
International Electronic Journal of Algebra

Volume 19 (2016) 19-34

THE GROUP OF SELF-HOMOTOPY EQUIVALENCES OF A

SIMPLY CONNECTED AND 4-DIMENSIONAL CW-COMPLEX

Mahmoud Benkhalifa

Received: 28 January 2015; Revised: 7 December 2015

Communicated by A. Çiğdem Özcan

Abstract. Let X be a CW complex, E(X) the group of homotopy classes

of self-homotopy equivalences of X and E∗(X) its subgroup of the elements

that induce the identity on homology. This paper deals with the problem 19

in [Contemp. Math., 519 (2010), 217-230]. Given a group G, find a space X

such that
E(X)
E∗(X)

= G. For a simply connected and 4-dimensional CW-complex

X we define a group B4 ⊂ aut(H∗(X,Z)) in term of the Whitehead exact se-

quence of X and we show that this problem has a solution if G ∼= B4 for some

space X.
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1. Introduction

Let X be a CW complex, and let E(X) denote the group of homotopy classes of

self-homotopy equivalences of X. The determination of the group E(X) presents a

challenging problem of computation with a long history of progress on special cases

(cf. [1,3,5,6,8,9,10,13,15,16]). Several problems related to the group E(X) are given

in the literature especially the realizability of E(X) as a given group G [13] and the

(in)finiteness of the nilpotent group E∗(X) [2,6,9].

A variant of the realizability problem is the following:

Problem [12, Problem 19]: Given a group G, find X such that Ê(X) = G.

Here Ê(X) is a distinguished subgroup or quotient of E(X). It may be the subgroup

E](X) of self-equivalences that induce the identity on the homotopy groups, the

subgroup E∗(X), or the derived subgroup, or Ê(X) may be the quotient
E(X)

E∗(X)
.

The aim of this paper is to investigate the problem quoted above for a simply

connected and 4-dimensional CW-complex X. For this purpose we define the group
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B4 in terms of the Whitehead exact sequence of X [17, page 72]:

H4(X,Z) −→ Γ(H2(X,Z)) −→ π3(X) −→ H3(X,Z)→ 0

and a “certain” notion of automorphisms, called the Γ-automorphisms, of this se-

quence given in Definition 2.6.

Our main result is the following:

Theorem 1. If X is a simply connected and 4-dimensional CW-complex, then

E(X)

E∗(X)
∼= B4.

The idea of using rational homotopy methods to translate the problem of com-

puting or at least getting some informations regarding the (in)finiteness of the

groups E(X) and E∗(X) within the framework of minimal commutative differential

graded algebras and algebraic homotopy of DGA maps traces back to the results

of Arkowitz-Lupton [2] in which they exhibited conditions under which E∗(X) is

finite or infinite where X is a rational space having a 2 -stage Postnikov-like de-

composition (for example, rationalizations of homogeneous spaces). Using rational

homotopy theory we show the following result:

Theorem 2. Let X be a simply connected 4-dimensional CW-complex having 4-

cells. Then E∗(X) is finite in the following two cases:

(1) H2(X,Q) = 0.

(2) dimH2(X,Q) = 1 and H3(X,Q) = 0

and infinite if H2(X,Q) 6= 0 and H3(X,Q) 6= 0.

In Section 2, we recall the basic definitions of Whitehead’s certain exact sequence

and his theorem about 4-dimensional simply-connected CW-complexes and in Sec-

tion 3, we define the group B4 and give some of its important properties, moreover

we formulate and prove the main theorem. In Section 4 we end this work by giving

some applications.

2. The certain exact sequence of Whitehead

2.1. The definition of Whitehead’s certain exact sequence. All the mate-

rials of this section which is essential and fundamental in this work can be found

in details in [4,17].

Let X be a simply connected CW-complex defined by the collection of its skeleta

(Xn)n≥0, where we can suppose X0 = X1 = ?.
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The long exact sequence of the pair (Xn, Xn−1) in homotopy and in homology are

connected by the Hurewicz morphism h∗ in order to give the following commutative

diagram:

· · ·
im,n // πm(Xn)

jm,n //

hm

��

πm(Xn, Xn−1)
βm,n //

hm

��

πm−1(Xn−1)

hm−1

��

// · · ·

· · ·
iHm,n // Hm(Xn,Z)

jHm,n // Hm((Xn, Xn−1),Z)
βH
m,n // Hm−1(Xn−1,Z) // · · ·

Remark 2.1. The group CnX = πn(Xn, Xn−1) with the differential dn = jn ◦ βn,

where βn = βn,n and jn = jn,n, defines the cellular chain complex of X. Moreover

βn : CnX → πn−1(Xn−1) represents by adjunction the attaching map for the n-cells

∨Sn → Xn−1.

