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Abstract. We give a combinatorial construction, not involving a presenta-

tion, of almost all untwisted affine Kac–Moody algebras modulo their one-

dimensional centres in terms of signed raising and lowering operators on a

certain distributive lattice B. The lattice B is constructed combinatorially as

a set of ideals of a “full heap” over the Dynkin diagram, which leads to a

kind of categorification of the positive roots for the Kac–Moody algebra. The

lattice B is also a crystal in the sense of Kashiwara, and its span affords rep-

resentations of the associated quantum affine algebra and affine Weyl group.

There are analogues of these results for two infinite families of twisted affine

Kac–Moody algebras, which we hope to treat more fully elsewhere.

By restriction, we obtain combinatorial constructions of the finite dimen-

sional simple Lie algebras over C, except those of types E8, F4 and G2. The

Chevalley basis corresponding to an arbitrary orientation of the Dynkin di-

agram is then represented explicitly by raising and lowering operators. We

also obtain combinatorial constructions of the spin modules for Lie algebras

of types B and D, which avoid Clifford algebras, and in which the action of

Chevalley bases on the canonical bases of the modules may be explicitly cal-

culated.
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Introduction

A heap is an isomorphism class of labelled posets, depending on an underlying

graph Γ and satisfying certain axioms. Heaps have a wide variety of applications

in algebraic combinatorics and statistical mechanics, as explained in [21]. The

algebraic and combinatorial theory of heaps mostly concentrates on the case of

finite heaps, but there is a well-developed theory of infinite heaps used in the study

of parallelism in computer science, where they are known as “dependence graphs”

[5].

In this paper, we introduce and study some remarkable infinite (but locally finite)

heaps, which we call “full heaps”, and which have some interesting applications to

algebraic Lie theory. Let B denote the set of nonempty proper ideals of a full

heap E (regarded as a poset) over a graph Γ. Using the poset structure, we will

define a family of raising and lowering operators on the space VE spanned by B.
If the underlying graph, Γ, of the full heap is a doubly laced Dynkin diagram

associated to a symmetrizable Kac–Moody algebra (meaning that all the entries

of the corresponding generalized Cartan matrix lie in the set {2, 0,−1,−2}) then

we will show how the space VE naturally carries the structure of (a) a module for

the Kac–Moody algebra corresponding to Γ and (b) a module for the Weyl group

corresponding to Γ. Moreover, the Chevalley generators (in the Kac–Moody case)

and the Coxeter generators (in the Weyl group case) act on VE via extremely simple

raising and lowering operators applied to basis elements.

If Γ corresponds to an untwisted affine Kac–Moody algebra g, the representation

of g on VE over C has a small kernel, namely the one-dimensional centre. If we

restrict attention to the corresponding finite dimensional simple Lie algebra over C,
the representation will of course be faithful, but one can be much more precise: it

is possible to construct the Chevalley basis arising from a given orientation of the

Dynkin diagram (see [12, (7.8.5), (7.9.3)]) explicitly in terms of raising and lowering

operators.

Raising and lowering operators are familiar in other combinatorial models of Lie

theory. The most important of these include the Kashiwara operators on crystals
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[13], used in the approach of the Kyoto school, and Littelmann’s path operators

[16], [17]. Another example of raising and lowering operators occurs in the context

of the down-up algebras of Benkart and Roby [3].

For the case of simply laced finite dimensional simple Lie algebras over C (exclud-

ing E8), a combinatorial construction for the Lie algebras by raising and lowering

operators on ideals of (finite) heaps has been described by Wildberger [22]. Unfor-

tunately, that paper contains no proof of its main result [22, Theorem 4.1], which

is analogous to our Theorem 6.7, and to the best of our knowledge, no proof exists.

The constructions we describe here are modified versions of Wildberger’s, and have

some advantages over them (see §9). Wildberger has also succeeded in dealing with

the simple Lie algebra of type G2 using raising and lowering operators [23], but the

construction is ad hoc and significantly different from those of [22] or of this paper.

The constructions described above require almost no knowledge of Lie theory,

apart from the definition of a Lie algebra and the notion of a Dynkin diagram (or,

equivalently, a generalized Cartan matrix). In particular, the definition of a full

heap is purely combinatorial. However, the proofs that the constructions work do

use Lie theoretic concepts.

Our representations of Kac–Moody algebras exist whenever we have a full heap

over the appropriate Dynkin diagram. This includes all untwisted affine Kac–

Moody algebras except three (types E
(1)
8 , F

(1)
4 and G

(1)
2 in Kac’s notation), and

also includes two families of twisted affine Kac–Moody algebras (types A
(2)
2l−1 and

D
(2)
l+1). The more complicated root systems in the twisted case make analysis more

difficult, so we will concentrate almost entirely on the untwisted case in this paper

for reasons of space.

Although our methods do not work for all types, they apply remarkably uni-

formly in the cases where they do work. The representations VE behave like affine

analogues of the minuscule representations of the corresponding simple Lie alge-

bras; in particular, the three cases mentioned above where full heaps do not exist

correspond to the three simple Lie algebras (E8, F4 and G2) that have no minuscule

representations (see [19, §2.2] for more details).

The representation of a Kac–Moody algebra on VE has a q-analogue, namely an

action of the quantum affine algebra. Regarded in this way, VE is an integrable

module and B is a crystal basis for VE in the sense of Kashiwara, although it does

not give an extremal weight crystal.

Although we do not emphasise this in the sequel, the labelled heaps over a fixed

graph can be made into a category in which the isomorphism classes of objects
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are precisely the heaps. The framework of this paper can be regarded as a kind

of categorification of the positive roots of (most) affine Kac–Moody algebras, in

which a positive root α corresponds to a nonempty collection Lα of labelled heaps.

An element of Lα is called a root heap of character α. Isomorphic labelled heaps

have the same characters, but since the isomorphism class is not determined by the

character, we do not have a categorification in the strict sense of [1], but rather in

the weaker sense in which Khovanov homology [15] is a categorification of the Jones

polynomial. This has the consequence that root heaps have invariants that are not

invariants of the underlying positive root, and the most important for our purposes

in the simply laced case is that of the parity of a root heap. This depends on

an arbitrarily chosen orientation of the Dynkin diagram and, when decategorified

correctly (Lemma 4.4), produces the asymmetry functions of [12, (7.8.4)] . We also

give a decomposition of a root heap into convex sub-root heaps that corresponds to

expressing a positive root as a sum of two positive roots (Corollary 5.5). In the sim-

ply laced case, this decomposition is unique, which corresponds to the fact that the

structure constants for the corresponding Chevalley basis lie in the set {−1, 0, 1}.
Our procedure for treating non simply laced cases is also a categorification of a

well-known procedure for producing non simply laced root systems, as we discuss

in §6.
The main results of the paper are as follows. The representation of the derived

algebra g′(A) of a symmetrizable Kac–Moody algebra is constructed in Theorem

3.1. The Chevalley bases for simple Lie algebras over C are constructed combinato-

rially in Theorem 6.7, and the corresponding result for the whole untwisted affine

Kac–Moody algebra modulo its centre is given in Theorem 7.10. A q-analogue of

the latter result is given in Theorem 8.3, which also explains the connection with

crystal bases.

1. Heaps Over Dynkin Diagrams

Let A be an n by n matrix with integer entries. Following [12, §1.1], we call A a

generalized Cartan matrix if it satisfies the conditions (a) aii = 2 for all 1 ≤ i ≤ n,
(b) aij ≤ 0 for i ̸= j and (c) aij = 0⇔ aji = 0. In this paper, we will only consider

generalized Cartan matrices with entries in the set {2, 0,−1,−2}; such matrices are

sometimes called doubly laced. If, furthermore, A has no entries equal to −2, we
will call A simply laced.

The Dynkin diagram Γ = Γ(A) associated to a generalized Cartan matrix is a

directed graph, possibly with multiple edges, and vertices indexed (for now) by the
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integers 1 up to n. If i ̸= j and |aij | ≥ |aji|, we connect the vertices corresponding

to i and j by |aij | lines; this set of lines is equipped with an arrow pointing towards

i if |aij | > 1. For example, if aij = aji = −2, this will result in a double edge

between i and j equipped with an arrow pointing in each direction (see Figure 7 in

the Appendix). There are further rules if aijaji > 4, but we do not need these for

our purposes.

The Dynkin diagram (together with the enumeration of its vertices) and the

generalized Cartan matrix determine each other, so we may write A = A(Γ). If Γ

is connected, we call A indecomposable.

Let Γ be a Dynkin diagram with vertex set P and no multiple edges. Let C be

the relation on P such that x C y if and only if x and y are distinct unadjacent

vertices in Γ, and let C be the complementary relation.

Definition 1.1. A labelled heap over Γ is a triple (E,≤, ε) where (E,≤) is a locally

finite partially ordered set (in other words, a poset all of whose intervals are finite)

with order relation denoted by ≤ and where ε is a map ε : E → P satisfying the

following two axioms.

1. For every α, β ∈ E such that ε(α) C ε(β), α and β are comparable in the order

≤.
2. The order relation ≤ is the transitive closure of the relation ≤C such that for all

α, β ∈ E, α ≤C β if and only if both α ≤ β and ε(α) C ε(β).

We call ε(α) the label of α. In the sequel, we will sometimes appeal to the fact

that the partial order is the reflexive, transitive closure of the covering relations,

because of the local finiteness condition.

Definition 1.2. Let (E,≤, ε) and (E′,≤′, ε′) be two labelled heaps over Γ. We say

that E and E′ are isomorphic (as labelled posets) if there is a poset isomorphism

ϕ : E → E′ such that ε = ε′ ◦ ϕ.
A heap over Γ is an isomorphism class of labelled heaps. We denote the heap

corresponding to the labelled heap (E,≤, ε) by [E,≤, ε].

We will sometimes abuse language and speak of the underlying set of a heap,

when what is meant is the underlying set of one of its representatives.

It can be shown [21, §2], that the finite heaps over a graph have a well defined

monoid structure, induced by an operation ◦ on labelled heaps which we now define.

Definition 1.3. Let E = (E,≤E , ε) and F = (F,≤F , ε
′) be two finite labelled

heaps over Γ. We define the finite labelled heap G = (G,≤G, ε
′′) = E ◦ F over Γ

as follows.
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1. The underlying set G is the disjoint union of E and F .

2. The labelling map ε′′ is the unique map ε′′ : G → P whose restriction to E

(respectively, F ) is ε (respectively, ε′).

3. The order relation ≤G is the transitive closure of the relation R on G, where

α R β if and only if one of the following three conditions holds:

(i) α, β ∈ E and α ≤E β;

(ii) α, β ∈ F and α ≤F β;

(iii) α ∈ E, β ∈ F and ε(α) C ε′(β).

Definition 1.4. Let (E,≤, ε) be a labelled heap over Γ, and let F a subset of

E. Let ε′ be the restriction of ε to F . Let R be the relation defined on F by

α R β if and only if α ≤ β and ε(α) C ε(β). Let ≤′ be the transitive closure of R.
Then (F,≤′, ε′) is a labelled heap over Γ. The heap [F,≤′, ε′] is called a subheap of

[E,≤, ε].
If E = (E,≤, ε) is a labelled heap over Γ, then we define the dual labelled heap,

E∗ of E, to be the labelled heap (E,≥, ε). (The notion of “dual heap” is defined

analogously.)

If F is convex as a subset of E (in other words, if α ≤ β ≤ γ with α, γ ∈ F , then
β ∈ F ) then we call F a convex subheap of E. If, whenever α ≤ β and β ∈ F we

have α ∈ F , then we call F an ideal of E; dually, if, whenever a ≥ β and β ∈ F
we have α ∈ F , then we call F a filter of E. If F is an ideal of E with ∅ ( F ( E

such that for each vertex p of Γ we have ∅ ( F ∩ ε−1(p) ( ε−1(p), then we call F

a proper ideal of E.

Remark 1.5. If E and F are finite heaps over Γ, then it follows from the above two

definitions that E and F are both convex subheaps of E ◦F , and that E is an ideal

of E ◦ F .

We will often implicitly use the fact that a subheap is determined by its set of

vertices and the heap it comes from.

Definition 1.6. Let (E,≤, ε) be a locally finite labelled heap over Γ. We say that

(E,≤, ε) and [E,≤, ε] are fibred if

(a) for each vertex p in Γ, the subheap ε−1(p) is unbounded above and unbounded

below,

(b) for every pair p, p′ of adjacent vertices in Γ and every element α ∈ E with

ε(α) = p, there exists β ∈ E with ε(β) = p′ such that either α covers β or β covers

α in E.



FULL HEAPS AND REPRESENTATIONS OF AFFINE KAC–MOODY ALGEBRAS 143

Remark 1.7.

(i) It is easily checked that these are sound definitions, because they are invariant

under isomorphism of labelled heaps.

(ii) The name “fibred” alludes to the fact that these heaps can also be constructed

using fibre bundles. For x ∈ E, define the set OE
x ⊆ E × Γ to consist of all pairs

(x, p), where x ∈ E and there exists y ∈ E with ε(y) = p such that either x covers

y or y covers x. For each vertex a of Γ, define the set OΓ
a ⊆ Γ × Γ to consist of

all pairs (a, b) such that a and b are adjacent in Γ. Define π : E × Γ → Γ × Γ

by π((x, p)) = (ε(x), p). Let Z be the set of integers equipped with the discrete

topology, equip E × Γ with the smallest topology such that the sets OE
x are open,

and equip Γ× Γ with the smallest topology such that the sets OΓ
a are open. Then

E is fibred if and only if

Z→ E × Γ
π→ Γ× Γ

is a fibre bundle.

