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Abstract. Let D be any integral domain of any characteristic. A polynomial

p(x) ∈ D[x] is D-nice if p(x) and its derivative p′(x) split in D[x]. We give a

complete description of all D-nice symmetric polynomials with four roots over

integral domains D of any characteristic not equal to 2 by giving an explicit

formula for constructing these polynomials and by counting equivalence classes

of such D-nice polynomials. To illustrate our results, we give several examples

we have found using our formula. We conclude by stating the open problem

of finding all D-nice symmetric polynomials with four roots over integral do-

mains D of characteristic 2 and all D-nice polynomials with four roots over all

integral domains D of any characteristic.
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1. Introduction

Let D be any integral domain of any characteristic. We say that a polynomial

p(x) ∈ D[x] splits in D[x] if, for some n ≥ 0, p(x) can be written in the form

p(x) = a(x− r1)(x− r2) · · · (x− rn) where a ̸= 0 and a, r1, . . . , rn ∈ D. We say that

p(x) ∈ D[x] is D-nice or (nice in D) if p(x) and its derivative p′(x) split in D[x]. By

our definition of splitting, if p(x) is D-nice, then p′(x) ̸= 0. Most mathematicians

who had researched Z-nice polynomials were interested in constructing polynomials

with integer coefficients, roots, and critical points—polynomials that are “nice”

for calculus students to sketch (see [1], for example). We found this problem of

extending these earlier results in Z to all integral domains D of any characteristic

worth further study.

Since many earlier papers use the term nice instead of Z-nice, we too will often

use the term nice instead of Z-nice. The first paper to consider nice polynomials [4]
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was published in 1960. This paper, along with the papers [1] and [12], give a formula

for constructing all nice cubics. The paper [3] gives the first five known examples of

nice nonsymmetric quartics and a formula for all nice symmetric quartics. In 1989

the problem of finding all nice quartics using elliptic curves was added to the list

of unsolved problems [10] in the American Mathematical Monthly. Ten years later,

the problem of constructing, describing, and classifying nice polynomials was added

to the the list of unsolved problems [11] in the American Mathematical Monthly.

Other papers soon followed, including the main paper on nice polynomials [2], the

submitted paper [5] with a different approach to D-nice polynomials, the accepted

paper [6] with several new results on nice symmetric and antisymmetric polyno-

mials, the accepted paper [7] with a complete description of all nice polynomials

with three distinct roots (which generalizes the known results on nice cubics), and

the accepted paper [8] with a complete description of all nice symmetric polynomi-

als with four distinct roots (which generalizes the known results on nice symmetric

quartics). The paper [5] takes a new approach to D-nice polynomials by considering

the relations between the roots and critical points of all polynomials over integral

domains D of characteristic 0. The main result in [5] gives several properties of

D-nice polynomials p(x) where D is an integral domain of characteristic 0 satisfying

D ∩ Q = Z and where the degree of p(x) is a prime power in D [5, Theorem 6.3].

All the results in [5], including the main one, and all the results in [6]-[8] follow

from these relations. The relations as stated in [5] and [6] depend on the degree

of p(x), not on the maximal number of distinct roots of p(x). The relations in [7]

and [8] given for polynomials with up to three and four distinct roots, respectively,

do not depend on the degree of the polynomials. The latest paper [9] gives the

relations between the roots and critical points of all polynomials p(x) ∈ D[x] where

D has any characteristic and where the relations depend on the maximal number

of distinct roots of p(x), not on the degree of p(x).

The only results on nice polynomials of degree higher than 5 that has been

published so far are [2, Theorem 2] and the formula for nice symmetric quartics in

[3]. But most of the results in [5]-[9] apply to nice polynomials of degrees higher

than 5. Furthermore, [5] and [9] are the only papers besides this one that consider

integral domains other than Z or Q.

We now solve the problem of constructing allD-nice symmetric polynomials with

four distinct roots (where D has any characteristic other than 2). This is a natural

generalization of the problem in [8] of finding all nice symmetric polynomials with

four distinct roots. We explain later why this problem remains unsolved for integral
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domains of characteristic 2. We find an explicit formula for constructing D-nice

symmetric polynomials with four roots, and we count equivalence classes of such

D-nice polynomials. We begin by defining the type of a polynomial and what it

means for two D-nice polynomials to be equivalent.

2. Preliminaries

The type of a polynomial is a list of the multiplicities of its distinct roots. For

example, all polynomials of the type (6,5,5,3) are of the form p(x) = a(x− r1)
6(x−

r2)
5(x− r3)

5(x− r4)
3 where r1, r2, r3, and r4 are all distinct and a ̸= 0.