Now Whitehead [17, page 72] inserted the Hurewicz homomorphism in a long

exact sequence connecting homology and homotopy. First he defined the following

abelian group

ΓXn = Im (in : πn(Xn−1)→ πn(Xn)) = ker jn,∀n ≥ 2. (1)

We notice that βn+1 ◦ dn+1 = 0 and so βn+1 : πn+1(Xn+1, Xn) → πn(Xn) factors

through the quotient: bn+1 : Hn+1(X)→ ΓXn .

With this map, Whitehead [17] defined the following sequence:

· · · → Hn+1(X,Z)
bn+1−→ ΓXn −→ πn(X)

hn−→ Hn(X,Z)→ · · · (2)

and proved the following.

Theorem 2.2. The sequence (2), called the Whitehead exact sequence of X, is a

natural exact sequence.

2.2. 4-dimensional CW-complexes. Let Ab be the category of abelian groups.

Using the notion of quadratic maps, Whitehead constructed a functor Γ : Ab→ Ab
called Whitehead’s quadratic functor [17].

Proposition 2.3. The Whitehead’s quadratic functor has the following properties

(see for example [4, page 448]) for more details):

(1) ΓX3 = Γ(H2(X,Z));

(2) Γ(Z) = Z;

(3) Γ(Zn) = Z2n, n even;

(4) Γ(Zn) = Zn, n odd;
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(5) Let A an abelian group and let n. : A → A denote the multiplication by

n, that means a 7−→ na, If n. is an isomorphism of abelian groups, then

Γ(n.) : Γ(A) → Γ(A) is the multiplication by n2 i.e., Γ(n.) = n2 and it is

also an isomorphism of abelian groups.

Definition 2.4. Given four abelian groups H4, H3, H2, π where H4 is free. A Γ-

sequence is an exact sequence of abelian groups:

H4 → Γ(H2)→ π → H3 → 0

where Γ is the Whitehead’s quadratic functor.

Example 2.5. According to Proposition 2.3, if X is a simply connected 4-dimensional

CW-complex, then its Whitehead exact sequence can be written as follows:

H4(X,Z)
b4−→ Γ(H2(X,Z)) −→ π3(X) −→ H3(X,Z)→ 0 (3)

thus its a Γ-sequence.

Notice that in this case H4(X,Z) is a free abelian groups which admits the set of

all the 4-cells as a basis.

Definition 2.6. Let X be a simply connected 4-dimensional CW-complex and let

(f4, f3, f2) ∈ aut(H4(X,Z)) × aut(H3(X,Z)) × aut(H2(X,Z)). We say that the

triple (f4, f3, f2) is a Γ-automorphism of the Whitehead exact sequence of X if

there exists an automorphism Ω : π3(X) → π3(X) making the following diagram

commutes:

H4(X,Z)
b4−→ Γ(H2(X,Z))

i3−→ π3(X)
h3

� H3(X,Z)

??
H4(X,Z)

b4−→ Γ(H2(X,Z))
i3−→ π3(X)

h3

� H3(X,Z)
?

f4 f3

?

Γ(f2) Ω

Example 2.7. In [4, page 450] it is shown that if X is a simply connected 4-

dimensional CW-complex and if α : X → X is a homotopy equivalence, then

(H4(α), H3(α), H2(α)) is a Γ-automorphism.

In order to state Whitehead’s theorems on 4-dimensional CW-complexes. We

need the following two definitions.

Definition 2.8. A Γ-sequence H4 → Γ(H2) → π → H3 → 0 is said to be realiz-

able if there exists a simply connected 4-dimensional CW-complex X such that its

Whitehead exact sequence coincides with the given Γ-sequence.
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Definition 2.9. Let X be a simply connected 4-dimensional CW-complex and let

(f4, f3, f2) be a Γ-automorphism of the Whitehead exact sequence of X. We say

that (f4, f3, f2) is realizable if there exists a homotopy equivalence α : X → X such

that (f4, f3, f2) = (H4(α), H3(α), H2(α)).

Now we are ready to formulate Whitehead’s theorems which give a complete

classification of homotopy types of simply connected 4-dimensional CW-complexes.

