lemma then ν /∈ C1.

Proof. By induction it is enough to consider T (λ)⊗E and T (λ)⊗E∗. Considering the characters

of the modules E and E∗ it follows that if λ ∈ X+ then

T (λ)⊗ E =

3∑
j=1

prλ+εj (T (λ)⊗ E); T (λ)⊗ E∗ =
3∑
j=1

prλ−εj (T (λ)⊗ E∗). (7)

It should be noted that the above sums are not always direct, as it can happen that two or more

summands coincide. However, by definition of the functor prµ it follows that two summands

must be equal whenever they have non-trivial intersection.

Now assume that λ is a dominant weight not in alcove 1. There are three cases to consider:

(1) either λ is a vertex (intersection point of two walls), (2) λ is a weight on a wall which is not

a vertex, or (3) λ is a p-regular weight (and hence lies in the interior of an alcove). These cases

are clearly mutually exclusive.

If λ is a vertex, then T (λ)⊗ E and T (λ)⊗ E∗ have no indecomposable tilting summands of

p-regular highest weight. Hence there can be no tilting summands of highest weight in alcove 1.

If λ is on a wall but is not a vertex, then Theorem 4.2 of [17] shows that the unique p-regular

tilting summand of either tensor product T (λ)⊗E or T (λ)⊗E∗ is indecomposable. Its highest

weight is λ+ ε1 and λ− ε3 respectively, and thus cannot lie in alcove 1.

Finally, suppose that λ lies in the interior of its alcove. If λ±εj is p-regular then it lies in the

interior of the same alcove. By (7) and the translation principle, in this case prλ+εj (T (λ)⊗E) =

T (λ+ εj) and prλ−εj (T (λ)⊗E∗) = T (λ− εj) and neither highest weight λ± εj lies in alcove 1.
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Note that whenever λ ± εj is p-singular its corresponding linkage component in (7) cannot

produce any tilting module of highest weight in alcove 1. �

7.4. Decomposition algorithm, I. Lemma 5 implies that we can compute the multiplicities

of the indecomposable direct summands of L(λ)⊗ L(µ) by the following algorithm:

(a) Express [L(λ)⊗L(µ)] in terms of the [∆(ν)]-basis. This can be done using two applica-

tions of the Littlewood–Richardson rule (as in the proof of Lemma 3) as follows

[L(λ)⊗ L(µ)] = [∆(λ)⊗∆(µ)]− [∆(s1|2 · λ)⊗∆(µ)] =
∑
ν∈X+

(cνλ,µ − cνs1|2·λ,µ)[∆(ν)].

(b) Express [L(λ)⊗ L(µ)] in terms of the [L(ν)]-basis; i.e., compute the composition factor

multiplicities in both filtrations and their difference. This produces an expression of the

form

[L(λ)⊗ L(µ)] =
∑
ν d

λ,µ
ν [L(ν)]

in which each dλ,µν ≥ 0.

(c) If ν /∈ C1 ∪ C2 is maximal such that dλ,µν > 0, then subtract dλ,µν [T (ν)]. Repeat on the

difference, until there do not exist any ν /∈ C1 ∪ C2 appearing in the expression.

(d) At this point, only terms of the form [L(ν)] for ν ∈ C1∪C2 will remain. So we are dealing

with an expression of the form
∑
ν∈C1∪C2

bν [L(ν)]. Each term of the form bν [L(ν)] for

ν ∈ C1 must, by Lemma 5, be a composition factor of some tilting module of highest

weight in C2. Since [T (2)] = [L(2)] + 2[L(1)] it follows that each bν for ν ∈ C1 is even,

and bs1|2·ν ≥
bν
2 . Subtract bν

2 [T (s1|2 · ν)] from the expression for each such ν ∈ C1. The

remaining expression is a linear combination of various [L(ν)] for ν ∈ C2, and each of

these simples appears as a summand of the decomposition according to its multiplicity.