(iii) Condition (a) provides a way to name the elements of E, which we shall need

in the sequel. Choose a vertex p of Γ. Since E is locally finite, ε−1(p) is a chain

of E isomorphic as a partially ordered set to the integers, so one can label each

element of this chain as E(p, z) for some z ∈ Z. Adopting the convention that

E(p, x) < E(p, y) if x < y, this labelling is unique once a distinguished vertex

E(p, 0) ∈ ε−1(p) has been chosen for each p.

Definition 1.8. Let E be a fibred heap over a Dynkin diagram Γ with generalized

Cartan matrix A. If every open interval (α, β) of E such that ε(α) = ε(β) = p and

(α, β) ∩ ε−1(p) = ∅ satisfies
∑

γ∈(α,β) ap,ε(γ) = −2, we call E a full heap.

The above definition is reminiscent of Stembridge’s definition of a minuscule heap

in [20, §3]; however, we are following Kac’s definition of generalized Cartan matrix

[12, §4.7], which is the transpose of Stembridge’s. (This distinction only applies to

the matrices, and not to the corresponding heaps.) The definition says that either

(a) (α, β) contains precisely two elements with labels (q1, q2, say) adjacent to p and

such that there is no arrow from q1 (or q2) to p in the Dynkin diagram, or that

(b) (α, β) contains precisely one element with label (q, say) adjacent to p such that

there is an arrow from q to p in the Dynkin diagram.

2. Ideals of Full Heaps

In §2, we develop some properties of ideals of full heaps, and use them to define

raising and lowering operators.
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Lemma 2.1. Let (E,≤, ε) be a full labelled heap over Γ, let F and F ′ be proper

ideals of E and let J be an ideal of E.

(i) With the labelling convention of Remark 1.7, the ideal J is proper if and only if

for all vertices p ∈ Γ, we have

J ∩ ε−1(p) = Ep(N) := {E(p, t) : t < N}

for some integer N depending on J and p.

(ii) The subheaps F ∩ F ′ and F ∪ F ′ are proper ideals of E.

(iii) If F ⊆ J and J\F is finite, then J is a proper ideal of E.

(iv) If J ⊆ F and F\J is finite, then J is a proper ideal of E.

(v) If Γ is finite and connected, then J is a proper ideal if and only if ∅ ≠ J ̸= E.

(vi) If Γ is finite and F ⊆ F ′, then F ′\F is finite.

(vii) If Γ is finite and connected and L is a finite convex subheap of E, then there

is a proper ideal L′ of E such that L ⊂ L′ and L′\L is a proper ideal of E.

Proof. Part (i) follows from Remark 1.7 (iii) and the definition of proper ideal.

Part (ii) follows from (i) and the fact that, for a fixed vertex p, the chains Ep(N)

are closed under finite intersections and finite unions.

For part (iii), choose N so that F ∩ ε−1(p) = Ep(N). Since J\F is finite,

(J ∩ ε−1(p))\(F ∩ ε−1(p))

must be finite. However, since J is an ideal, J ∩ ε−1(p) must be downward closed

(meaning that if E(p, y) ∈ J ∩ ε−1(p) and x < y, then E(p, x) ∈ J ∩ ε−1(p)). This

shows that J ∩ ε−1(p) = Ep(N
′) for some N ′ ≥ N .

Part (iv) follows by a similar argument to that used to prove part (iii), mutatis

mutandis.

If J is a proper ideal, then it follows easily from (i) that ∅ ≠ J ̸= E, as required

for (v), so suppose that ∅ ̸= J ̸= E for an ideal J . Let α ∈ E\J and let p = ε(α).

Suppose first that J ∩ ε−1(p) ̸= ∅. Since J ∩ ε−1(p) is an ideal of ε−1(p) and

α ̸∈ J , we have J ∩ ε−1(p) = Ep(N). Let q be adjacent to p in Γ. The definition

of full heap ensures that there exists an element β > α with ε(β) = q, and since

α ̸∈ J , we must have β ̸∈ J . On the other hand, there also exists an element

β′ < E(p,N − 1) with ε(β′) = q, and the fact that J is an ideal means that β′ ∈ J .
Combining these observations, we see that J ∩ ε−1(q) = Eq(N

′) for some integer

N ′. Since Γ is connected, a similar condition holds at each vertex, and J is proper.

The other possibility is that J ∩ ε−1(p) = ∅. By reversing the argument of the

above paragraph, we find that J ∩ ε−1(q) = ∅ for all vertices q, in other words, that

J = ∅, contrary to the hypothesis of (v).



FULL HEAPS AND REPRESENTATIONS OF AFFINE KAC–MOODY ALGEBRAS 145

Under the assumptions of (vi), the sets (F ′\F )∩ε−1(p) are all finite by (i), which

means that F ′\F is also finite because Γ is.

For part (vii), define L′ = {α ∈ E : α ≤ β for some β ∈ L}. It is easily checked

that L′ is a nonempty ideal of E and that L′\L is an ideal of E. Furthermore, L′

is bounded above (because L is), so L′ ̸= E, L is a proper ideal by (v) and L′\L is

a proper ideal by (iii). �

Part (vi) of Lemma 2.1 will often be used without comment in the sequel. Part (ii)

of the lemma has the following immediate corollary.

Corollary 2.2. The set of all proper ideals of E has the structure of a distributive

lattice, where I ∧ J := I ∩ J and I ∨ J := I ∪ J .

Definition 2.3. Let R+ be the set of all functions P → Z≥0. If F is a finite

labelled heap over Γ, then we define the character, χ(F ) of F to be the element of

R+ such that χ(F )(p) is the number of elements of F with ε-value p. If α ∈ R+,

we write Lα(E) to be the set of all convex subheaps F of E with χ(F ) = α. If F

consists of a single element α with ε(α) = p, we will write χ(F ) = p for short, so

that Lp(E) is identified with the elements of E labelled by p.

Since the function χ is an invariant of labelled heaps, we can extend the definition

to apply to finite heaps of Γ.

Example 2.4. Let Γ be the Dynkin diagram of type E
(1)
7 , shown in Figure 17 in

the Appendix, let E be the heap shown in Figure 18, and let F be the finite convex

subheap shown in the dashed box. Writing αi for the function sending i ∈ P to 1

and j ∈ P to 0 if j ̸= i, we find that

χ(F ) = α0 + 2α1 + 3α3 + 4α3 + 3α4 + 2α5 + α6 + 2α7.

Lemma 2.5. Let [E,≤, ε] be a full heap over the Dynkin diagram Γ, with general-

ized Cartan matrix A, let I be an ideal of E and let α ∈ I be a maximal element.

Define p = ε(α), and suppose that q ∈ Γ is adjacent to p. Then precisely one of the

following occurs:

(i) aqp = −1, I\{α} is an ideal of E and there exists a maximal element β ∈ I\{α}
with ε(β) = q,

(ii) aqp = −1, there exists a minimal element β ∈ E\I such that ε(β) = q and

I ∪ {β} is an ideal of E, or

(iii) aqp = −2, there exists a maximal element β ∈ I\{α} and a minimal element

β′ ∈ E\I such that ε(β) = ε(β′) = q, and both I\{α} and I ∪ {β′} are ideals of E.
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Proof. By part (b) of the definition of a fibred heap, there exists β ∈ E with

ε(β) = q such that either α covers β or β covers α. Until further notice, let us

assume that aqp = −1.
Suppose first that β < α. Since α is maximal in I, it follows that I\{α} is an

ideal of E. If β is maximal in I\{α}, then we are in the situation of (i) above, so

suppose this is not the case. By part (a) of the definition of a fibred heap, there

exists γ ∈ E with ε(γ) = q and γ > β. Since {α, β, γ} is a chain in E and β < α is

a covering relation, we have γ > α and γ ̸∈ I. Because ε−1(q) ∪ {α} is a chain in

E, we may assume that the interval (β, γ) of E contains no elements of ε−1(q). By

the definition of full, (β, γ) contains two elements, γ1 and γ2, with labels adjacent

to q, and one of these elements, γ1 say, is α. The hypothesis that β is not maximal

in I\{α} implies that γ2 is also in I. We claim now that I ∪ {γ} is an ideal of E;

to show this, it is enough to show that if γ > γ′ is a covering relation, then γ′ ∈ I.
The latter holds because any such γ′ is comparable to β, which has the same label

as γ′, and I ∪{γ} contains all elements less than β together with the closed interval

[β, γ]. This satisfies the conditions of (ii).

Suppose now that β > α. It is clear that β is minimal in E\I, so that if I ∪ {β}
is an ideal of E, the conditions of (ii) will hold. Suppose that this is not the case.

By part (a) of the definition of a fibred heap, there exists γ ∈ E with ε(γ) = q and

γ < β. As in the previous paragraph, this means that γ < α, from which we see

that γ ∈ I. By the definition of full, (γ, β) contains two elements, γ1 and γ2, with

labels adjacent to q, and one of these elements, γ1 say, is α. If γ2 also lies in I, then

the conditions of (ii) will be satisfied as in the previous paragraph. If γ2 does not

lie in I, then I ∪ {β} is not an ideal, but I\{α} is an ideal with maximal element

γ, and ε(γ) = q. This satisfies the conditions of (i).

From now on, assume that aqp = −2. Suppose there exists β ∈ E with ε(β) = q

such that α covers β. By part (a) of the definition of a fibred heap, there exists

γ ∈ E with ε(γ) = q and γ > β. Following the same reasoning as earlier, we have

γ > α and γ ̸∈ I. The other possibility is that there exists β ∈ E with ε(β) = q

such that β covers α. In this case, part (a) of the definition of a fibred heap shows

that there exists γ ∈ E with ε(γ) = q and γ < β. As before, this means that γ < α,

from which we see that γ ∈ I. In either case, there exists a chain β1 < α < β2 in E

with ε(β1) = ε(β2) = q, such that the open interval (β1, β2) contains no elements

labelled q. By the definition of full, α is the only element in (β1, β2) with a label

adjacent to q, and thus the only element in (β1, β2), meaning that {β1, α, β2} is a
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convex chain. The assertions of case (iii) now follow by adapting the argument for

the case aqp = −1. �

The following definition generalizes ideas in [22, §4].

Definition 2.6. Let E be a full heap over a graph Γ, let k be a field (always of

characteristic not equal to 2), and define VE to be the k-span of the distributive

lattice

B = {vI : I is a proper ideal of E}.

For any such ideal and any finite convex subheap L ≤ E, we write L ≻ I to mean

that both I ∪ L is an ideal and I ∩ L = ∅, and we write L ≺ I to mean that both

L ≤ I and I\L is an ideal. We define linear operators XL, YL and HL on VE as

follows:

XL(vI) =

vI∪L if L ≻ I,

0 otherwise,

YL(vI) =

vI\L if L ≺ I,

0 otherwise,

HL(vI) =


vI if L ≺ I and L ̸≻ I,

−vI if L ≻ I and L ̸≺ I,

0 otherwise.

(Note that these operators are defined by parts (iii) and (iv) of Lemma 2.1; they

are nonzero by part (vii) of Lemma 2.1.) If p is a vertex of Γ, we write Xp for the

linear operator on VE given by
∑

L∈Lp(E)XL (with notation as in Definition 2.3),

and we define Yp and Hp similarly. Note that although these sums are infinite, it

follows from the definitions of fibred and full heaps that at most one of the terms

in each case may act in a nonzero way on any given vI . In this situation, we also

write p ≻ I to mean that L ≻ I for some (necessarily unique) L ∈ Lp(E), and

analogously we write p ≺ I with the obvious meaning. Note that it is not possible

for both p ≺ I and p ≻ I, because I cannot contain a convex chain α < β with

ε(α) = ε(β) = p.

Lemma 2.7. Maintain the above notation and suppose that p and q are vertices of

Γ (allowing the possibility p = q). We have the following relations in the associative
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k-algebra generated by the operators XL, YL and HL, where δ is the Kronecker delta:

HpHq = HqHp, (1)

HpXq −XqHp = apqXq, (2)

HpYq − YqHp = −apqXq, (3)

XpYq − YqXp = δpqHq, (4)

XpXq = XqXp, if apq = 0, (5)

YpYq = YqYp, if apq = 0, (6)

XpXp = YpYp = 0, (7)

XpXqXp = YpYqYp = 0 if apq = −1. (8)

Proof. Relation (1) holds because of the way the operators Hp act as scalars on

each basis vector vI .

Consider the algebra element HpXp − XpHp. This element, and Xp, will each

act as zero on vI unless p ≻ I. If, on the other hand, p ≻ I, let L ≻ I be such that

L = {α} with ε(α) = p. We then have HpXpvI = vI\L = −XpHpvI , and relation

(2) follows.

Suppose that apq = 0, so that p and q are not adjacent, and consider HpXq −
XqHp. Unless q ≻ I, this element will act as zero on vI , so we may reduce con-

sideration to this case. Let L ≻ I be such that L = {α} with ε(α) = q. A simple

case by case check shows that p ≺ I ∪ L (respectively, p ≻ I ∪ L) if and only p ≺ I
(respectively, p ≻ I), and relation (2) follows.