Theorem 2.10. [4, Theorem 4.9] Every Γ-sequence is realizable. Every Γ-morphism

of the Whitehead exact sequence of a simply connected 4-dimensional CW-complex

X is realizable.

Remark 2.11. Theorem 2.10 is not valid for CW-complexes of higher dimensions.

Nevertheless the author [7] generalize Whitehead’s theorems for simply connected

n-dimensional CW-complexes where n ≥ 5 by introducing the notion of strong au-

tomorphisms of the Whitehead exact sequences of simply connected n-dimensional

CW-complex extending the notion of the Γ-automorphisms.

3. The main results

3.1. The group B4. In this paragraph we introduce the group B4 given in the

introduction and which plays a crucial role in this paper.

Definition 3.1. Let X be a simply connected 4-dimensional CW-complex. We

define B4 to be the set of all the Γ-automorphisms of the Whitehead exact sequence

of X.

Remark 3.2. Example 2.7 gives that (idH4(X,Z)), idH3(X,Z)), idH2(X,Z))) ∈ B4.

Proposition 3.3. B4 is a subgroup of aut(H4(X,Z))×aut(H3(X,Z))×aut(H2(X,Z)).

Proof. First let us prove that (f4, f3, f2), (f ′4, f
′
3, f
′
2) ∈ B4, then the composition:

(f ′4, f
′
3, f
′
2) ◦ (f4, f3, f2) = (f ′4 ◦ f4, f

′
3 ◦ f3, f

′
2 ◦ f2) ∈ B4

Indeed, since (f4, f3, f2), (f ′4, f
′
3, f
′
2) ∈ B4 from Definition 2.6 we deduce that there

exist two automorphisms Ω,Ω′ : π3(X)→ π3(X) making the diagrams (1) and (2)

commute:
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H4(X,Z)
b4−→ Γ(H2(X,Z))

i3−→ π3(X)
h3

� H3(X,Z)

??
H4(X,Z)

b4−→ Γ(H2(X,Z))
i3−→ π3(X)

h3

� H3(X,Z)
?

f4 f3

?

Γ(f2) Ω

??
H4(X,Z)

b4−→ Γ(H2(X,Z))
i3−→ π3(X)

h3

� H3(X,Z)
?

f ′4 f ′3

?

Γ(f ′2) Ω′ (2)

(1)

Next as Γ is a functor, so Γ(f ′2)◦Γ(f2) = Γ(f ′2◦f2). Therefore the commutativity

of the diagrams (1) and (2) implies that the following diagram commutes:

H4(X,Z)
b4−→ Γ(H2(X,Z))

i3−→ π3(X)
h3

� H3(X,Z)

??
H4(X,Z)

b4−→ Γ(H2(X,Z))
i3−→ π3(X)

h3

� H3(X,Z)
?

f ′4 ◦ f4 f ′3 ◦ f3

?

Γ(f ′2 ◦ f2) Ω′ ◦ Ω (3)

It follows that (f ′4 ◦ f4, f
′
3 ◦ f3, f

′
2 ◦ f2) ∈ B4.

Finally if (f4, f3, f2) ∈ B4, then by definition f4, f3, f2 are automorphisms so

we get the triple (f−1
4 , f−1

3 , f−1
2 ). As (f4, f3, f2) ∈ B4 there is an automorphism

Ω : π3(X) → π3(X) making the diagram (1) commutes which implies that the

following diagram is also commutative:

H4(X,Z)
b4−→ Γ(H2(X,Z))

i3−→ π3(X)
h3

� H3(X,Z)

??
H4(X,Z)

b4−→ Γ(H2(X,Z))
i3−→ π3(X)

h3

� H3(X,Z)
?

f−1
4 f−1

3

?

(Γ(f2))−1 Ω−1 (4)

Since (Γ(f2))−1 = Γ(f−1
2 ) it follows that the triple (f−1

4 , f−1
3 , f−1

2 ) ∈ B4. �

Let X be a simply connected 4-dimensional CW-complex. Example 2.7 allows

us to define a map Ψ : E(X)→ B4 by setting:

Ψ
(
[α]
)

= (H4(α), H3(α), H2(α)) (4)
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Proposition 3.4. The map Ψ is a surjective homomorphism of groups whose kernel

is E∗(X).