To summarise step (d): we have shown that for ν ∈ C1 representing a given linkage class,

the multiplicity of T (s1|2 · ν) in L(λ) ⊗ L(µ) is bν
2 and the multiplicity of L(ν) is bs1|2·ν −

bν
2 .

In other words, the multiplicities of T (s1|2 · ν) and L(ν) in the tensor product are given by the

matrix product (
1/2 0

−1/2 1

)(
bν

bs1|2·ν

)
.

We note that the above matrix is simply the inverse of(
2 0

1 1

)
,

the change of basis matrix expressing the basis {[T (2)], [L(2)]} in terms of the basis {[L(1)],

[L(2)]}. A similar issue arises in Section 8.8.

Example. Suppose the characteristic is p = 5. Take the tensor product L(2, 2) ⊗ L(1, 1). The

Littlewood–Richardson rule gives the character

[L(3, 3)] + [L(1, 4)] + [L(4, 1)] + [L(2, 2)],

and this can be seen to give a direct sum decomposition by the linkage principle.

8. Restricted tensor product decompositions: neither factor is tilting

It remains to describe the indecomposable direct summands of restricted tensor products L(λ)⊗
L(µ) in which neither factor is tilting (i.e., both λ, µ ∈ C2). Analysis of this remaining case will

complete the proof of Theorem A.
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8.1. To do this we will need to consider the set of weights in C2 along the strip

{ν ∈ C2 : 〈(α1 + α2)∨, ν + ρ〉 = p− 1}

an example of which is pictured in Figure 7. We refer to this set as the set of minimal weights in

C2. We first consider a tensor product of the form L(σ)⊗ L(τ), where σ is the unique minimal

weight of the form λ− sε1 and τ the unique minimal weight of the form µ− tε1. It follows from

Lemma 4 that L(λ) and L(µ) are direct summands of E⊗s⊗L(σ) and E⊗t⊗L(τ), respectively.

Therefore L(λ)⊗ L(µ) is a direct summand of

E⊗(s+t) ⊗ L(σ)⊗ L(τ).

This will allow us to prove results for the decomposition of arbitrary tensor products of the form

L(λ)⊗ L(µ) for λ, µ ∈ C2 by induction.

Example. For example, take p = 7, λ = (3, 5) and µ = (5, 4). In this case s = 2, t = 3 and so

σ = (1, 5) and τ = (2, 4). Therefore, L(λ)⊗ L(µ) is a direct summand of

E⊗5 ⊗ L(1, 5)⊗ L(2, 4).

One can see this in Figure 7.

(5, 1)(4, 2)(3, 3)(2, 4)(1, 5)

µ

λ

Figure 7. The closure of the alcove C2, for p = 7. The minimal weights in C2,

λ = (3, 5) and µ = (5, 4) are at the labelled points.

8.2. We will eventually show that L(λ)⊗ L(µ), for λ, µ ∈ C2, decomposes as a direct sum of

tilting modules and modules of the form M(ν) for ν ∈ C2. Sections 8.2 through 8.6 focus on

minimal tensor products. Section 8.7 will deal with the general case.

Let σ, τ be any two minimal weights. There exist 0 ≤ a, b ≤ p−3, such that σ = (p−2−a, a+1)

and τ = (p− 2− b, b+ 1). We let

σ′ =

s2|3 · σ if a+ b ≤ p− 3

s2|3′ · σ if a+ b > p− 3
and τ ′ =

s2|3 · τ if a+ b ≤ p− 3

s2|3′ · τ if a+ b > p− 3.