Now suppose that apq = −1, and consider HpXq − XqHp. As before, relation

(2) follows trivially unless q ≻ I, so we reduce to this case. Let L ≻ I be such

that L = {α} with ε(α) = q, so that XqvI = vI∪L. By Lemma 2.5, we have either

p ≻ I ∪L or p ≺ I, but not both. (Note that if p ≻ I ∪L, then p ̸≻ I, and if p ≺ I,
then p ̸≺ I ∪ L.) If p ≻ I ∪ L, we have HpXqvI = −vI∪L and XqHpvI = 0. On the

other hand if p ≺ I, we have HpXqvI = 0 and XqHpvI = vI∪L. Relation (2) now

follows.

Finally, suppose that apq = −2, and consider HpXq −XqHp. Again, let L ≻ I

be such that L = {α} with ε(α) = q, so that XqvI = vI∪L. By Lemma 2.5, we have

both p ≻ I ∪ L and p ≺ I, meaning that HpXqvI = −vI∪L and XqHpvI = −vI∪L.

This completes the proof of relation (2).

The verification of relation (3) follows a similar line of argument to that used to

prove relation (2), mutatis mutandis.
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It follows from the definition ofHp that XpYp−YpXp = Hp, thus establishing the

case p = q of relation (4). If p and q are adjacent, then a case by case check shows

that the operators XpYq and YqXp are individually zero. On the other hand, if p

and q are not adjacent, an argument like that used on the apq = 0 case of relation

(2) shows that XpYq and YqXp commute, thus finishing the proof of relation (4).

The same reasoning also establishes the commutation relations (5) and (6).

Relation (7) holds because no ideal I can contain a convex chain α < β with

ε(α) = ε(β) = p, and relation (8) holds because no ideal I can contain a convex

chain α < β < γ with ε(α) = ε(γ) = p and ε(β) = q if apq = −1. (Both of these

conditions come from the definition of full.) �

3. Lie Algebras And Root Systems

A Lie algebra over a field k is a k-vector space g endowed with a bilinear (usually

nonassociative) multiplication [ , ] : g × g → k. The image of the pair (x, y) under

this map is denoted by [x, y], and the following axioms hold for all elements x, y, z ∈
g:

[x, x] = 0;

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The first condition above is known as antisymmetry and the second is known as the

Jacobi identity. Any associative algebra A over k, such as the algebra of Lemma

2.7, may be made into a Lie algebra using the bracket [a, b] := ab− ba.
The significance of Lemma 2.7 is that it gives VE the structure of a module for

a certain Lie algebra, namely (in the case k = C) the derived algebra g′(A) of a

symmetrizable Kac–Moody algebra (see [12, §0.3]). The main purpose of this paper

is to understand this module.

Theorem 3.1. Let E be a full heap over a Dynkin diagram Γ with vertices P

and generalized Cartan matrix A, let k be a field of characteristic different from 2,

and let VE be the k-vector space of Definition 2.6. Let g be the Lie algebra with

generators {ei, fi, hi : i ∈ P} and the usual defining relations (see [4, §9.4]). Then

VE becomes a left g-module, where ei (respectively, fi, hi) acts as Xi (respectively,

Yi, Hi).

Proof. This is a consequence of Lemma 2.7, recalling that we have

[a, b].v := a(b(v))− b(a(v)).
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Note that the relation [ei, [ei, ej ]] = 0 expands to

ei ◦ ei ◦ ej − ei ◦ ej ◦ ei + ej ◦ ei ◦ ei = 0,

which holds by relations (7) and (8) of Lemma 2.7, and the relation

[ei, [ei, [ei, ej ]]] = 0

expands to

ei ◦ ei ◦ ei ◦ ej − 2ei ◦ ei ◦ ej ◦ ei + 2ei ◦ ej ◦ ei ◦ ei − ei ◦ ej ◦ ei ◦ ei = 0,

which holds by relation (7) of Lemma 2.7. Similar comments hold for the relations

involving fi and fj . �

To understand Lie algebras such as those in Theorem 3.1, one needs the concept of

a root system, and we will show that the combinatorics of full heaps is intimately

connected to that of root systems for affine Kac–Moody algebras.

We introduce the following notation in order to state later results easily.

Definition 3.2. Let L be a finite convex heap of a full heap E over a graph Γ, and

let p be a vertex of Γ. We write p→ L (respectively, L← p) to mean that L has a

minimal (respectively, maximal) vertex with label p. We write p← L (respectively,

L → p) to mean that there is a (necessarily unique) vertex α of E\L labelled p

such that L ∪ {α} is convex and p → L ∪ {α} (respectively, p ← L ∪ {α}). Define

the integers b±(L, p) by the conditions

b+(L, p) =


1 if L← p,

−1 if L→ p,

0 otherwise,

and

b−(L, p) =


1 if p→ L,

−1 if p← L,

0 otherwise.

The integers b±(L, p) are well-defined by the definition of full heap.

The following lemma will be used repeatedly in the sequel, sometimes without

explicit comment.
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Lemma 3.3. Let E be a full heap over a Dynkin diagram Γ, let k be a field, let L

be a finite convex subheap of E and let p be a vertex of Γ. Then we have [Hp, XL] =

cXL and [Hp, YL] = −cXL for some c ∈ {−2,−1, 0, 1, 2}. More precisely, we have

[Hp, XL] = b+(L, p) + b−(L, p),

[Hp, YL] = −b+(L, p)− b−(L, p).

Proof. This follows from the definition of Hp and a case by case check, similar to

(but easier than) the proof of Lemma 2.7. �

We define the Weyl group, W (Γ), associated to Γ to be the group with generators

{si ∈ I} indexed by the vertices of Γ and defining relations

s2i = 1 for all i ∈ I,

sisj = sjsi if aij = 0,

sisjsi = sjsisj if aij < 0 and aijaji = 1,

sisjsisj = sjsisjsi if aij < 0 and aijaji = 2.

Note that no relation is added in the case where aij < 0 and aijaji = 4.

Example 3.4. Define two generalized Cartan matrices

A1 =

(
2 −1
−2 2

)
and A2 =

(
2 −2
−2 2

)
.

Then the Weyl group corresponding to A1 is

⟨s1, s2 : s21 = s22 = 1, (s1s2)
4 = 1⟩,

isomorphic to the dihedral group of order 8, and the Weyl group corresponding to

A2 is the infinite group

⟨s1, s2 : s21 = s22 = 1⟩.

Let Π = {αi : i ∈ I} and let Π∨ = {α∨
i : i ∈ I}. We have a Z-bilinear pairing

ZΠ× ZΠ∨ → Z defined by

⟨αj , α
∨
i ⟩ = aij ,

where (aij) is the generalized Cartan matrix. If k is the real numbers, we extend

this to a k-bilinear pairing by extension of scalars. If v =
∑

i∈I λiαi, we write

v ≥ 0 to mean that λi ≥ 0 for all i, and we write v > 0 to mean that λi > 0 for

all i. We view V = kΠ as the underlying space of a reflection representation of W ,

determined by the equalities si(v) = v − ⟨v, α∨
i ⟩αi for all i ∈ I.

Indecomposable generalized Cartan matrices come in three mutually exclusive

types.
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Theorem 3.5. [12, Theorem 4.3] Let A be an indecomposable generalized Cartan

matrix. Then A satisfies one and only one of the following three possibilities:

(i) detA ̸= 0; there exists u > 0 with Au > 0; and Av ≥ 0 implies v > 0 or v = 0;

(ii) A has corank 1; there exists u > 0 with Au = 0; and Av ≥ 0 implies Av = 0;

(iii) there exists u > 0 with Au < 0; and the conditions Av ≥ 0 and v ≥ 0 together

imply v = 0.

The matrix A is said to be of finite (respectively, affine, indefinite) type if it

satisfies condition (i) (respectively, (ii), (iii)) above.

In this paper, we are only concerned with the finite and affine cases above.

Following [12, §5], we define a real root to be a vector of the form w(αi), where

w ∈ W and αi is a basis vector. If A is of finite type, all roots are real. If A

is of affine type, there is a unique vector δ =
∑
aiαi such that Aδ = 0 and the

ai are relatively prime positive integers. Although the notion of imaginary root

can be defined in general, in the affine type case the imaginary roots are easily

characterized as precisely those vectors of the form nδ where n is a nonzero integer.

A root is by definition a real or imaginary root. We denote the set of roots by ∆,

as in [12]. We say a root α is positive (respectively, negative) if α > 0 (respectively,

α < 0). If α is a root, then so is −α, and every root is either positive or negative.

We will identify the positive (real and imaginary) roots with elements of R+ as in

Definition 2.3 so that
∑
aiαi corresponds to the function sending each i to ai. The

height, ht(α) of the root α =
∑
aiαi is by definition the integer

∑
ai.

Lemma 3.6. Let A0 be a simply laced generalized Cartan matrix of finite type, and

let α =
∑
aiαi and β be two positive roots associated to A0. Define α∨ =

∑
aiα

∨
i ,

and write ⟨β, α∨⟩ for
∑
ai⟨β, α∨

i ⟩. Then precisely one of the following situations

occurs:

(i) ⟨β, α∨⟩ = 2 and α = β;

(ii) ⟨β, α∨⟩ = 1, α− β is a root and α+ β is not a root;

(iii) ⟨β, α∨⟩ = 0 and neither of α± β is a root;

(iv) ⟨β, α∨⟩ = −1, α+ β is a root and α− β is not a root;

(v) ⟨β, α∨⟩ = −2 and α = −β.

Proof. This is well-known, and the proof follows from the argument given in [11,

§9.4]. �
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4. Parity Of Heaps In The Simply Laced Case

Let A be a generalized Cartan matrix, let g be the associated Lie algebra, and

let Γ be the corresponding Dynkin diagram. In §4, we assume that A is simply

laced; in other words, that A has entries in the set {2, 0,−1}. Let us now fix an

orientation of Γ.

Definition 4.1. Following [12, (7.8.4)], we define a function

sgn : P × P → {±1}

(depending on the chosen orientation of Γ) by the conditions

sgn(p, p′) =

−1 if p = p′ or there is an arrow from p to p′,

1 otherwise.

We may extend the above definition to a function sgn : R+ ×R+ → Z via

sgn(f, g) =
∑
p∈P

∑
q∈P

f(p)g(q)sgn(p, q);

similarly, we may extend the definition to a function on roots by

sgn
(∑

aiαi,
∑

bjαj

)
=
∑
i

∑
j

aibjsgn(i, j).

Lemma 4.2. Assume additionally that A is of finite type, and that α, β are positive

roots such that α+ β is a root. Then sgn(α, β) = −sgn(β, α).

Proof. This follows by combining (7.8.7) and (7.8.8) in [12]. �

We use the above to define a parity function on finite heaps as follows.

Definition 4.3. If F is a finite labelled heap over Γ, we define

sgn(F ) =
∏
α>β

α,β∈F

sgn(ε(a), ε(β)).

We extend the notion of parity to finite heaps over Γ, in the obvious way. (See

Example 6.4 below for a sample calculation.)

For our purposes, the key property of the sgn-function is the following.

Lemma 4.4. Let γ, γ′ ∈ R+, and let F1 ∈ Lγ and F2 ∈ Lγ′ be finite labelled heaps

over Γ. Then we have

sgn(F1 ◦ F2) = sgn(F1)sgn(F2)sgn(γ
′, γ).
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Proof. In the computation of the left hand side using Definition 4.3, three types

of terms appear in the product: (a) those where α and β both lie in F1, (b) those

where α and β both lie in F2 and (c) those where α lies in F1 and β lies in F2. The

factorization in the statement expresses this decomposition. �

Definition 4.5. As in [22], we define for each α ∈ R+ operators Xα and Yα on VE

by the formulae

Xα =
∑

L∈Lα(E)

sgn(L)XL

and

Yα =
∑

L∈Lα(E)

sgn(L)YL.

Although the sums in the above definition may be infinite, note that at most

one summand can act as zero on any given vI .

Lemma 4.6. Maintain the notation of Definition 2.6, and let L ∈ Lα and L′ ∈ Lβ

for some α, β ∈ R+. If vI is a basis element such that XL ◦XL′(vI) ̸= 0, then we

have

XL ◦XL′(vI) = sgn(α, β)XL∪L′(vI);

similarly, if vI is such that YL ◦ YL′(vI) ̸= 0 then

YL ◦ YL′(vI) = sgn(β, α)YL∪L′(vI).

Proof. This is a consequence of the definitions and Lemma 4.4. The first identity

corresponds to the case L′◦L = L∪L′, and the second to the case L◦L′ = L∪L′. �

5. Representability Of Roots In The Simply Laced Finite Type Case

In §5 we concentrate on the case of the simply laced, finite type case. However,

we first require some general results (Definition 5.1 and Lemmas 5.2 and 5.3), which

will also be needed in later sections.

Definition 5.1. If α is a positive root associated to a Kac–Moody algebra g, then

(identifying α with an element of R+ in the usual way) we call elements of Lα root

heaps. If Lα is nonempty, we say that the root α is representable in the heap E.

Lemma 5.2. Let g be a Kac–Moody algebra and let α be a real non-simple, positive

root associated to g. Then there exists a simple root αi such that ⟨α, α∨
i ⟩ > 0 and

the root si(α) = α− ⟨α, α∨
i ⟩αi is positive.