Most of the earlier papers on nice polynomials note that horizontal translations

by integers, horizontal or vertical stretches by integer factors, and reflections over

the coordinate axes transform a nice polynomial p1(x) into another nice polynomial

p2(x). Each of these transformations has an inverse transformation that transforms

p2(x) into p1(x). The paper [5] extends these transformations and their inverses

to all integral domains D of characteristic 0 [5, Proposition 2.1 and Corollary 2.2].

But it is easy to extend these to integral domains of characteristic p > 0. For

convenience, we will refer to these transformations by using the same geometric

descriptions we use in Z or in Q, even if D is not ordered. Thus, we define the

horizontal translation of p(x) by a ∈ D units to be p(x−a). The horizontal stretch

and compression of p(x) by a nonzero factor of a ∈ D are defined by p(x/a) and

p(ax), respectively. If necessary, the division occurs in the field of fractions of D.

The vertical stretch and compression of p(x) by a nonzero factor of a ∈ D are

defined by ap(x) and 1
ap(x), respectively. Reflections of p(x) over the x- and y-axes

are defined by −p(x) and p(−x), respectively. All these transformations preserve

the type of a polynomial.

Two newly discovered transformations that behave similarly are the power trans-

formation and its inverse, the root transformation [6, Theorem 2.1]: For any natural

number n, a polynomial p(x) is nice iff [p(x)]n is nice. This result clearly holds in any

integral domain D of characteristic 0 and holds in integral domains of characteristic

p > 0 as long as n is not a multiple of p. If n is a multiple of p, then d
dx [p(x)]

n = 0;

so, by our convention, [p(x)]n is not D-nice. It is obvious that the root transforma-

tion transforms a D-nice polynomial p1(x) into another D-nice polynomial p2(x)

iff p1(x) = [p2(x)]
n for some natural number n and some D-nice polynomial p2(x).

The power transformation and the root transformation do not preserve the type of



D-NICE SYMMETRIC POLYNOMIALS WITH FOUR ROOTS 211

a polynomial. More precisely, if p(x) is of the type (m1, . . . ,ms), then [p(x)]n is of

the type (nm1, . . . , nms).

Translating horizontally a ∈ D units, stretching horizontally or vertically by

factors of a ∈ D, reflecting over the coordinate axes, and taking powers are trans-

formations we call equivalence tranformations. The corresponding inverse trans-

formations are translating horizontally −a ∈ D units, compressing horizontally

or vertically by factors of a ∈ D, reflecting over the coordinate axes, and taking

roots. Although equivalence transformations do transform aD-nice polynomial into

a D-nice polynomial, these inverse transformations do not necessarily transform a

D-nice polynomial into another D-nice polynomial. For example, a horizontal or

vertical compression may transform a D-nice polynomial p1(x) into a polynomial

p2(x) where p2(x) is nice in the field of fractions of D rather than in D. The root

transformation applied to arbitrary D-nice polynomials may result in nonpolyno-

mials.

Since any finite composition of equivalence tranformations transform a D-nice

polynomial p1(x) into another D-nice polynomial p2(x), we say that the two D-nice

polynomials p1(x) and p2(x) are equivalent whenever p1(x) can be transformed into

p2(x) and vice-versa by a finite composition of equivalence transformations or their

inverse transformations. Since all equivalence transformations and their inverses,

except the power transformation and its inverse, preserve the type of a polynomial,

when we count equivalence classes of D-nice polynomials, we count the number

of equivalence classes of D-nice polynomials of the same type. We note that, by

the power transformation and its inverse the root transformation, the number of

equivalence classes of D-nice polynomials of the type (m1, . . . ,ms) is the same as

the number of equivalence classes of D-nice polynomials of the type (nm1, . . . , nms)

for any n > 1 if D has characteristic 0 and any n > 1 that is not a multiple of p if

D has characteristic p > 0. In fact, we may consider these types to be the “same”

type.

A polynomial p(x) ∈ D[x] is symmetric if there exists a unique c in some exten-

sion field of D, called the center, such that p(c − x) = p(c + x) for all x, and p(x)

antisymmetric if p(c− x) = −p(c+ x) for all x. We first prove that the center c of

a D-nice symmetric or antisymmetric polynomial p(x) lies in D. We then use this

result to make an assumption that greatly simplifies our work.
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Proposition 2.1. Let D be any integral domain of any characteristic, and let p(x)

be a D-nice symmetric or antisymmetric polynomial with (unique) center c. Then

c ∈ D.

Proof. Suppose p(x) is a D-nice antisymmetric polynomial with center c, so p(c−
x) = −p(c + x) for all x. Let x = 0, so p(c) = −p(c). If D has characteristic not

equal to 2, then p(c) = 0, so c ∈ D.