Proof. First let [α], [α′] ∈ E(X). Using the formula (4), an easy computation

shows that:

Ψ([α].[α′]) = Ψ([α ◦ α′]) (5)

= (H4(α ◦ α′), H3(α ◦ α′), H2(α ◦ α′))

= (H4(α) ◦H4(α′), H3(α) ◦H3(α′), H2(α) ◦H2(α′))

= (H4(α), H3(α), H2(α)) ◦ (H4(α′), H3(α′), H2(α′))

= Ψ([α]).Ψ([α′])

it follows that Ψ is a homomorphism of groups. Clearly kerΨ = E∗(X) and finally

the surjection of the homomorphism Ψ is given by Theorem 2.10. �

Accordingly we are now ready the announce our main result.

Theorem 3.5. If X is a simply connected and 4-dimensional CW-complex, then

E(X)

E∗(X)
∼= B4.

Corollary 3.6. Let G be a group. If G ∼= B4, then the problem quoted in the

introduction has a solution.

4. Applications

Let X be a simply connected 4-dimensional CW-complex. Our first application

deals with the question of the (in)finiteness of the groups E(X) and E∗(X). More

precisely from Theorem 3.5 we derive the following corollary which is is straight-

forward.

Corollary 4.1. Let X be a simply connected 4-dimensional CW-complex.

(1) E(X) is finite if and only if E∗(X) and B4 are finite;

(2) if B4 is an infinite group, then so is E(X).

Next the following theorem concerns the finiteness of the group E∗(X).

Theorem 4.2. Let X be a simply connected 4-dimensional CW-complex having

4-cells. Then E∗(X) is finite in the following two cases:

(1) H2(X,Q) = 0.

(2) dimH2(X,Q) = 1 and H3(X,Q) = 0

and infinite if H2(X,Q) 6= 0 and H3(X,Q) 6= 0.
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Proof. First let us consider the space XQ which is the rationalized of the space X.

That is a simply connected CW-complex which satisfies:

H∗(XQ,Z) = H∗(X,Q), π∗(XQ) = π∗(X)⊗Q.

By rational homotopy theory XQ admits a Quillen model. That means there exists

a free differential graded Lie algebra (L(V ), ∂), where V is a graded vector space

such that each Vi−1 admits the set of the i-cells of X as a basis. In addition we

have:

V∗−1 = H∗(XQ,Z), H∗−1((L(V ), ∂)) ∼= π∗(X)⊗Q.

As the Quillen model determines completely the rational homotopy type of a simply

connected CW-complex X, we can derive that:

E(XQ) ∼= E
(
(L(V ), ∂)

)
, E∗(XQ) ∼= E∗

(
(L(V ), ∂)

)
(6)

where E
(
(L(V ), ∂)

)
denotes the group of DG Lie homotopy self-equivalences of

(L(V ), ∂) and where E∗
(
(L(V ), ∂)

)
denotes the subgroup of E

(
(L(V ), ∂)

)
consists

of maps inducing the identity automorphism of the indecomposables.

Next according to Dror-Zabrodsky [11], we know that E∗(X) is a nilpotent group

and in [14] Maruyama proved that E∗(X)Q = E∗(XQ). Here E∗(X)Q is the localized

of the nilpotent group E∗(X) at Q. Using (6) we get:

E∗(X)Q = E∗
(
(L(V ), ∂)

)
. (7)

Then let {v1, . . . , vn} be a basis of the vector space V3 (here we assume that the

CW-complex has n 4-cells). For every r ∈ Q, we define αr : (L(V ), ∂)→ (L(V ), ∂)

as follows:

αr(vi) = vi + rxi + ryi , on V3 where xi ∈ [V2, V1] and yi ∈ [V1, [V1, V1]]

αr = id , on V1 and V2. (8)

As the differential ∂ is quadratic, the following diagram is obviously commutative:

V3
αr−→ V3 ⊕ [V2, V1]⊕ [V1, [V1, V1]]

?
[V1, V1]

id−→ [V1, V1]
?

∂ ∂

so αr is a DG Lie morphism which induces the identity on the indecomposables. It

follows that [αr] ∈ E∗
(
(L(V ), ∂)

)
.
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Now if H2(X,Q) = 0 or (dimH2(X,Q) = 1 and H3(X,Q) = 0), then the vector

space [V2, V1]⊕ [V1, [V1, V1]] is nil. So the elements xi and yi, given in the formula

(8), are also nil and obviously E∗
(
(L(V ), ∂)

)
is trivial. It follows by (7) that E∗(X)

is finite. If H2(X,Q) 6= 0 and H3(X,Q) 6= 0, then [V2, V1] 6= 0. So the elements xi

can be chosen non-zero so that αr and αr′ are not homotopic provides that r 6= r′.