Proof. This is [12, Proposition 5.1 (e)]. �
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Lemma 5.3. Let g be a Kac–Moody algebra with associated Dynkin diagram Γ, let

α =
∑
aiαi ∈ R+ be such that α > 0, let a = ⟨α, α∨

i ⟩, let E be a full heap over Γ,

and let F ≤ E with F ∈ Lα.

(i) If a = 2 then F has both a maximal vertex β and a minimal vertex β′ with

ε(β) = ε(β′) = i.

(ii) If a = 1 then either F has a maximal vertex β with ε(β) = i, or minimal vertex

β′ with ε(β′) = i, but not both.

(iii) If a = 0 and F has a maximal element labelled i, then there exists β ∈ E\F
with ε(β) = i such that F ′ = F ∪ {β} is convex and β is minimal in F ′.

(iv) If a = 0 and F has a minimal element labelled i, then there exists β ∈ E\F
with ε(β) = i such that F ′ = F ∪ {β} is convex and β is maximal in F ′.

Proof. Let us write α =
∑
akαk as a sum of simple roots. Since a > 0, we must

have ai > 0 for some i; in other words, F contains at least one element labelled i.

Let ζ0 and ζ1 denote the least and greatest elements of F ∩ ε−1(i), respectively. In

order to calculate ⟨α, α∨
i ⟩, the only relevant summands in the expression for α are

those corresponding to αi itself and to the simple roots adjacent to αi. Define F ′

to be the set of all γ ∈ F with ε(γ) adjacent to i. The definition of full heap shows

that there are three possibilities for elements γ ∈ F ′: (a) γ < ζ0, (b) γ > ζ1, or (c)

γ lies between two elements ζ, ζ ′ of F with ε(ζ) = ε(ζ ′) = i and (ζ, ζ ′)∩ε−1(i) = ∅.
Let us first consider case (c). If aij = −2, such an open interval (ζ, ζ ′) contains a

unique element γ with label adjacent to i. The other possibility is that aij = −1, in
which case (ζ, ζ ′) contains precisely two elements, γ and γ′, with labels adjacent to

i. Let α′ be the element of R+ given by the character χ([ζ0, ζ1]) of the closed interval

[ζ0, ζ1]. The above case analysis in terms of aij shows that ⟨α′, α∨
i ⟩ = ⟨αi, α

∨
i ⟩ = 2,

and this identity also holds in the case that [ζ0, ζ1] consists of a single element.

The contributions to ⟨α, α∨
i ⟩ that do not come from ⟨α′, α∨

i ⟩ must therefore

come from the elements γ in cases (a) and (b) above, which means in particular

that ⟨α, α∨
i ⟩ ≤ ⟨α′, α∨

i ⟩.
If a = 2, then there cannot be any such elements, or the latter inequality would

be strict, contrary to hypothesis. This means that ζ0 (respectively, ζ1) is minimal

(respectively, maximal) in F , which establishes assertion (i).

If a = 1, then there must be precisely one such element γ (and, in fact, aij = −1
must also hold). This means that either ζ0 is minimal in F , or ζ1 is maximal in F ,

but not both, which establishes assertion (ii).

Suppose a = 0 and that there is a maximal element labelled i. There are then

no elements γ corresponding to case (a). Furthermore, either there is precisely one
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element γ arising from case (b) and aij = −2, or there are precisely two elements

γ arising from case (b) and aij = −1. If we write ζ0 = E(i, t), then setting

β = E(i, t− 1) will then satisfy the hypothesis of (iii) by the definition of full heap.

Part (iv) is proved by a symmetrical argument. �

We now let A be a simply laced generalized Cartan matrix of (necessarily un-

twisted) affine type, corresponding to the finite type matrix A0. The next result,

whose method of proof is familiar from Kashiwara’s celebrated Grand Loop [13,

§4], establishes the basic properties of root heaps and the operators of Definition

4.5.

Proposition 5.4. Let E be a full heap over the Dynkin diagram Γ of A, let A0

be the corresponding finite type generalized Cartan matrix with Kac–Moody algebra

g0, and let α =
∑
λiαi be a positive real root associated to g0.

(i) The root α is representable in E.

(ii) The operator Xα is nonzero, lies in the Lie algebra generated by the Xp, and

(in the case k = C) is equal to the element Eα in the notation of [12, (7.8.5)].

(iii) If p is any vertex of Γ, then [Hp, Xα] = ⟨α, α∨
p ⟩Xα.

(iv) The operator Yα is nonzero, lies in the Lie algebra generated by the Yp, and

(in the case k = C) is equal to the element −E−α in the notation of [12, (7.8.5)].

(v) If p is any vertex of Γ, then [Hp, Yα] = −⟨α, α∨
p ⟩Yα.

(vi) For any proper ideal I of E, there do not exist root heaps L,L′ ∈ Lα such that

both I ∪ L and I\L′ are ideals.

(vii) We have Hα =
∑
λiHαi

= α∨, where α∨ is as defined in [12, §5.1].

Proof. We will prove the statements simultaneously by induction on ht(α). The

proofs of (iv) and (v) are very similar to those of (ii) and (iii), respectively, so we

do not include them.

The base case is ht(α) = 1, in other words, α is simple. Parts (i) and (ii) follow

from part (a) of the definition of a fibred heap and the definitions of [12, §7.8], part
(iii) is immediate from Theorem 3.1, part (vi) follows from the definition of a full

heap and part (vii) is trivial (again using the definitions of [12, §7.8]).
For the inductive step, we use Lemma 5.2 to find a simple root αi such that

a = ⟨α, α∨
i ⟩ > 0 and the root α′ = si(α) = α − aαi is positive. By the inductive

hypothesis, we have

[Hi, Xα′ ] = ⟨α′, α∨
i ⟩ = ⟨α− ⟨α, α∨

i ⟩αi, α
∨
i ⟩ = ⟨α, α∨

i ⟩(1− ⟨αi, α
∨
i ⟩) = −⟨α, α∨

i ⟩.

Since α′ is representable by the inductive hypothesis, Lemma 3.3 shows that we

have ⟨α, α∨
i ⟩ ∈ {1, 2}.
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This gives three possibilities for a root heap L ∈ Lα′ . Case (a) is that a = 2,

i← L and L→ i, but in fact this cannot occur, because it implies (by the inductive

hypothesis) that ⟨α′, α∨
i ⟩ = −2, which contradicts Lemma 3.6. Case (b) is that

a = 1, and i← L and but we do not have either L→ i, L← i or i→ L. Case (c)

is that a = 1, and L→ i but we do not have either i← L, i→ L or L← i.

We are now in case (b) or (c), so that a = 1. In this situation, α is representable

because we can add a new maximal or minimal vertex labelled i to L to form a root

heap in Lα. By Lemma 2.1 (vii), this means that Xα is nonzero, and by Lemma

5.3, any root heap in Lα has either a maximal or minimal vertex (but not both)

labelled i. We claim in this case that Xα = ±[Xαi , Xα′ ]. It is enough to check that

each side of the equation acts in the same way on a basis vector, vI . The right

hand side of the equation is equal to

Xαi ◦Xα′ −Xα′ ◦Xαi .

It now follows that unless we have L′ ≻ I for some L′ ∈ Lα, both sides of the

equation will act as zero, so let us assume that this condition is satisfied. By

Lemma 5.3 (ii), every element L′ of Lα is uniquely of the form {β} ◦ L or of the

form L ◦ {β} (but not both) for some β and L ∈ Lα′ , and we have shown that any

such L ∈ Lα′ can be extended to an element of Lα in this way.

In case (b), Xαi ◦Xα′ acts as zero on vI , so by Lemma 4.6 we have

[Xαi , Xα′ ].vI = −Xα′ ◦XαivI = −sgn(α′, αi)Xα.vI .

In case (c), Xα′ ◦Xαi acts as zero on vI , so by Lemma 4.6 we have

[Xαi , Xα′ ].vI = Xαi ◦Xα′vI = sgn(αi, α
′)Xα.vI .

Lemma 4.2 now shows that [Xαi , Xα′ ] = sgn(αi, α
′)Xα. Since, by [12, (7.8.5)], we

have [Eαi , Eα′ ] = sgn(αi, α
′)Eα (a formula also valid for negative roots), we have

Xα = Eα by the inductive hypothesis, completing the proof of (i) and (ii).

We now observe, using the Jacobi identity and the inductive hypothesis, that

[Hp, Xα] = sgn(α′, αi)[Hp, [Xαi , Xα′ ]]

= sgn(α′, αi) ([Hp, Xαi ], Xα′ ] + [Xαi , [Hp, Xα′ ]])

= sgn(α′, αi)(⟨αi, α
∨
p + ⟨α′, α∨

p ⟩)[Xαi , Xα′ ]

= ⟨α, α∨
p ⟩sgn(α′, αi)[Xαi , Xα′ ]

= ⟨α, α∨
p ⟩Xα,

which completes the proof of (iii).
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To prove (vi), we write α = α′+αi as before, so that ⟨α, α∨
i ⟩ = 1 by Lemma 3.6.

Let I, L, L′ ∈ Lα be as in the statement, contrary to hypothesis. By the inductive

hypothesis applied to (iii), we have [Hi, Xα′ ] = Xα′ . This gives two possibilities for

L (and similar possibilities for L′): the first is that i→ L but we do not have either

L ← i, L → i or i ← L, and the second is that L ← i but we do not have either

i→ L, i← L or L→ i. Let us consider the first possibility. Because χ(L) = χ(L′),

L′ must contain an element labelled i, and since L∪L′ is convex (as I ∪L and I\L′

are ideals), we must have L′ → i. This is not a permissible configuration for L′, so

we have a contradiction and we conclude that in fact L← i. A dual analysis shows

that i→ L′. If we now delete the maximal element in L with label i to form a heap

L0, and we delete the minimal element in L′ with label i to form a heap L′
0, then

the inductive hypothesis applied to the ideal I and the heaps L0, L
′
0 ∈ Lα′ shows

that this situation is impossible, proving (vi).

It follows from (vi) that [Xα, Yα] = Hα, and we know from [12, §7.8], that

[Eα, E−α] = −α∨, so we have Hα = α∨ by (ii) and (iv). The other assertions follow

from [12, (5.1.1), §7.8], using the fact that all roots have the same length. This

establishes (vii). �

Corollary 5.5. Let E be a full heap over the Dynkin diagram Γ of A, and let A0

be the corresponding finite type generalized Cartan matrix. If α, β, γ are positive

roots associated to A0 such that α = β + γ, then any root heap L ∈ Lα decomposes

uniquely as a disjoint union L = L1∪L2 of (convex) subheaps L1 ∈ Lβ and L2 ∈ Lγ

such that one of L1 and L2 is an ideal of L and the other is a filter of L.

Proof. We can choose a proper ideal I of E such that L ≺ I by Lemma 2.1 (vii).

We have Hα(vI) = vI , and by Proposition 5.4 (vii), we have Hα = Hβ +Hγ . By

Proposition 5.4 (vi), there are two ways this can happen: either Hβ(vI) = vI and

Hγ(vI) = 0, or vice versa. In the first case, there is a filter L1 of L and an ideal L2

of L with L1 ∈ Lβ and L2 ∈ Lγ , and in the second case, there is an ideal L1 of L

and a filter L2 of L with L1 ∈ Lβ and L2 ∈ Lγ . �

6. The Non Simply Laced Case

The methods presented for simply laced Lie algebras can be generalized to the

non simply laced case. The right way to consider this seems to be to regard the

non simply laced objects as folded versions of their simply laced untwisted affine

counterparts. For roots, this is the procedure described in [12, §7.9]. For our

purposes, we also need a categorified version of this phenomenon suitable for full

heaps.
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Let A be a simply laced generalized Cartan matrix of untwisted affine type and

let Γ be the corresponding Dynkin diagram, and suppose that µ is a nonidentity

graph automorphism of Γ. Although in general µ can be of order 2 or 3, we will

make two additional assumptions about µ: (a) µ has order precisely 2 and (b) for

any vertex p, µ(p) and p are not distinct adjacent vertices.

The group {1, µ} acts on the Dynkin diagram Γ, and we denote the orbit con-

taining the vertex p by f(p) = p̄. This induces an action on the simple roots αi,

and we extend this to a linear action on k ⊗Z R by µ(aiαi) = aiµ(αi). Let us also

define f(αi) = (αi + µ(αi))/2 and extend linearly to k ⊗Z R.

Let A and Γ be as above and ∆ be the set of roots for A. It is known [12,

Proposition 7.9], that the set {f(α) : α ∈ ∆} is a root system for a Kac–Moody

algebra g with simple roots {f(αi)}. A root f(α) is called long if α = µ(α), and

short otherwise. The Dynkin diagram Γ for g has vertices labelled by the orbits p̄,

and is such that if p and q are distinct vertices of Γ, then p and q are adjacent in Γ

if and only if the (distinct) vertices p̄ and q̄ are adjacent in Γ. If Γ contains three

vertices p, µ(p) and q such that q is adjacent to both p and µ(p), then we join p̄

and q̄ in Γ by a double edge with an arrow pointing towards p̄. (It is possible for

this procedure to result in a double edge with two arrows in opposite directions.)

We will say that A (respectively, Γ) folds to A (respectively, Γ) via µ.