Note that in the case that 0 ≤ a+ b ≤ p− 3, σ′ and τ ′ are of the form (p+ a, 0) and (p+ b, 0),

respectively (the other case is obtained by symmetry). It is clear from Section 4 that we get

injections L(σ) ↪→ ∆(σ′) ↪→ T (σ′). We will consider the images of the injective homomorphisms

L(σ)⊗ L(τ) ↪→ ∆(σ′)⊗∆(τ ′) ↪→ T (σ′)⊗ T (τ ′). (8)

The tensor product T (σ′)⊗T (τ ′) has a ∆-filtration and decomposes as a direct sum of tilting

modules. We can bound the highest weights of the ∆-modules in such a filtration as illustrated
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in Figure 8. In the 0 ≤ a+ b ≤ p− 3 case,

[T (σ′)] = [∆(p+ a, 0)] + [∆(p− 2− a, a+ 1)]

[T (τ ′)] = [∆(p+ b, 0)] + [∆(p− 2− b, b+ 1)]

and so the highest weights that appear are bounded by the α2-string through (p+ a, 0) + (p+

b, 0) = (2p+ a+ b, 0) ∈ C6. The other case, p− 3 < a+ b ≤ 2(p− 3), is similar.

1

2
3

4

3′

4′
66′ 5

1

2
3

4

3′

4′
66′ 5

Figure 8. A typical example of the highest weights of ∆-modules in a filtration

of T (σ′)⊗ T (τ ′) for 0 ≤ a+ b ≤ p− 3 and p− 3 < a+ b ≤ 2(p− 3) respectively.

The lines cutting across the alcoves are the αj-strings through (2p + a + b)$i

which bound the weights above (for i 6= j).

Having bounded the character of the tensor product, we may now conclude that T (σ′)⊗T (τ ′)

is a direct sum of tilting modules of highest weights in C1, C2, C3, C
′
3, C4, C6,F2|3′ , F2|3,F3|4,

F4|6 when 0 ≤ a+b ≤ p−3 (and those obtained by symmetry in the case p−3 < a+b ≤ 2(p−3)).

By (8), L(σ) ⊗ L(τ) appears as a submodule of such a tilting module. The simple modules

are themselves contravariantly self-dual and therefore the tensor product L(σ) ⊗ L(τ) is also

contravariantly self-dual. Finally, the weights, λ, in L(σ) ⊗ L(τ) satisfy the inequality 〈(α1 +

α2)∨, λ + ρ〉 ≤ 2p − 2; therefore the simple modules in the tensor product L(σ) ⊗ L(τ) have

highest weights in C1, C2, C3, C
′
3,F2|3,F2|3′ ,F3|4 (or the set obtained by symmetry).

We shall focus on the 0 ≤ a+ b ≤ p− 3 case, as the other case is obtained by symmetry.

8.3. We now focus on the modules ∆(σ′) ⊗ ∆(τ ′), in order to study L(σ′) ⊗ L(τ ′). In the

representation ring, the decomposition of ∆(σ′)⊗∆(τ ′) is given by the Littlewood–Richardson

rule as follows

[∆(p+ a, 0)⊗∆(p+ b, 0)] =
∑

0≤j≤p+b

[∆(2p+ a+ b− 2j, j)]. (9)

All these weights appear along the α2-string through (2p+ a+ b, 0), as illustrated in Figure 8.

The projection of ∆(σ′)⊗∆(τ ′) onto any linkage class has a ∆-filtration. When we project onto

a linkage class there are six distinct cases which can occur. These are summarised in the table

below. We label each case by the highest weight in the linkage class.

character highest weight condition

[∆(2|3)] (p− 1, 12 (p+ 1 + a+ b)) a+ b is even

[∆(4|6)] (2p− 1, 12 (a+ b+ 1)) a+ b is odd

[∆(3|4)] + [∆(2|3′)] (2p− 4− a− b, 2 + a+ b) for all a, b

[∆(3)] + [∆(2)] (2p+ a+ b− 2j, j) 1
2 (p+ 1 + a+ b) ≤ j < 2 + a+ b

[∆(6) + [∆(4)] (2p+ a+ b− 2j, j) a < 2j < a+ b+ 1

[∆(6)] + [∆(4)] + [∆(3′)] (2p+ a+ b− 2j, j) 2j ≤ a
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8.4. For each possible linkage class of ∆(σ′)⊗∆(τ ′) in the table in 8.3, we wish to calculate

the image

L(σ)⊗ L(τ) ↪→ ∆(σ′)⊗∆(τ ′). (10)

In this section, we shall deal with the first five cases. We shall see that in these five cases, all

possible summands are tilting. By Section 4, the character of the image can easily be seen to

be given by

[L(σ)⊗ L(τ)] = [∆(σ′)⊗∆(τ ′)]− [L(σ′)⊗ L(τ)]− [L(σ)⊗ L(τ ′)]

= [∆(σ′)⊗∆(τ ′)]− [L(1, 0)[1] ⊗ L(a, 0)⊗ L(τ)]− [L(σ)⊗ L(1, 0)[1] ⊗ L(b, 0)].