Consequently E∗
(
(L(V ), ∂)

)
contains an infinity of elements [αr], r ∈ Q. Hence

E∗
(
(L(V ), ∂)

)
is infinite and by (7) E∗(X) is also infinite. �

Theorem 4.3. Let X be a simply connected 4-dimensional CW-complex. If the

groups H∗(X,Z) are finite, then so is E(X).

Proof. First since the groups H∗(X,Z) are finite, the group B4 is also finite. Next

the finiteness of H∗(X,Z) implies that the Quillen model of X is trivial so the group

E∗(X)Q is also trivial. Therefore by Maruyama Theorem we deduce that E∗(X) is

finite. As a result E(X) is also finite. �

Theorem 4.2 implies the following corollary.

Corollary 4.4. Let X be a simply connected 4-dimensional CW-complex having

4-cells. Then E(X) is infinite if H2(X,Q) 6= 0 and H2(X,Q) 6= 0.

If H2(X,Q) = 0 (or dimH2(X,Q) = 1 and H3(X,Q) = 0), then E(X) is finite

if and only if the group B4 is finite.

The next result relates the finiteness of the E(X) to the Hurewicz homomor-

phism.

Theorem 4.5. Let X be a simply connected 4-dimensional CW-complex. Assume

that the Hurewicz homomorphism h4 : π4(X) → H4(X,Z) is surjective. Then the

group B4 contains a subgroup isomorphic to aut(H4(X,Z)).

Proof. First according to the exact sequence of Whitehead of X, the surjectivity

of the Hurewicz homomorphism h4 implies that the homomorphism b4 is nil. It

follows that every automorphism f4 ∈ aut(H4(X,Z)) makes the following diagram

commutes:

H4(X,Z)
b4−→ Γ(H2(X,Z))

i3−→ π3(X4)
h3

� H3(X,Z)

??
H4(X,Z)

b4−→ Γ(H2(X,Z))
i3−→ π3(X)

h3

� H3(X,Z)
?

f4 id

?

Γ(id) = id id
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therefore for every f4 ∈ aut(H4(X,Z)) the triple (f4, idH3(X,Z), idH2(X,Z)) belongs to

the group B4. Thus aut(H4(X,Z))×{idH3(X,Z)}×{idH2(X,Z)} is a subgroup of B4.

Finally we conclude Theorem 4.5 by observing that the two groups aut(H4(X,Z))

and aut(H4(X,Z))× {idH3(X,Z)} × {idH2(X,Z)} are isomorphic. �

Now as X is a simply connected 4-dimensional CW-complex, then the group

H4(X,Z) is free of rank n, where n is the number of the 4-cells of X.

Corollary 4.6. Let X be a simply connected 4-dimensional CW-complex. Assume

that h4 is surjective.

(1) If n ≥ 2, then the index [E(X) : E∗(X)] is infinite and the quotient group
E(X)
E∗(X) contains a subgroup isomorphic to GL(n,Z).

(2) If n = 1, then E(X)
E∗(X) contains an element of order 2.

Proof. If n ≥ 2, then we have aut(H4(X,Z)) = GL(n,Z) and when n = 1 we have

aut(H4(X,Z)) = aut(Z) ∼= Z2. �

4.1. Examples. In the following examples we give explicit computations of the

group B4 showing that it may be finite or infinite.

Example 4.7. Let X be a simply connected 4-dimensional CW-complex such that:

H2(X,Z) = H3(X,Z) = H4(X,Z) = Z. (9)

First using the properties of Whitehead’s quadratic functor given in Proposition 2.3

we obtain that:

Γ(H2(X,Z)) = Γ(Z) = Z.

Therefore the Whitehead exact sequence of X which is an example of a Γ-sequence

can be written as follows:

Z b−→ Z −→ π3(X) −→ Z→ 0. (10)

It is important to notice that by virtue of Theorem 2.10 this Γ-sequence is realizable,

so there exists a simply connected 4-dimensional CW-complex X having (10) as the

Whitehead exact sequence.