Proposition 6.1. Let E = (E,≤, ε) be a full (labelled) heap over the Dynkin

diagram Γ of A, where A is a simply laced generalized Cartan matrix of untwisted

affine type. Suppose that µ folds A and Γ to A and Γ, and also that whenever we

have vertices p, q of Γ satisfying (a) µ(p) C q, (b) α ∈ ε−1(p) and (c) β ∈ ε−1(q),

then α and β are comparable in E. Then E = (E,≤, f ◦ ε) is a full (labelled) heap

over Γ.

Proof. We first show that E is a heap, i.e., that Definition 1.1 holds.

For part 1 of the definition, it is enough to show that if α, β ∈ E, then α, β

are comparable if f ◦ ε(α) = f ◦ ε(β). There are four cases to consider: either

ε(α) = ε(β), or ε(α) = µ(ε(β)), or ε(α) is adjacent to ε(β), or ε(α) is adjacent

to µ(ε(β)). In each case, α and β are guaranteed to be comparable either by the

definition of a heap, or by the hypotheses on µ in the statement.

For part 2, suppose that α, β ∈ E, α ≤ β and ε(α) C ε(β). It is immediate that

f(ε(α)) C f(ε(β)), from which the assertion follows.

We next show that E is fibred. Part (a) of Definition 1.6 comes from the fact

that (f ◦ ε)−1(p̄) ⊆ ε−1(p). For (b), assume that p′ and q′ are adjacent vertices of

Γ and that α ∈ E satisfies f(ε(α)) = p′. The properties of graph automorphisms
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guarantee the existence of a vertex q of Γ adjacent to p = ε(α) with f(q) = q′. Since

E is fibred, there exists β ∈ E such that α covers β or β covers α, with ε(β) = q.

This vertex satisfies f(ε(β)) = q′, as required.

Finally, we show that E is full. Let α, β ∈ E (where α < β) be such that

f ◦ ε(α) = f ◦ ε(β) = p̄ and (α, β) ∩ (f ◦ ε)−1(p̄) = ∅.
Suppose first that ε(α) = ε(β) = p, say. In this case, the interval (α, β) in E

contains precisely two elements, γ, γ′, with labels adjacent to p. This shows that

the elements γ and γ′, considered as elements of E, are the only two elements of

(α, β) with labels adjacent to p̄. It remains to show that the Dynkin diagram Γ

does not contain an arrow from f ◦ ε(γ) or f ◦ ε(γ′) to p̄; we deal with the former

case, the other being similar. Now either β covers γ, or γ covers α (or possibly

both); we prove the former, and the latter follows by a dual argument. If such an

arrow exists, there must exist β′ with ε(β′) = µ(ε(β)) and either β′ covers γ or γ

covers β. If β′ covers γ, this implies that β and β′ are comparable, contrary to the

hypothesis on µ. On the other hand, if γ covers β′ then by hypothesis, β′ and α

are comparable, which forces α < β′ < β. This in turn implies that

β′ ∈ (α, β) ∩ (f ◦ ε−1)(p̄),

a contradiction.

The other case to consider is that ε(α) ̸= ε(β), which implies that µ(ε(α)) = ε(β).

If α = E(p, t) in the numbering of Remark 1.7, define α′ = E(p, t + 1) > α. By

the hypothesis on µ, α′ and β are comparable, which (by the hypotheses on α and

β) means that α < β < α′ and that (β, α′) is nonempty. Since the interval (α, α′)

in E contains precisely two elements, γ and γ′, with labels adjacent to ε(α), and

neither label is ε(β), we may assume without loss of generality that γ ∈ (α, β) and

γ′ ∈ (β, α′). This means that the interval (α, β) in E contains precisely one vertex,

γ, with label adjacent to p̄. It remains to check that there is an arrow in the Dynkin

diagram from f ◦ ε(γ) to p̄, and this follows from that fact that β covers γ and γ

covers α. �

Remark 6.2. The words “labelled” may be dropped from the statement of Proposi-

tion 6.1 using a familiar argument. In the situation of the proposition, we will say

that E folds to E.

All the examples we know of full heaps over non simply laced Dynkin diagrams

for affine Kac–Moody algebras are obtained from the simply laced Dynkin diagrams

by the folding procedure just described. (See the Appendix for details.)
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Definition 6.3. Suppose that E = (E,≤, ε) is a full heap over the Dynkin diagram

Γ of A, where A is a simply laced generalized Cartan matrix of untwisted affine

type, and that µ is a diagram automorphism of Γ that folds the triple (A,Γ, E)

to (A,Γ, E). An orientation of Γ is said to be compatible with µ if sgn(p, p′) =

sgn(µ(p), µ(p′)). If L is a finite subheap of E, and Γ has an orientation compatible

with µ, then we define L to be the subheap of E corresponding to L, and we define

sgn(L) = sgn(L), where parity is taken with respect to this compatible orientation.

(Every finite subheap of E arises in this way.)

The operators Xα and Yα in the non simply laced case are now defined in the

same way as in Definition 4.5. (The arrows induced by the orientation have nothing

to do with the arrows used in the definition of the Dynkin diagram.)

Example 6.4. Let Γ be the Dynkin diagram of type A
(1)
5 , and let E be the full

heap over Γ shown in Figure 4 of the Appendix. Let E be the corresponding heap

over the Dynkin diagram Γ of type C
(1)
3 shown in Figure 6. Suppose the Dynkin

diagrams are oriented as in Figure 1, and let F be a convex subheap of E with

character α2 +α3 +α4 +α5 (all such subheaps are isomorphic). Then the subheap

F of E corresponding to F has character α1 +2α2 +α3. (See Figure 2.) There are

two pairs (α, β) of elements in F such that α > β and either sgn(ε(α), ε(β)) = −1
or ε(α) = ε(β). These are the pairs (α, β) and (γ, β), where ε(α) = 5, ε(β) = 4

and ε(γ) = 3. We thus have sgn(F ) = (−1)2 = 1, and we have sgn(F ) = sgn(F )

by definition.

 2 1

 0

 4  5  0  1  2  3 3

Figure 1. Compatible orientations for the Dynkin diagrams of

types A
(1)
5 and C

(1)
3 in Example 6.4
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 2 

 2 

3

1

Figure 2. The heaps F and F of Example 6.4

It is immediate from the definitions that if E folds to E via µ and L ∈ Lα is

a root heap in E, then we have L ∈ Lf(α). The following result shows that the

converse is also true, so that we may pass easily between the root heaps of E and

those of E.

Proposition 6.5. Let E be a full heap over a simply laced Dynkin diagram Γ of

untwisted affine type, A, let A0 be the corresponding finite type generalized Cartan

matrix with Kac–Moody algebra g0, and let α =
∑
λiαi be a positive real root

associated to g0. Suppose that the map f sends the roots of g0 to the roots of

another Kac–Moody algebra g0 of finite type, identifying simple roots with simple

roots, and that E folds to E via µ. Let f(α) be the root of the simple Lie algebra

g0 corresponding to α, and assume that the field k does not have characteristic 2.

(i)The root f(α) is representable in E, and for any root heap L ∈ Lf(α), we have

L ∈ Lα ∪ Lµ(α).

(ii)The operator Xα is nonzero, lies in the Lie algebra generated by the operators

Xp on VE, and (in the case k = C) is equal to the element Eα in the notation of

[12, (7.9.3)].

(iii)The operator Yα is nonzero, lies in the Lie algebra generated by the operators

Yp on VE, and (in the case k = C) is equal to the element −E−α in the notation

of [12, (7.9.3)].

Proof. As in Proposition 5.4, we prove the statements by simultaneous induction

on ht(f(α)), calculated with respect to the basis of simple roots f(αi). The case

where α is simple follows from the definitions.

Suppose now that f(α) ̸= f(αi) for any simple root αi. It follows from the

definitions that the set Lf(α) is nonempty: we may choose L1 ∈ Lα by Proposition

5.4 (i), and then L1 ∈ Lf(α).

Now let L ∈ Lf(α) be arbitrary. Since E is full by Proposition 6.1, we may apply

Lemma 5.2 to find a simple root f(αi) such that ⟨f(α), f(αi)⟩ > 0; we may then

apply Lemma 5.3 to E. Let I be a proper ideal of E with L ≻ I; this exists by

Lemma 2.1 (vii).
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Suppose that we are in case (i) of Lemma 5.3, so that L has a maximal vertex β

and a minimal vertex β′ with f ◦ ε(β) = f ◦ ε(β′) = i. Since we are in case (i), we

have

si(f(α)) = f(α)− 2f(αi) = f(α)− αi − µ(αi) = f(α′),

for some root α′. This means that L\{β, β′} ∈ Lf(α′), which by the inductive

hypothesis shows that L\{β, β′} ∈ Lα′ . We cannot have ε(β) = ε(β′), as this would

contradict Lemma 3.3, Lemma 3.6 and Proposition 5.4 (iii) applied to L\{β, β′}.
It must therefore be the case that p = ε(β) = µ(ε(β′)) = q, where µ(ε(β)) and ε(β)

are distinct. Now consider the element of VE given by

[Xp, [Xq, Xα′ ]].vI .

The bracketed expression expands to

Xp ◦Xq ◦Xα′ −Xp ◦Xα′ ◦Xq −Xq ◦Xα′ ◦Xp +Xα′ ◦Xq ◦Xp.

Since µ is compatible with E, any elements of E with labels p and q are comparable,

but since p and q are not adjacent, we have Xp ◦Xq = Xq ◦Xp = 0. Since L has

no minimal element labelled p, we must have Xp.vI = 0. It follows that

[Xp, [Xq, Xα′ ]].vI = −Xp ◦Xα′ ◦Xq.vI ,

which is a nonzero multiple of vI∪L. By Proposition 5.4 (ii) and the properties

of the Chevalley bases given in [12, (7.8.5)], we see that [Ep, [Eq, Eα′ ]] must be a

nonzero multiple of Eα′+αi+µ(αi), so that in particular α′+αi+µ(αi) is a root and

L ∈ Lα, proving (i). (A similar argument shows that α′ + αi and α′ + µ(αi) are

both roots.) To prove (ii), we note that f(αi) is a short root; furthermore, because

α′ +αi and α
′ +µ(αi) are roots, µ(α′) +αi must also be a root. By [12, (7.9.6)], if

γ and γ′ are short roots whose sum is a root, then γ+µ(γ′) is not a root. It follows

that α′ must be a long root, which by the choice of orientation on Γ means that

sgn(αi, α
′ + µ(αi)) = sgn(µ(αi), α

′ + αi).

Applying Lemma 4.6 now shows that sgn(L) = −sgn(L\{β, β′}). As operators on

VE , we have

[Xp̄, [Xp̄, Xf(α′)]].vI = −2Xp̄ ◦Xf(α′) ◦Xp̄.vI

= 2Xf(α).vI ,

where we have used the fact that Xp̄ ◦Xp̄ is zero. Since every element of Lf(α) has

a maximal and a minimal element labelled p̄, we see that

[Xp̄, [Xp̄, Xf(α′)]] = 2Xf(α).
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A similar calculation using the Chevalley basis [12, (7.9.3)] shows that

[Ep̄, [Ep̄, Ef(α′)]] = 2sgn(αi, α
′)sgn(µ(αi), α

′ + αi)Ef(α) = 2Ef(α),

thus proving (ii).

The other possibility is that we are in case (ii) of Lemma 5.3, so that

si(f(α)) = f(α)− f(αi) = f(α′).

We will deal with the subcase where L has a minimal vertex β labelled p̄, but no

such maximal vertex. Let us assume that ε(β) = p. A similar, but easier, argument

establishes that L\{β} ∈ Lf(α′) and L\{β} ∈ Lα′ . If L has a maximal vertex

labelled p̄ but no such minimal vertex, a similar argument holds. Operating on VE ,

we then find (by acting both sides on a suitable vI) that

[Xp, Xα′ ] = sgn(αp, α
′)Xα

by Lemma 4.6, Proposition 5.4 (ii) and [12, (7.8.5)], from which (i) follows. Anal-

ogous calculations on VE then show that

[Xp̄, Xf(α′)] = sgn(αp, α
′)Xf(α),

proving (ii).

The proof of (iii) follows by symmetric arguments. In the first case above, this

results in the identities

[Yp̄, [Yp̄, Yf(α′)]] = 2Yf(α)

and

[Ep̄, [Ep̄, Ef(α′)]] = 2Ef(α).

In the other case, we obtain

[Yp̄, Yf(α′)] = sgn(α′, αp)Yf(α) = −sgn(αp, α
′)Yf(α).

�

Definition 6.6. Let A be a generalized Cartan matrix of untwisted affine type

with Dynkin diagram Γ. If either

(i) A is simply laced and E is any full heap over Γ, or

(ii) A is not simply laced and occurs as a matrix A arising from a folded heap

E = E′ as in Proposition 6.1

then we call E a simply folded full heap over Γ.

When restricted to the simply laced case, the following theorem is similar to the

unproven [22, Theorem 4.1].
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Theorem 6.7. Let E be a simply folded full heap over the Dynkin diagram Γ of

the generalized Cartan matrix A of an untwisted affine Kac–Moody algebra.