Note that, by the Steinberg tensor product theorem, none of the subtracted terms have p-

restricted composition factors. Therefore, L(σ)⊗ L(τ) is a submodule of ∆(σ′)⊗∆(τ ′) which

(a) is contravariantly self-dual;

(b) has simple composition factors whose highest weights satisfy the inequality

〈(α1 + α2)∨, λ+ ρ〉 ≤ 2p− 2;

(c) satisfies [∆(σ′)⊗∆(τ ′) : L(ν)] = [L(σ)⊗ L(τ) : L(ν)] for any ν ∈ X1.

We proceed case by case through the table in Section 8.3. In the first case described in the

table, we see for a+b even, that ∆(2|3) = L(2|3) appears as a direct summand of ∆(σ′)⊗∆(τ ′).

By condition (c) this implies that L(2|3) appears as a direct summand of L(σ)⊗ L(τ).

In the second case, ∆(4|6) = [L(4|6), L(1|2)] appears as a summand of ∆(σ′) ⊗ ∆(τ ′). By

conditions (b) and (c) this implies that L(1|2) appears as a direct summand of L(σ)⊗ L(τ).

In the third case, we see that N appears as a summand of ∆(σ′) ⊗ ∆(τ ′), where N is an

extension of the form

0→ ∆(3|4)→ N → ∆(2|3′)→ 0.

The issue is whether or not this splits. By (a) and (c), either the extension is split and L(2|3′)⊕
L(2|3′) is a direct summand of L(σ′)⊗L(τ ′); or the sequence is the unique non-split extension,

N ∼= T (3|4), and T (3|4) is a direct summand of L(σ′)⊗L(τ ′). In either case, the result is a sum

of tilting modules (note that L(2|3′) = T (2|3′)).
In the fourth case, we have a direct summand, N , of ∆(σ′)⊗∆(τ ′) where N is an extension

of the form

0→ ∆(3)→ N → ∆(2)→ 0.

By Section 4, we know that L(1) appears exactly once as a composition factor of N and that

∆(2) is a non-split extension of L(2) by L(1), which, by (c) is preserved under the embedding

of (10). Therefore if N is a split extension, then there exists no submodule of N satisfying

properties (a) and (c), which is a contradiction. Hence N is the unique non-split extension and

isomorphic to T (3). Now, notice that the only submodule of T (3) satisfying properties (a), (b)

and (c) is T (3) itself.

In the fifth case, we have a direct summand, N , of ∆(σ′)⊗∆(τ ′) where N is an extension of

the form

0→ ∆(6)→ N → ∆(4)→ 0.

Note that L(2) appears with multiplicity one in N and it extends a p-restricted simple module.

One can now argue as above by noting that if this extension is split we arrive at a contradiction.

Therefore, N is the unique non-split extension. The only possible contravariantly self-dual

submodule of N satisfying (c) is T (2).
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8.5. We now deal with the final case in the table in Section 8.3. Our aim in this section is to

show that in the final case, the summand of ∆(σ′)⊗∆(τ ′) is isomorphic to ∆(6)⊕N where N

is a non-split extension of the form

0→ ∆(4)→ N → ∆(3)→ 0,

and that L(1)⊕M(2) is a direct summand of L(σ)⊗L(τ). The character of the tensor product

T (σ′)⊗ T (τ ′) is given by

[T (σ′)⊗ T (τ ′)] = [∆(σ′)⊗∆(τ ′)] + [∆(σ)⊗∆(τ ′)] + [∆(σ′)⊗∆(τ)] + [∆(σ)⊗∆(τ)]. (11)

We shall focus on linkage classes appearing along the α2-root string through (2p+ a+ b, 0).