Next let us compute the group B4 in this case. Since the group aut(Z) ∼= Z2 we

deduce that B4 is a subgroup of Z2 ⊕ Z2 ⊕ Z2. Consequently if (f4, f3, f2) ∈ B4,

then:

f4 = ±1, f3 = ±1, f2 = ±1. (11)

It follows, using the properties of Whitehead’s quadratic functor given in Proposition

2.3, that Γ(f2) = 1. Therefore we seek the automorphisms f4 = ±1 and f3 = ±1
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for which there exists an automorphism Ω : π3(X) → π3(X) making the following

diagram commutes;

Z b−→ Z −→ π3(X) −→ Z→ 0

Z b−→ Z −→ π3(X) −→ Z→ 0

f4 f3

?

1 Ω (5)

???

so we have to treat two cases.

Case 1: The homomorphism Z b−→ Z is not nil. In this case to have the diagram

(5) commutes we must have f4 = 1. Moreover we get the extension:

0→ coker b −→ π3(X) −→ Z→ 0

which splits since Z is free, i.e.,

π3(X) ∼= coker b⊕ Z. (12)

This implies that any automorphism Ω : π3(X) → π3(X) making the diagram (5)

commutes splits also i.e., Ω = 1⊕ f3. As a result we deduce that:

• if f3 = 1, then we take Ω = 1⊕1. That means if x ∈ π3(X), then using the

splitting (12) we can decompose x into y ⊕ z where y ∈ coker b and z ∈ Z
and we get Ω(x) = (1⊕ 1)(y ⊕ z) = y ⊕ z
• if f3 = 1, then we take Ω = 1⊕(−1). That means Ω(x) = (1⊕(−1))(x⊕y) =

y ⊕ (−z).

Consequently we get only 4 triples which are:

(f4 = 1, f3 = 1, f2 = 1), (f4 = 1, f3 = 1, f2 = −1)

(f4 = 1, f3 = −1, f2 = 1), (f4 = 1, f3 = −1, f2 = −1).

As every triple is obviously of order 2 we conclude, in this case, that:

B4 ∼= Z2 ⊕ Z2. (13)

Case 2: The homomorphism Z b−→ Z is nil. In this case any automorphism f4

makes the diagram (5) commutes. Moreover we get the extension:

0→ Z −→ π3(X) −→ Z→ 0

which also splits and we conclude as in the case 1. Consequently we get only 8

triples which are:

(f4 = 1, f3 = 1, f2 = 1), (f4 = 1, f3 = 1, f2 = −1)
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(f4 = 1, f3 = −1, f2 = 1), (f4 = 1, f3 = −1, f2 = −1)

(f4 = −1, f3 = 1, f2 = 1), (f4 = −1, f3 = 1, f2 = −1)

(f4 = −1, f3 = −1, f2 = 1), (f4 = −1, f3 = −1, f2 = −1).

As every triple is obviously of order 2 we conclude, in this case, that:

B4 ∼= Z2 ⊕ Z2 ⊕ Z2. (14)

Notice that in this example, according to Theorem 4.2, the groups E∗(X) and

E(X) are both infinite.

Example 4.8. Let X be a simply connected 4-dimensional CW-complex such that:

H2(X,Z) = Z2, H3(X,Z) = Z7, H4(X,Z) = Z. (15)

By the properties of Whitehead’s quadratic functor given in Proposition 2.3 we

obtain that Γ(H2(X,Z)) = Γ(Z2) = Z4. Therefore the Whitehead exact sequence of

X can be written as follows:

Z b−→ Z4 −→ π3(X) −→ Z7 → 0. (16)

As aut(Z) ∼= Z2, aut(Z2) ∼= {id}, aut(Z7) ∼= Z6, so if (f4, f3, f2) ∈ B4, then:

f4 = id, (−1), f3 = id, 2., 3., 4., 5., 6., f2 = id, Γ(f2) = id. (17)

Here the notation n. means the multiplication by the number n. Thus we seek the

automorphisms f4, f3 for which there exists an automorphism Ω : π3(X) → π3(X)

making the following diagram commutes;

Z b−→ Z4 −→ π3(X) −→ Z7 → 0

Z b−→ Z4 −→ π3(X) −→ Z7 → 0

f4 f3

?

id Ω (6)

???

so we have to treat two cases.