Let A0 be the corresponding finite type generalized Cartan matrix with Kac–

Moody algebra g0 and set of positive roots ∆+. Then the set of operators

{Xα : α ∈ ∆+} ∪ {Yα : α ∈ ∆+} ∪ {Hp : p is a vertex of Γ}

on VE over the field k = C is linearly independent and its span is isomorphic to

the (simple) Lie algebra g0; in particular, the isomorphism type depends only on g0

(rather than E).

Proof. From [12, §7.8], we know that, over k = C, the algebra g0 has a basis given

by

{Eα : α ∈ ∆} ∪ {E−α : α ∈ ∆} ∪ {α∨
p : p is a vertex of Γ}.

The conclusion now follows from Theorem 3.1, Proposition 5.4 (ii) and (iv) (in

the simply laced case) and Proposition 6.5 (ii) and (iii) (in the non simply laced

case). �

This theorem can be used to construct all finite dimensional simple Lie algebras

over C except those of types E8, F4 and G2. As we explain in §9, for the simple

Lie algebras other than these three, it is possible to perform the construction using

a finite dimensional subspace of VE , and this leads to combinatorial constructions

of the spin modules in types B and D without using Clifford algebras. (The type

D construction has already been described without proof by Wildberger [22].)

7. Loop Algebras And Periodic Heaps

Having concentrated on the case of Kac–Moody algebras of finite type, we now

turn our attention to the corresponding affine algebras. For this purpose, it is

convenient to introduce the notion of a periodic heap.

Definition 7.1. Let (E,≤, ε) be a locally finite labelled heap over a graph Γ. We

call the labelled heap (E,≤, ε), and the associated heap [E,≤, ε] periodic if there

exists a nonidentity automorphism ϕ : E → E of labelled posets such that ϕ(x) ≥ x
for all x ∈ E.

Remark 7.2.

(i) It is immediate that any periodic heap is necessarily infinite.

(ii) The automorphism ϕ above restricts to an automorphism of the chains ε−1(p)

for p a vertex of Γ. By Remark 1.7, this automorphism must be of the form

ϕ(E(p, x)) = E(p, x + tp) for some nonnegative integer tp depending on p but



166 R.M. GREEN

not on the labelling chosen for E, and furthermore, the automorphism ϕ can be

reconstructed from the integers tp. If α ∈ R+ is such that α(p) = tp, we will say

that ϕ is periodic with period α. If there is no automorphism ϕ′ of E with period

α′ such that α = nα′ with n > 1, then we also say that E is periodic with period

α.

Example 7.3. In the notation of Example 2.4, the heap E is periodic with period

χ(F ).

Lemma 7.4. Let E be a full heap over the Dynkin diagram Γ of A, where A is a

simply laced generalized Cartan matrix of untwisted affine type (see the Appendix

for examples, or [4, Appendix], [12, §4.8], for a complete list). Let A0 be the

generalized Cartan matrix of finite type obtained by omitting the row and column

of A corresponding to the root α0. Let δ be the smallest positive imaginary root

associated to A.

(i) The root δ is representable in E.

(ii) The heap E is periodic with period δ.

(iii) Every positive root is representable in E.

Proof. From [12, Theorem 5.6 (b)], we see that δ = θ+ α0, where θ is the highest

root of α. By [12, Theorem 4.8 (c)], ⟨δ, α∨
p ⟩ = 0 for all vertices p, and since

⟨α0, α
∨
0 ⟩ = 2, we have ⟨θ, α∨

0 ⟩ = −2. Let Lθ ∈ Lθ; this exists by Proposition 5.4 (i).

By Proposition 5.4 (iii), we have [H0, Xθ] = −2Xθ, which means that there exist

vertices β, β′ of E\Lθ, both labelled 0, such that L+ = Lθ∪{β}∪{β′} lies in Lδ+α0

and such that β (respectively, β′) is a maximal (respectively, minimal) element of

L+. By removing either β or β′ from L, we obtain an element of Lδ, thus proving

(i).

For (ii), let L0 ∈ Lδ, which is a nonempty set by (i). By [12, Theorem 4.8 (c)],

we see that L0 contains at least one element with each possible label from Γ. Let

α be a maximal element of L0, and let p = ε(α). Since ⟨δ, α∨
p ⟩ = 0, we see from

Lemma 5.3 (iii) that we can convert L0 into an element L′ of Lδ (with L′ ̸= L0) by

removing α and replacing it by a new minimal vertex with label i. By repeating

this procedure once for each element of the original heap L0, we obtain a heap

L1 ∈ Lδ such that L0
∼= L1 as heaps, L0 ∩L1 = ∅ and L0 ∪L1 = L1 ◦L0 is convex.

By applying the above construction again to L1, we obtain a sequence {Li}i≥0 of

disjoint isomorphic heaps Li ∈ Lδ such that Li ∪ Li+1 is convex. Since L contains

at least one element with each label, any element α with α ≤ β for some β ∈ L lies

in one of the heaps Li for i ≥ 0.
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By a dual argument, we can also find a sequence {Li}i≤0 with analogous prop-

erties, such that any element α with α ≥ β for some β ∈ L lies in some Li for i ≤ 0.

Since L0 contains an element with each possible label, the heaps Lk for k ∈ Z
partition the set E. It follows that there is a nonidentity automorphism ϕ : E → E

of labelled posets sending Lk to Lk−1 for any k ∈ Z. This construction shows that

ϕ has period δ. Since δ ̸= nδ′ for any n > 1 with δ′ ∈ R+ (see [12, Theorem 4.8

(c)]), we see that E also has period δ, completing the proof of (ii).

We next prove that if γ is a root of A0, then δ−γ is representable. By Proposition

5.4 (i), there exists L ∈ Lγ . By Lemma 2.1 (vii), there is a proper ideal I with

L ≺ I, and by periodicity, there exists L′ ∈ Lδ with ϕ−1(I) = I\L′. In this case, L

is a filter of L′ and L′\L ∈ Lδ−γ , as required.

Part (iii) follows from this and the fact (see [12, §7.4]) that the roots of A are

precisely the elements of R+ of the form γ + jδ, where j ∈ Z and γ is a root of A0.

(The root is positive if either γ > 0 and j ≥ 0, or γ < 0 and j ≥ 1.) �

Lemma 7.5. Let E,Γ, A, µ, f,A,Γ and E be as in Proposition 6.1, and assume in

addition that A is a generalized Cartan matrix of untwisted affine type. Let δ and

δ̄ be the smallest positive imaginary roots associated to A and A, respectively, and

suppose that we have f(δ) = δ̄.

(i)The heap E is periodic with period δ̄.

(ii)Every positive root is representable in E.

Proof. Let A0 (respectively, A0) be the generalized Cartan matrix of finite type

obtained by removing the zeroth row and column of A (respectively, A).

Since A is of untwisted affine type, it follows by [12, §7.4] that each positive root

of A is of the form nδ̄+ γ, where γ is a root for A0. By construction of A, we have

γ = f(γ′) for some root γ′ of A0, and since we have f(δ) = δ̄ by hypothesis, it

follows that f(nδ + γ′) = nδ̄ + γ; note that nδ + γ′ is positive because f respects

positive and negative roots. Since nδ+ γ′ is representable in E by Lemma 7.4 (iii),

part (ii) follows by folding.

Since E is periodic with period δ, it follows that E is periodic with period δ′,

where f(δ) = δ̄ = kδ′ for some positive integer k. Writing δ̄ =
∑
aiᾱi, we have

by [12, Theorem 4.8 (c)], that the ai are relatively prime integers, so we must have

k = 1 and δ′ = δ̄, as required. �

Definition 7.6. The automorphism ϕ of Lemma 7.4 (ii) and Lemma 7.5 (i) induces

a permutation (also denoted ϕ) of the proper ideals of E. We define an invertible

linear map T : VE → VE by T = Xδ; note that T−1 = Yδ.
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If α0 is the simple root of A such that δ = θ + α0, then we define the height,

h(I) of a proper ideal I of E to be the maximum integer t such that E(0, t) ∈ I.
We define the linear map D : VE → VE by D(vI) = h(I)vI .

Definition 7.7. ([12, §7]) Let g0 be a Kac–Moody algebra of finite type over k = C.
Then the loop algebra L(g0) of g0 is defined to be the k-vector space k[t, t−1]⊗k g0

with Lie bracket defined by [P ⊗ x,Q⊗ y] := PQ⊗ [x, y].

As explained in [12, §7], a fundamental property of the untwisted affine Kac–

Moody algebras over k = C is that they can be constructed from loop algebras by

adding both a one-dimensional centre CK (using a universal central extension) and

an additional derivation d. More precisely, we have

Theorem 7.8. (see [12, §7]) Let A be a generalized Cartan matrix of untwisted

affine type Let A0 be the corresponding generalized Cartan matrix of finite type,

with Lie algebra g0 over k = C and highest root θ. Then the Kac–Moody algebra g

associated to A is the vector space

L(g0)⊕ CK ⊕ Cd

equipped with the Lie bracket

[(tm ⊗ x) + λK + µd, (tn ⊗ y) + λ1K + µ1d] =(tm+n ⊗ [x, y]) + µn(tn ⊗ y)

− µ1m(tm ⊗ x) +mδm,−n(x|y)K,

for x, y ∈ g0, λ, µ, λ1, µ1 ∈ C,m, n ∈ Z. (See [12, §2.2], for the definition of (x|y) ∈
C.) Given ϵ = ±1, the isomorphism may be chosen to identify the subalgebra g0

with the subset 1⊗g0 of L(g0), and to send the Chevalley generators e0 and f0 of g

to ϵt⊗Eθ and ϵt−1⊗−E−θ respectively, where the Eα are as given in [12, (7.8.5)].

Proof. The complete argument may be found in [12, §7]. The assertion about the

±E±θ follows from the fact ([12, Remark 7.9 (c)]) that ϵEθ and ϵE−θ are exchanged

by the Chevalley involution of g0, and that

[−ϵE−θ, ϵEθ] = −θ∨

(see [12, (7.8.5), (7.9.3)]). �

Lemma 7.9. Let A be a generalized Cartan matrix of untwisted affine type with

Dynkin diagram Γ, and let E be a simply folded full heap over Γ. Let A0 be the

generalized Cartan matrix of finite type obtained by omitting the row and column of

A corresponding to the root α0, and let g0 be the Lie algebra of A0, identified with

the Lie algebra of operators gE on VE by Theorem 6.7.
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(i) The map T : VE → VE commutes with the operators XL, YL and HL.

(ii) The loop algebra L(gE) over C acts faithfully on VE via (tj⊗P )(vI) = T j◦P (vI).
(iii) We have [D,T j ◦ P ] = jT j ◦ P in the Lie algebra of operators L(gE)⊕ kD.

Proof. For part (i), we see that T and T−1 commute with HL by the fact that E

is periodic of period δ (Lemma 7.4 (ii) and Lemma 7.5 (i)). Again, by periodicity,

we have XL.vI ̸= 0 if and only if T ◦XL.vI ̸= 0 if and only if XL ◦ T.vI ̸= 0. By

Lemma 4.6, we see that

T ◦XL = sgn(δ, θ)Xδ+α

and

XL ◦ T = sgn(θ, δ)Xδ+α.

By [12, (6.2.4), (7.8.3)], we have sgn(δ, θ) = sgn(θ, δ), and it follows that T (and

therefore T−1) commutes with the XL. A similar argument shows that

T−1 ◦ YL = YL ◦ T−1 = sgn(δ, θ)Yδ+α,

establishing the claim for the YL.

To prove (ii), we note that P (vI) is a linear combination of basis elements vJ

with h(J) = h(I) (where h is as in Definition 7.6), but that T j(vI) = ±vϕj(I),

where h(ϕj(I)) = h(I) + j, because α0 occurs in δ with coefficient 1. (The latter

follows from [4, Proposition 17.2 (ii)].) Since g0 is simple and its action on VE is

nontrivial, g0 acts faithfully on VE . Part (ii) now follows from the fact that T has

infinite order.

Part (iii) follows from the observations that D ◦ T j(vI) = (h(I) + j)T j(vI) and

T j ◦D(vI) = h(I)T j(vI). �

We can now state the main result of this section.

Theorem 7.10. Let A be a generalized Cartan matrix of untwisted affine type with

Dynkin diagram Γ, and let g be the corresponding Kac–Moody algebra. Let E be a

simply folded full heap over Γ. Let v be the Lie algebra of linear operators on VE

over k = C. Then there is a homomorphism of Lie algebras ψ : g→ v sending the

Chevalley generators ei, fi (for 0 ≤ i ≤ n) to the generators Xi, Yi respectively, and

sending the derivation d to the operator D. The kernel of ψ is precisely CK.

Proof. Comparing the explicit formula of Theorem 7.8 (with K acting as zero)

with the Lie algebra L(gE) ⊕ CD of Lemma 7.9, and identifying g0 with gE as in

Theorem 6.7, we obtain a homomorphism from g to L(gE)⊕CD with the required

kernel, sending the generators ei, fi (for 0 < i ≤ n) to Xi and Yi respectively.
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To complete the proof, it is enough to show that we have

X0 = ψ(ϵT−1 ◦ −E−θ),

Y0 = ψ(ϵT ◦ Eθ),

for some fixed ϵ = ±1. By Theorem 6.7 and Proposition 5.4, we know that ψ(Eθ) =

Xθ and ψ(−E−θ) = Yθ. By Lemmas 7.4 and 7.5, E is periodic with period δ, and

the fact that δ = θ+α0 then implies that we have Yθ.vI ̸= 0 if and only if X0.vI ̸= 0

if and only if T ◦ Yθ.vI ̸= 0. Now suppose that Yθ.vI ̸= 0, define L ∈ Lδ to be such

that ϕ−1(I)∪L = I, and define Lθ ∈ Lθ to be such that I = I ′∪Lθ with Yθ.vI = vI′ .