Calculation of any of the tensor product decompositions along this α2-root string is easily

done using the Littlewood–Richardson rule (it is identical to the SL2 case). Let (c1, c2) =

(a1 + b1 − 2i, a2 + b2 + i) for i ≤ 1
2 (a1 + b1). Then

[∆(a1, a2)⊗∆(b1, b2) : ∆(c1, c2)] =

1 for i ≤ min{a1, b1},

0 otherwise.

Applying this to the four terms in the right-hand side of equation (11) and projecting onto the

linkage class with highest weight (2p+a+b−2j, j), for 2j ≤ a, we get [T (σ′)⊗T (τ ′) : ∆(6)] = 1,

[T (σ′)⊗ T (τ ′) : ∆(4)] = 3 and [T (σ′)⊗ T (τ ′) : ∆(3′)] = 2.

Highest weight theory tells us that the linkage class of T (σ′)⊗T (τ ′) in which we are interested

therefore has T (6)⊕ 2T (4) as a direct summand (using the method highlighted in Section 7.2).

From the characters of T (6) and T (4), we deduce that each of the two copies of ∆(3′) which

occur in a Weyl filtration of T (σ′) ⊗ T (τ ′) must occur in one of the summands isomorphic to

T (4). Therefore T (3′) is not a direct summand of the linkage class .

We now turn our attention to the submodule ∆(σ′)⊗∆(τ ′) ↪→ T (σ′)⊗ T (τ ′). The character

of the projection of ∆(σ′)⊗∆(τ ′) onto the linkage class in which we are interested is [∆(6)] +

[∆(4)] + [∆(3′)]. The corresponding module appears as a submodule of T (σ′)⊗ T (τ ′) and so is

isomorphic to ∆(6)⊕N , where N is the unique non-split extension

0→ ∆(4)→ N → ∆(3′)→ 0,

as we have shown that any ∆(3′) must appear in a T (4).

Finally, L(σ)⊗ L(τ) has character

[L(α)⊗ L(β)] =[∆(p+ a, 0)⊗∆(p+ b, 0)]− [L(p+ a, 0)⊗ L(p+ b, 0)]

− [L(p+ a, 0)⊗ L(p− 2− b, 1 + b)]− [L(p+ b, 0)⊗ L(p− 2− a, 1 + a)].

By the Steinberg tensor product theorem, neither of the latter two terms contains an L(3) or

an L(3′). Considering the second term, we have that

L(p+ a, 0)⊗ L(p+ b, 0) ∼= (L(1, 0)⊗ L(1, 0))[1] ⊗ (L(a, 0)⊗ L(b, 0))

∼= (L(2, 0)⊕ L(0, 1))[1] ⊗ (L(a, 0)⊗ L(b, 0)).

By the Steinberg tensor product theorem, L(2, 0)[1] ⊗ (L(a, 0) ⊗ L(b, 0)) does not contain an

L(3) or an L(3′). However, L(3′) does appear in L(0, 1)[1]⊗ (L(a, 0)⊗L(b, 0)) with multiplicity

equal to 1.

To summarise, we now know that L(σ)⊗ L(τ) satisfies properties (a), (b) and (c) of Section

8.4 and that [L(σ) ⊗ L(τ) : L(3′)] = [∆(σ′) ⊗ ∆(τ ′) : L(3′)] − 1 and [L(σ) ⊗ L(τ) : L(3)] =
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[∆(σ′)⊗∆(τ ′) : L(3)]. There is a unique possible submodule which obeys all these properties,

given as follows

L(1)⊕M(2) ↪→ ∆(6)⊕N ↪→ T (6)⊕ T (4).

This follows from the fact that M(2) is the only contravariantly self-dual submodule of T (4) with

the correct character (noting that L(1) must occur as a direct summand as it is a submodule of

T (6)).