Case 1: The homomorphism Z b−→ Z4 is not nil. In this case in order that the

diagram (6) commutes we must have f4 = 1. Moreover we get the extension:

0→ coker b −→ π3(X) −→ Z7 → 0. (18)

Since coker b is either Z2 or Z4, in both cases the extension (18) splits, it follows

that π3(X) ∼= coker b⊕Z7. This implies that any automorphism Ω : π3(X)→ π3(X)
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making the diagram (6) commutes splits also i.e., Ω = 1⊕ f3. As a result we get 6

triples:

(f4 = id, f3 = n., f2 = id) , where n = 1, 2, 3, 4, 5, 6

which form a group of order 6. Consequently we derive that B4 ∼= Z6.

Case 2: The homomorphism Z b−→ Z4 is nil. In this case any automorphism f4

makes the diagram (6) commutes. Moreover we get the extension:

0→ Z4 −→ π3(X) −→ Z7 → 0

which also splits and we conclude as in the case 1. Consequently we get only 12

triples:

(f4 = id, f3 = n., f2 = id) , (f4 = −1., f3 = n., f2 = id) , n = 1, 2, 3, 4, 5, 6

which form a group of order 12. As B4 is a subgroup of Z2 ⊕ Z2 ⊕ Z6 we get

B4 ∼= Z2 ⊕ Z6.

Notice that in this example, according to Theorem 4.2, the group E∗(X) is finite

and as B4 is finite it follows that E(X) is also finite.

Example 4.9. Let X be a simply connected 4-dimensional CW-complex having:

Z b−→ Z4
0−→ Z2

∼=−→ Z2 → 0 (19)

as the Whitehead exact sequence. Recall that in this case we have:

H4(X,Z) = Z, H3(X,Z) = H2(X,Z) = Z2, π3(X) = Z2. (20)

Here we use the properties of the Whitehead’s quadratic functor which assert that

Γ(Z2) = Z4 implying that the sequence (19) is a Γ-sequence, so its realizable by

Theorem 2.10. The group B4 is a subgroup of aut(H4(X,Z)) × aut(H3(X,Z)) ×
aut(H2(X,Z)) = aut(Z)× aut(Z2)× aut(Z2) ∼= Z2.

Therefore the identity is the only element in B4 making the following diagram com-

mutes:

Z b−→ Z4
0−→ Z2

∼=−→ Z2 → 0

??
Z b−→ Z4

0−→ Z2

∼=−→ Z2 → 0
??

so B4 is trivial and E∗(X) = E(X). Also in this example, according to Theorem

4.2, E(X) is finite.
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The following example gives a simply connected 4-dimensional complex with

E∗(X) finite and E(X) infinite.

Example 4.10. Let Z⊕Z b−→ Γ(Z) = Z −→ π3 −→ Z2 → 0 be a given Γ-sequence

such that:

b(x+ y) = x (21)

First we have aut(Z) ∼= Z2, aut(Z ⊕ Z) ∼= GL(2,Z) and aut(Z2) ∼= {idZ2
}. Next if

(f4, f3, f2) ∈ B4, then:

f4 =

(
a11 a12

a21 a22

)
, a11a22 − a12a21 = ±1 , f3 = id , f2 = id. (22)

As in the Example 2.7 we have Γ(f2) = id. Therefore we seek the invertible matrices(
a11 a12

a21 a22

)
for which there exists an automorphism Ω : π3 → π3 making the

following diagram commutes;

Z⊕ Z b−→ Z −→ π3(X)
h−→ Z2 → 0

Z⊕ Z b−→ Z −→ π3(X)
h−→ Z2 → 0

(
a11 a12

a21 a22

)
id

?

id Ω (7)

???

Now the commutativity of the diagram (7) and the formula (21) imply the following

equation: (
1 0

)( a11 a12

a21 a22

)
=
(

1 0
)

(23)

it follows that a11 = 1, a12 = 0 and using (22) we get a22 = ±1. As a result the

matrices of GL(2,Z) which satisfy the relation (23) form the following subgroup:

G =

{(
1 0

a 1

)
,

(
1 0

c −1

)
, a, c ∈ Z

}
(24)

notice that

(
1 0

a 1

)
is of infinite order and

(
1 0

c −1

)
is of order 2.

Next as the homomorphism b given by the formula (21) is surjective, coker b is nil.

So the homomorphism h in the diagram (7) is automorphism. This implies that if

we choose Ω = id, the diagram (7) commutes. Hence from our precedent arguments

we derive that the group B4 is isomorphic to G. In this example as H3(X,Z) = Z2

and H2(X,Z) = Z, from Theorem 4.2 we deduce that E∗(X) is finite.
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