This means that L = Lθ ∪{α}, where α is a minimal element of L with label 0. By

Lemma 4.4, we find that

sgn(L) = sgn({α})sgn(Lθ)sgn(θ, α) = sgn(Lθ)sgn(θ, α).

The assertion for X0 then follows by defining ϵ = sgn(θ, α). The assertion for Y0

is proved similarly, using ϵ′ = sgn(α, θ). By [12, (6.2.4), (7.8.1), (7.8.3)], it follows

that ϵ = ϵ′, as required. �

8. Quantum Affine Algebras, Crystals, And The Weyl Group Action

Let A be an (l+1)×(l+1) generalized Cartan matrix of affine type corresponding

to an untwisted Kac–Moody algebra g over k = C. We assume that A is indexed

in such a way that the removal of the zeroth row and column of A results in the

generalized Cartan matrix for the corresponding Kac–Moody algebra of finite type.

The sets Π and Π∨ were defined in §3 for the set I = {0, 1, . . . , l}. We now extend

I by redefining it as {0, 1, . . . , l+1}, and we extend the sets Π and Π∨ accordingly.

The Z-bilinear form is then extended by setting

⟨α0, α
∨
l+1⟩ = 1,

⟨αi, α
∨
l+1⟩ = 0 if 1 ≤ i ≤ l,

⟨αl+1, α
∨
0 ⟩ = 1,

⟨αl+1, α
∨
i ⟩ = 0 if 1 ≤ i ≤ l,

⟨αl+1, α
∨
l+1⟩ = 0;

this corresponds to the action of H∗ on H described in [4, §17.1].
There are several slight variants in the literature of the definition of a quantized

affine algebra; ours is based on the one in [2]. Let q be an indeterminate. For
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nonnegative integers n ≥ r, define

[n] =
qn − q−n

q − q−1
,

[n]! =

n∏
i=1

[i],(
n

r

)
=

[n]!

[r]![n− r]!
.

Since we are in the untwisted case, [4, Proposition 17.2 (ii)] shows that, in the

notation of [2, §2.2], we have d = 1. By [4, Proposition 17.9 (a, b)] the symbol qi

in [2, §2.2] is equal to q if αi is a short root, and to q2 if αi is a long root.

Definition 8.1. Define the quantum affine algebra U to be the associative algebra

with 1 over Q(q) generated by elements Ei, Fi (i ∈ I), qh (for h ∈ ZΠ∨), with

defining relations

q0 = 1,

qhqh
′
= qh+h′

,

qhEiq
−h = q⟨αi,h⟩Ei,

qhFiq
−h = q−⟨αi,h⟩Fi,

EiFj − FjEi = δij
ti − t−1

i

qi − q−1
i

,

b∑
p=0

(−1)pE(p)
i EjE

(b−p)
i =

b∑
p=0

(−1)pF (p)
i FjF

(b−p)
i = 0 for i ̸= j,

where qi is as above, ti = qhi , b = 1− ⟨αj , α
∨
i ⟩, E

(p)
i = Ep

i /[p]!, and F
(p)
i = F p

i /[p]!.

The weight lattice P of U is the Z-module HomZ(ZΠ∨,Z). Since P and ZΠ∨ are

free Z-modules of the same finite rank, they are in natural duality.

A U -module M is called integrable if

(a) all Ei, Fi (i ∈ I) act locally nilpotently; that is, for each v ∈ M we have

EN
i .v = FN

i .v = 0 for sufficiently large N , and

(b) M admits a weight space decomposition:

M =
⊕
λ∈P

Mλ,where Mλ = {u ∈M : qhu = q⟨λ,h⟩u for all h ∈ ZΠ∨}.

Let A0 be the subring of Q(q) consisting of the rational functions of q that are

regular at q = 0.

Let M be an integrable U module. Kashiwara [13] showed that we have
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M =
⊕
λ

F
(n)
i (kerEi ∩Mλ),

and defined operators ẽi, f̃i : M → M for each 0 ≤ i ≤ l (often called Kashiwara

operators) by

f̃i(F
(n)
i u) = F

(n+1)
i u and ẽi(F

(n)
i u) = F

(n−1)
i u,

where u ∈ kerEi ∩Mλ. (We interpret F
(−1)
i u = 0 above.) Any element of M is

uniquely expressible as a sum of such elements F
(n)
i u.

Definition 8.2. LetM be an integrable U -module. A pair (L,B) is called a crystal

basis of M if it satisfies:

(i) L is a free A0-submodule of M such that M ∼= Q(q)⊗A0 L,
(ii) L =

⊕
λ∈P Lλ where Lλ = L ∩Mλ for λ ∈ P ,

(iii) B is a Q-basis of L/qL ∼= Q⊗A0 L,
(iv) ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I,
(v) if we denote operators on L/qL induced by ẽi, f̃i by the same symbols, we have

ẽiB ⊂ B ⊔ {0}, f̃iB ⊂ B ⊔ {0},
(vi) for any b, b′ ∈ B and i ∈ I, we have b′ = f̃ib if and only if b = ẽib

′.

The following result is a q-analogue of Theorem 7.10 (but without the assertion

about the kernel).

Theorem 8.3. Let A be generalized (l + 1) × (l + 1) Cartan matrix of untwisted

affine type and let g be the corresponding Kac–Moody algebra. Let E be a simply

folded full heap over Γ.

(i) Over the field k = Q(q), VE has the structure of a (left) U -module such that Ei

and Fi act as Xi and Yi, and such that for all h ∈ ZΠ∨ we have qh.vI = qλvI ,

where λ ∈ Z is such that h.vI = λvI . Here, we identify α∨
i with Hi for 0 ≤ i ≤ l,

and with the operator D for i = l + 1.

(ii) The U -module VE is integrable and has a crystal basis (L,B), where

B = {vI : I is a proper ideal of E}

and L is the free A0-module with B as a basis.

Proof. Apart from the relations involving qα
∨
l+1 andD, part (i) follows by imitating

the proof of Theorem 3.1, substituting exponentials where necessary. It follows from

the definitions that [D,Xi] = δ0iXi, and that [D,Yi] = −δ0iYi. The remaining

assertions of (i) now follow from the definition of ⟨αi, α
∨
l+1⟩.
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The action of Ei and Fi on VE is locally nilpotent by Lemma 2.7 (7). Since

Hi(vI) and D(vI) are integer multiples of vI , it follows that for h ∈ ZΠ∨, we have

qh.vI = qλ(h)vI

for some λ ∈ P depending on I but not h. This shows that each vI is a weight

vector. Parts (i), (ii) and (iii) of Definition 8.2 now follow from the definition of L.
Now fix generators Ei and Fi, and a basis element vI . Since E

2
i acts as zero, and

the action of Ei and Fi takes basis elements either to other basis elements, or to zero,

we see that either vI lies in kerEi, or that vI = Fi.vI′ for some vI′ ∈ kerEi. Using

the definition of raising and lowering operators, we now find that the Kashiwara

operators f̃i and ẽi are simply given by the actions of Fi and Ei respectively. Parts

(iv), (v) and (vi) of Definition 8.2 now follow. �

Remark 8.4. Notice that the distributive lattice structure induced by Corollary

2.2 is compatible with the partial order induced on the basis by the Kashiwara

operators. It would be interesting to know whether this phenomenon is typical.

Much of the literature about crystals deals with the case of crystals with extremal

weight vectors, but the crystals mentioned in the theorem do not have this property.

Another possible approach to these crystals would be to bypass the quantum affine

algebra and use Kashiwara’s notion of abstract crystals, which are crystals equipped

with formal weight functions, satisfying certain axioms. We do not pursue this here

for reasons of space.

Proposition 8.5. Maintain the assumptions of Theorem 8.3, and assume that Γ

has finitely many vertices. Then the U -module VE is cyclic and is generated by any

one basis element vI .

Proof. Let vI and vJ be basis elements. It is enough to exhibit an element u ∈ U
such that u.vI = vJ . Let K = I ∩ J . Since K ⊆ I, I\K is finite by Lemma 2.1

(vi), so it follows that there is a finite sequence j1, . . . , jl such that

Fj1Fj2 · · ·Fjl .vI = vK .

A similar argument shows that there is a finite sequence i1, . . . , ik such that

Ei1Ei2 · · ·Eik .vK = vJ .

Concatenating these sequences produces the required element u. �

In [14], Kashiwara introduces the notion of a “normal crystal” (now often referred

to as a “regular crystal”; see [2, §2.8]). Such crystals naturally carry an action of

the associated Weyl group. In this section, we show that the crystals of Theorem
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8.3 also have this property, and that furthermore, the action factors through a

Temperley–Lieb type quotient. This brings to light some representation theoretic

obstructions to finding full heaps for certain Kac–Moody algebras.

Definition 8.6. Let A be a generalized Cartan matrix with Dynkin diagram Γ,

and let E be a simply folded full heap over Γ. For each i ∈ I, we define a linear

operator Si on VE by requiring that

Si(vI) =


Fi(vI) if Fi(vI) ̸= 0,

Ei(vI) if Ei(vI) ̸= 0,

vI otherwise.

The definition of full heap guarantees that the cases in the above definition do

not overlap.

Proposition 8.7. Suppose that A, E and Γ satisfy the hypotheses of Definition

8.6, and let W =W (Γ) be the Weyl group of Γ.

(i) The assignment si 7→ −Si defines a unique (left) kW -module structure on VE.

(ii) If si, sj are a pair of noncommuting generators of W and the subgroup of W

they generate, Wij = ⟨si, sj⟩, is finite, then the element∑
w∈Wi

w

of kW annihilates VE.

(iii) The kW -module VE is cyclic, and any of the basis elements vI is a generator.

Proof. To prove (i), we need to check the defining relations of the Weyl group.

The relation s2i = 1 holds by Theorem 8.3 (ii) and Definition 8.2 (vi). If aij = 0, the

relation sisj = sjsi follows from the fact that each element of {Ei, Fi} commutes

with each element of {Ej , Fj}.
Now let si and sj be a pair of noncommuting generators, and let vI be a basis

element.

Let us first suppose that either Fi.vI ̸= 0 or Fj .vI ̸= 0. Since a heap cannot

have two maximal vertices with adjacent labels, these possibilities are mutually

exclusive, so without loss of generality, we may assume that Fi.vI ̸= 0. We may

now invoke Lemma 2.5 with p = i and q = j.

There are five subcases to consider. In case 1 (respectively, 2), we have sisjsi =

sjsisj and case (i) (respectively, (ii)) of Lemma 2.5 applies. In case 3, (respectively,

4, 5) we have sisjsisj = sjsisjsi and case (i) (respectively, (ii), (iii)) of Lemma 2.5

applies. In each case, the Weyl group relation is respected by the claimed module
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action, and we have
∑

w∈Wi
w.vI = 0. For example, in case 4, the identity and

SiSjSi both act as the identity; Si and SjSi both act as Fi; Sj , SiSjSiSj and

SjSiSjSi all act as Ej ; and SiSj and SjSiSj both act as EiEj .

Now let us suppose that Fi.vI = Fj .vI = 0. If we also have Ei.vI = Ej .vI = 0,

both Si and Sj acts as the identity on vI , and it is clear that the Weyl group

relation holds and that
∑

w∈Wi
w.vI = 0, so we may assume that this is not the

case. As before, the conditions Ei.vI ̸= 0 and Ej .vI ̸= 0 are mutually exclusive,

so we may assume that Ei.vI ̸= 0 without loss of generality. There must therefore

exist a minimal element α ∈ E\I with ε(α) = i.

In either case, we apply Lemma 2.5 to the ideal I ∪ {α}, with p = i and q = j.

There are two subcases to consider, according as sisjsi = sjsisj or sisjsisj =

sjsisjsi. In either case, part (ii) of the lemma must apply. For example, in the

former case, the identity and Sj both act as the identity; Si and SiSj both act as

Ei; and SjSi, SiSjSi and SjSiSj all act as EjEi. We conclude that the Weyl group

relation holds and that
∑

w∈Wi
w.vI = 0.

This completes the proofs of parts (i) and (ii). Part (iii) follows by the same

argument used to prove Proposition 8.5. �

Corollary 8.8. There are no full heaps over any Dynkin diagrams of finite type,

or over those of types F
(1)
4 , E

(1)
8 , or E

(2)
6 .

Proof. Let J be the ideal of ZW generated by the elements
∑

w∈Wi
w for each

subgroup Wi of W generated by a pair of noncommuting generators. The algebra

ZW/J is precisely the generalized Temperley–Lieb algebra TL(W ) of [6], with the

parameter q specialized to 1. (The sign twists in Proposition 8.7 (i) were inserted

for compatibility of the ideal J with [6].)