8.6. By the above, the projection of L(σ)⊗L(τ) onto the linkage class containing the highest

weight (2p+ a+ b− 2j, j), for 2j ≤ a, a+ b ≤ p− 3 is isomorphic to M(2)⊕ L(1).

For 0 ≤ 2c ≤ p− 3, consider the tensor product L(bc/2c, 0)⊗ L(dc/2e, 0). All weights in C6

on the α2-string through (2p + c, 0) are of the form (2p + c − 2j, j) for 0 ≤ 2j ≤ bc/2c, and so

they all label summands of L(bc/2c, 0)⊗L(dc/2e, 0) isomorphic to M(2)⊕L(1) (the symmetric

version also holds). Letting c range over 0 ≤ 2c ≤ p − 3 (respectively (p − 3) ≤ 2c ≤ 2(p − 3))

we get that all weights in region B (respectively, region A) of C6 (respectively C ′6) in Figure 9

are of the form (2p+ c− 2j, j) for some 0 ≤ 2j ≤ bc/2c.
Figure 9 illustrates that any weight in C2 is linked to such a weight; more precisely, weights

in region A′ are linked to those in region A and similarly for regions B and B′. Therefore all

M(λ) for λ ∈ C2 appear as direct summands of a minimal tensor product.

A B

B′ A′

Figure 9. Regions A and B contain weights of the form (2p + c − 2j, j) and

(j, 2p+ c− 2j), respectively, for 0 ≤ 2j ≤ bc/2c. They are linked to regions A′

and B′ respectively.

8.7. We have now shown that L(σ)⊗ L(τ) is a direct sum of tilting modules and modules of

the form M(ν), for ν ∈ C2. By Section 8.1, any tensor product of the form L(λ) ⊗ L(µ) for

λ, µ ∈ C2 is a direct summand of E⊗r ⊗ L(σ)⊗ L(τ) such that 0 ≤ r ≤ 2(p− 3).

Finally, it remains to show that E⊗r ⊗M(2) is a direct sum of tilting modules and modules

of the form M(ν) for ν ∈ C2. Any p-regular linkage class of E ⊗M(ν) is of the form M(ν′)

for ν′ ∈ C2, by translation. It remains to check that a p-singular direct summand of E ⊗M(ν)

is tilting. Such a tensor product involves one or two p-singular linkage classes: their highest

weights are in F1|2, F3|4 or F3′|4′ . A direct summand with highest weight in F1|2 is immediately

seen to be a simple tilting module.

It is easy to see that the characters of the other linkage components of E⊗M(ν) are equal to

the corresponding tilting characters. Let γ = ν + ε1 be a weight in F3|4 or F3′|4′ . We have that

L(γ) ∼= E[1]⊗L′ where L′ has highest weight in alcove C1. Therefore L(γ)⊗E∗ ∼= E[1]⊗(L′⊗E∗)
has no p-restricted composition factors. The head of M(ν) is p-restricted, therefore

Hom(M(ν)⊗ E,L(γ)) ∼= Hom(M(ν), L(γ)⊗ E∗) = 0.
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Therefore L(3|4) is not in the head of M(ν)⊗E. By the self-duality of M(ν)⊗E, we conclude

that L(3|4) is not in the socle of M(ν)⊗E. It follows that the linkage component of E ⊗M(ν)

is the uniserial tilting module [L(2|3′), L(3|4), L(2|3′)] or its symmetric cousin.

8.8. We let M ′(2) denote any direct summand of the form M(2)⊕L(1) appearing in a minimal

tensor product, L(σ) ⊗ L(τ). We have seen in our case by case analysis, that a simple module

L(1) can appear as a summand of such a tensor product only if it appears as a summand of

some M ′(2).

We have seen in Section 8.1 that L(λ) ⊗ L(µ), for λ, µ ∈ C2, appears as a direct summand

of E⊗r ⊗ L(σ) ⊗ L(τ) for 0 ≤ r ≤ 2(p − 3). By Lemma 5 a simple module of the form L(1)

appears in the tensor product L(λ) ⊗ L(µ) as a direct summand if and only if it appears as a

direct summand of some E⊗r ⊗M ′(2).

Fixing some linkage class, recall that the characters of the modules M ′(2), T (3), T (3′) and

T (2) in that linkage class, are of the form

[M ′(2)] = [L(3)] + [L(3′)] + 2[L(2)] + 2[L(1)]

[T (3)] = [L(3)] + 2[L(2)] + [L(1)]

[T (3′)] = [L(3′)] + 2[L(2)] + [L(1)]

[T (2)] = [L(2)] + 2[L(1)],

where each module on the right-hand side is the unique simple module in the given linkage class.

Note that these characters are linearly independent as the transition matrix,
1 1 0 0

1 0 1 0

2 2 2 1

2 1 1 2

 ,

is non-singular. Therefore the decomposition of a tensor product L(λ)⊗L(µ) is uniquely deter-

mined by its character.

8.9. Decomposition algorithm, II. It follows from the above that we can calculate the

multiplicities of the indecomposable direct summands of L(λ)⊗L(µ), for the case λ, µ ∈ C2, as

follows:

(a) Express [L(λ)⊗ L(µ)] in terms of the [∆(ν)]-basis. This can be done using three appli-

cations of the Littlewood–Richardson rule as follows

[L(λ)⊗ L(µ)] =
∑
ν∈X+

(cνλ,µ − cνs1|2·λ,µ − c
ν
λ,s1|2·µ + cνs1|2·λ,s1|2·µ)[∆(ν)]

(b) Express [L(λ)⊗ L(µ)] in terms of the [L(ν)]-basis; i.e., compute the composition factor

multiplicities in both filtrations and their difference. This produces an expression of the

form

[L(λ)⊗ L(µ)] =
∑
ν d

λ,µ
ν [L(ν)]

in which each dλ,µν ≥ 0.

(c) If ν /∈ C1∪C2∪C3∪C3′ is maximal such that dλ,µν > 0, then subtract dλ,µν [T (ν)]. Repeat

on the difference, until there do not exist any ν /∈ C1 ∪ C2 ∪ C3 ∪ C3′ appearing in the

expression.
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(d) At this point, only terms of the form [L(ν)] for ν ∈ C1 ∪C2 ∪C3 ∪C3′ will remain. Let

ν ∈ C2 be a representative of a linkage class in the above and consider the projection

onto that linkage class. Then we are dealing with an expression of the form

bν [L(ν)] + bs1|2·ν [L(s1|2 · ν)] + bs2|3·ν [L(s2|3 · ν)] + bs2|3′ ·ν [L(s2|3′ · ν)].

Therefore the multiplicities of M ′(ν), T (s2|3·ν), T (s2|3′ ·ν) and T (ν) in the tensor product

are given by the matrix product
3/4 3/4 −1/2 1/4

1/4 −3/4 1/2 −1/2

−3/4 1/4 1/2 −1/4

−1/2 −1/2 0 1/2




bs2|3·ν

bs2|3′ ·ν

bν

bs1|2·ν

 .

The 4 × 4 matrix in the above product is obtained by inverting the transition matrix

above. The resulting multiplicities must be non-negative integers.

Example. Suppose the characteristic is p = 5. Consider the tensor product L(3, 1) ⊗ L(3, 1).

The Littlewood–Richardson rule gives the character

[L(6, 2)] + 2[L(2, 4)] + [L(4, 3)] + [L(7, 0)] + [L(0, 5)] + 2[L(1, 3)] + 2[L(0, 2)].

The p-singular characters [L(4, 3)] and [L(6, 2)] + 2[L(2, 4)] are both tilting. This leaves us with

a linkage class component with character [L(7, 0)] + [L(0, 5)] + 2[L(1, 3)] + 2[L(0, 2)]. This is the

character of M ′(1, 3). Therefore L(3, 1)⊗ L(3, 1) = M(1, 3)⊕ T (0, 2)⊕ T (6, 2)⊕ T (4, 3).
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