If the hypotheses of Proposition 8.7 hold, then we may set k = Q, and the

definition of full heap implies that VE is an infinite dimensional cyclic Q⊗ZTL(W )-

module. This means that TL(W ) and its q-analogue must have infinite rank. This

cannot happen if A is of finite type, because in this case W is well known to be a

finite group. If A is of type F
(1)
4 (respectively, E

(1)
8 , E

(2)
6 ) then the algebra TL(W )

is of type F5 (respectively, E9, F5) in the notation of [6], and is of finite rank by [6,

Theorem 7.1]. �

9. Applications And Questions

We now outline how the results of this paper can be used to simplify those

described by Wildberger [22] and generalize them to the non simply laced case.
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Let E be a simply folded heap over the Dynkin diagram Γ of an untwisted affine

Kac–Moody algebra, where Γ is labelled so that vertex p0 is the additional vertex

relative to the corresponding finite type algebra, g0, and where E is labelled as in

Remark 1.7. Let

E′ = {x ∈ E : x ≤ E(p0, 0)},

and let E0 be the subheap of E consisting of the vertices

E0 = {x ∈ E : x ̸≥ E(p0, 1)}\E′,

where we regard E′ and E0 as subheaps of E. It is straightforward to check that

the map J 7→ J ∪E′ defines an order-preserving bijection between the ideals of E0

and the proper ideals of E of height zero, so that the ideals of E0 are in natural

bijection with the orbits of proper ideals of E under the action of the automorphism

ϕ. This leads to an irreducible representation of the simple Lie algebra g0 over C,
where the highest and lowest weight vectors correspond to the ideals E0 and ∅ of
E0, respectively.

Wildberger’s approach is to work directly with the set of ideals of E0 (but only

in the simply laced case), using raising and lowering operators similar to those in

this paper. Our approach is simpler in that (a) we do not need to impose a partial

order on the set of convex subheaps and (b) the parity of a root heap, in the simply

laced case, can be easily computed intrinsically in terms of its isomorphism type,

whereas in [22] the parity of a root heap in Lα is computed by comparing it with

a canonical representative of Lα. The approach here gives us enough control over

the signs that we can make a precise link with the Chevalley bases in [12], for each

possible orientation of the diagram.

When we apply this technique to the simple Lie algebras of type B, we obtain a

combinatorial construction of the spin representation that does not involve Clifford

algebras, analogous to the constructions described by Wildberger [22, §5] for type
D. (The reader is referred to [4, §13.5] for the Clifford algebra construction.) In

these cases, the finite heap E0, whose size grows quadratically with the rank, may

be much smaller than the dimension of the spin module, which grows exponentially

with the rank. The number of ideals of E0 is a power of 2 in this case, which may

be shown by exhibiting a bijection between ideals of E0 and certain paths; we hope

to give details of this elsewhere. It would be interesting to see if the Clifford algebra

itself has an action by raising and lowering operators on the spaces VE0 and VE .

It may be conjectured that the aforementioned representation of the finite di-

mensional Lie algebra g0 will be a minuscule representation, and that there will be



FULL HEAPS AND REPRESENTATIONS OF AFFINE KAC–MOODY ALGEBRAS 177

a 1–1 correspondence between simply folded full heaps over untwisted affine Dynkin

diagrams and minuscule representations of simple Lie algebras over C. Such a result

would require a classification of full heaps over untwisted affine Dynkin diagrams.

When the Dynkin diagram contains no circuits, i.e., in types other than A, this is

relatively easy because the heaps are ranked as posets; the latter may be proved

by [8, Theorem 2.1.1 (iii)] and has an analogue for minuscule heaps [20, Corollary

3.4]. In type A
(1)
l , things are more complicated, but based on the results of [24], we

expect that there will be l isomorphism classes, most of which will not be ranked.

A good context to examine these might be the extended slant lattices of Hagiwara

[10, §8].
The crystal bases for minuscule modules for simple Lie algebras have been known

for some time; for example, they are implicit (in the form of canonical bases) in the

work of Lusztig [18, Theorem 19.3.5, Proposition 28.1.4]. Another construction of

these bases may be given by restricting the crystal basis B arising from a simply

folded full heap E to the finite dimensional module corresponding to the finite

subheap E0. An advantage of our approach is that one can describe the action of

a Chevalley basis on the canonical basis.

Full heaps also exist over certain infinite Dynkin diagrams, such as the diagrams

A∞, B∞ and D∞ of [12, §7.11]. In these cases, the heaps arising are reminiscent

of those needed to construct spin representations in the finite case. However, we

do not know any examples of full heaps over finite graphs that do not correspond

to affine Kac–Moody algebras.

In a future paper, we will show that VE has an interesting structure as a module

for the affine Weyl group. In many cases, this gives new, uniform constructions of

representations familiar from other contexts: for example, in types A
(1)
l and E

(1)
6

the module structure appears to agree with certain of the author’s cell modules for

tabular algebras (see [7, §6] and [9, §1.2]) after specializing the parameter to 1.
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APPENDIX: Examples Of Simply Folded Full Heaps

In the appendix, we give some examples of full heaps over Dynkin diagrams of

affine Kac–Moody algebras. All these heaps are periodic, and the dashed boxes

in the diagrams indicate the repeating motif. (Note that, for an untwisted affine

algebra, the number of elements in the dashed box is the Coxeter number of the

associated finite type algebra.)

Folding by each of the automorphisms µ shown below either leaves the period

of a heap E unchanged, or, in the case of a twisted affine algebra or type A
(1)
1 ,

the period is halved. In the latter case, the number of orbits of proper ideals of E

under the action of ϕ is also halved.

Recall that if (E,≤) is a partially ordered set, a function ρ : E → Z is said to

be a rank function for (E,≤) if whenever a, b ∈ E are such that a < b is a covering

relation, we have ρ(b) = ρ(a)+1. If a rank function for (E,≤) exists, we say (E,≤)
is ranked. The heaps shown in this section are all ranked.

Type A
(1)
l (l > 1), natural representation

The Dynkin diagram Γ of type A
(1)
l (for l > 1) is labelled as in Figure 8.

l − 1  l 3  l − 2 1

 0

 2

Figure 3. The Dynkin diagram of type A
(1)
l (l > 1)

The finite heap E0 corresponding to the full heap E shown in Figure 4 gives rise

to the natural representation of the simple Lie algebra of type Al (see [4, §8.1] for
more details). In Wildberger’s notation [22], we have E0 = F (Al, 1). It is clear

that the heap E has l + 1 orbits of proper ideals under ϕ.
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 l 

 l − 1

 l − 2

 0

 l 

 0

1

 2

Figure 4. A full heap, E, over the Dynkin diagram of type

A
(1)
l (l > 1)

The Dynkin diagram Γ has an automorphism µ given by sending vertex i to

vertex l + 1− i and fixing vertex 0. If l is odd, then µ also fixes (l + 1)/2, and we

obtain the Dynkin diagram Γ of type Cl′ , where l = 2l′ − 1.

 l − 2  l 2 1 0 l − 1

Figure 5. The Dynkin diagram of type C
(1)
l (l > 1)

The heap E folds to a heap E over Γ, via µ. The heap E has 2l orbits of proper

ideals.



180 R.M. GREEN

1

 0

1

 l − 1

 l 

 l − 1

 0

1

1

Figure 6. A full heap, E, over the Dynkin diagram of type

C
(1)
l (l > 1)

The Dynkin diagram of type A
(1)
1 is as shown in Figure 7.

 1 0

Figure 7. The Dynkin diagram of type A
(1)
1

If l = 3, so that the Dynkin diagram Γ of type A
(1)
l is a square, there is an

automorphism µ of Γ given by rotation by a half turn. In this case, the full heap

of Figure 4 folds to a full heap over the Dynkin diagram of type A
(1)
1 . (This causes

the period to halve, which is behaviour usually characteristic of the twisted affine

case.) The results of this paper may be checked by hand for this case.
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Type D
(1)
l , natural representation

The Dynkin diagram Γ of type D
(1)
l is labelled as in Figure 8.

 1

 2  l − 2

 l

 3

 0  l − 1  

 4

Figure 8. The Dynkin diagram of type D
(1)
l

The finite heap E0 corresponding to the full heap E shown in Figure 9 gives rise

to the natural representation of the simple Lie algebra of type Dl; see [4, §8.2] for
details of another construction of this representation. In Wildberger’s notation, we

have E0 = F (Dl, l − 1). The heap E has 2l orbits of proper ideals under ϕ.

 

 l − 3

 l − 3

 l − 2

 l − 2

 l  l − 1

1

 2

 2

 2

 3

 3

1

 0

 0

Figure 9. A full heap, E, over the Dynkin diagram of type D
(1)
l
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The Dynkin diagram Γ has an automorphism µ given by sending vertex i to

vertex l + 1 − i. If l is odd, then µ has a fixed point and we obtain the Dynkin

diagram Γ of type A
(2)
2l−1 from that of type D

(1)
2l−1; the former is shown in Figure

10. The orbit {i, 2l − i} in type D
(1)
2l−1 corresponds to the vertex i in type A

(2)
2l−1.

 0

 1

 2
 4  l − 2 l − 1  l 3

Figure 10. The Dynkin diagram of type A
(2)
2l−1

The heap E folds to a heap E over Γ, via µ, shown in Figure 11.

 

 l 

1

 2

 2

 2

 3

 3

1

 0

 0

 l − 1

 l − 2

 l − 2

 l − 1

Figure 11. A full heap, E, over the Dynkin diagram of type A
(2)
2l−1
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Type D
(1)
l , spin representations

We now consider full heaps E over the Dynkin diagram of type D
(1)
l (see Figure

8) corresponding to a spin representation of the simple Lie algebra of type Dl. The

heap E is ranked; we will call the subheap of E given by the elements of rank k the

“k-th layer” of E. The even numbered vertices in the set X = {2, 3, 4, . . . , l − 2}
occur in the k-th layer if and only if k is even, and the odd numbered vertices in X

occur in the k-th layer if and only if k is odd. If l is odd, then the k-th layer contains

precisely one other vertex, labelled l − 1, 0, l or 1 according as k = 0, 1, 2 or 3

mod 4. If l is even, then the (2k+ 1)-st layer contains precisely two other vertices,

whose labels are 0 and l − 1 if k is odd, and 1 and l if k is even. Figure 12 shows

examples of such heaps for l = 6 and l = 7. Another isomorphism class of heaps

may be obtained in each case by twisting by the graph automorphism exchanging

vertices l − 1 and l. The corresponding finite heaps E0 are F (Dl, 0) and F (Dl, 1)

in Wildberger’s notation. There are 2l−1 orbits of proper ideals of E under ϕ.

 3

 4

 4 2

 4

 3  5 0

 2

1  3

1

 2  2

 2

 2

 3

 3

 3

 4

 4

 4

 5

 5

 5

1

1

 0

 7

 6

 6

 6

 6

Figure 12. Full heaps over the Dynkin diagram of type D
(1)
l for

l = 6 and l = 7

There is an automorphism µ1 of the Dynkin diagram of D
(1)
l obtained by ex-

changing vertices l − 1 and l, and fixing each of the other vertices. The full heaps

over D
(1)
l discussed above fold via µ1 to a heap over the Dynkin diagram of type

B
(1)
l−1 (see Figure 13). The only difference this makes to the full heap is that the



184 R.M. GREEN

vertices formerly numbered l all have their labels changed to l − 1; this has the

effect of merging the two isomorphism classes.

 1

 2
 3  4  l − 1   l

 0

Figure 13. The Dynkin diagram of type B
(1)
l

There is an automorphism µ2 of the Dynkin diagram of D
(1)
l obtained by ex-

changing 0 with 1, exchanging l−1 with l, and fixing each of the other vertices. The

full heaps over D
(1)
l discussed above fold via µ2 to a single heap over the Dynkin

diagram of type D
(2)
l−1 (see Figure 14). In this case, heap elements formerly labelled

0 or 1 are relabelled by 0, heap elements formerly labelled l − 1 or l are relabelled

by l − 2, and other heap elements have their labels decreased by 1.

 l − 2  l 3 2 1 0 l − 1

Figure 14. The Dynkin diagram of type D
(2)
l+1

Type E
(1)
6

The Dynkin diagram Γ of type E
(1)
6 is labelled as in Figure 15.

 4

 0

 6

 5 3 2 1

Figure 15. The Dynkin diagram of type E
(1)
6

There are two full heaps over Γ: the one shown in Figure 16, and its dual, which

may be constructed by applying by twisting by a diagram automorphism corre-

sponding to an odd permutation to the branches of the Dynkin diagram emerging
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from vertex 3. The corresponding finite heaps are F (E6, 1) and F (E6, 5) in Wild-

berger’s notation. There are 27 orbits of proper ideals of E under ϕ.

 
1

1

 3

 3

 2  4

 5 3

 2  6

 3  0

 2  4

 2  6

 6 4

Figure 16. A full heap over the Dynkin diagram of type E
(1)
6

Type E
(1)
7

The Dynkin diagram Γ of type E
(1)
7 is labelled as in Figure 17.

 4  5 3 2 1 0  6

 7

Figure 17. The Dynkin diagram of type E
(1)
7

There is one (self-dual) full heap over Γ, shown in Figure 18. The corresponding

finite heap in Wildberger’s notation is F (E7, 6). There are 56 orbits of proper ideals

of E under ϕ.
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1  3

 2  4

 2

 7

 4

 0  7

 31

 2

 2 0

 3

 3  5

 5

 4  6 7

1  3

Figure 18. A full heap over the Dynkin diagram of type E
(1)
7
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