Now suppose p(x) is a D-nice symmetric polynomial with center c. Then p(c+

x) = p(c−x) for all x. Differentiating both sides of this equation gives −p′(c+x) =

p′(c − x), so p′(x) is antisymmetric with center c. As shown above, if D has

characteristic not equal to 2, then p′(c) = 0, so c ∈ D.

Finally, if D has characteristic 2, then p(x) = p(−x) = −p(x) for all p(x), so any

polynomial (whether D-nice or not) is symmetric or antisymmetric with center 0.

Since 0 ∈ D, the proof is complete. �

By Proposition 2.1, we may center any D-nice symmetric polynomial at 0. Since

the translated polynomial is equivalent to the original one, we may assume that

all D-nice symmetric polynomials have center 0. Multiplying p(x) by a nonzero

element of D (which is a vertical stretch or compression) results in an equivalent D-

nice polynomial, so we may assume p(x) is monic. These two assumptions greatly

simplify the problem of constructing and counting equivalence classes of D-nice

symmetric polynomials with four distinct roots. Thus, with these assumptions,

such polynomials have the form p(x) = (x2 − r21)
m1(x2 − r22)

m2 if the characteristic

of D is not equal to 2.

3. The Case of Integral Domains D of Characteristic 0

We first consider the problem of constructing and counting equivalence classes of

all D-nice symmetric polynomials with four distinct roots over integral domains

D of characteristic 0. To construct these, we use Lemma 3.1 below, which gives

the relations between the roots and critical points of all symmetric polynomials in

QF(D)[x] with four roots where QF(D) is the field of fractions of D. As we will see

below, this set of relations is the key tool in finding our formula for constructing

these D-nice symmetric polynomials. Since it is easier to find a formula that gives

QF(D)-nice symmetric polynomials than one that gives D-nice symmetric polyno-

mials, we state Lemma 3.1 in terms of QF(D)-nice symmetric polynomials. When

we find a QF(D)-nice symmetric polynomial with our formula, we may stretch it
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horizontally to obtain an equivalent D-nice symmetric polynomial. Thus, our for-

mula may be used to construct and count equivalence classes of D-nice symmetric

polynomials of the same type with four distinct roots. The paper [8] takes the

same approach in constructing and counting equivalence classes of nice symmetric

polynomials with four roots using the formula for Q-nice symmetric polynomials

with four roots. Lemma 3.1 below follows directly from [9, Corollary 4.3], which

gives the relations between the roots and critical points of all symmetric poly-

nomials p(x) ∈ D[x] with an even number of roots. Lemma 3.1 in [8] gives the

relations between the roots and critical points of all polynomials in Q[x] with four

roots. Later, in the same paper, these relations are used to derive the relations for

symmetric polynomials in Q[x] with four roots [8, Lemma 4.1]. We mention this

because Lemma 3.1 below may be proven without using [9, Corollary 4.3] by using

arguments similar to the ones used in [8].

Lemma 3.1. [Key lemma.] Let D be an integral domain of characteristic 0, and

let QF (D) be the field of fractions of D. Let p(x) = (x2 − r21)
m1(x2 − r22)

m2 ∈
QF (D)[x] be a symmetric polynomial of degree d = 2m1 + 2m2 with derivative

p′(x) = dx(x2 − r21)
m1−1(x2 − r22)

m2−1(x2 − c2) and with four roots in QF (D).

Then p(x) is QF (D)-nice iff there exists a number c in QF (D) such that

m2r
2
1 +m1r

2
2 = (m1 +m2)c

2. (3.1)

Remark. By Lemma 3.1, all solutions to (3.1) in QF(D) give us all QF(D)-nice

symmetric polynomials of the type (m1,m1,m2,m2). Thus, to find our formula,

we solve (3.1) in QF(D).

Our formula is stated in the following theorem.

Theorem 3.2. [Main theorem: The formula for constructing D-nice symmetric

polynomials with four roots.] Let D be an integral domain of characteristic 0, and

let QF (D) be its field of fractions. The polynomial p(x) = (x2−r21)
m1(x2−r22)

m2 ∈
QF (D)[x] of degree d = 2m1 + 2m2 with derivative p′(x) = dx(x2 − r21)

m1−1(x2 −
r22)

m2−1(x2 − c2) is QF (D)-nice iff

c =
m2a

2 +m1b
2

2m2a+ 2m1b
, (3.2)

r1 = c− a, (3.3)

r2 = c− b (3.4)

where a and b are nonzero elements of QF (D) such that 2m2a + 2m1b ̸= 0 or,

equivalently, a ̸= (−m1

m2
)b.
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Proof. Set r1 = c − a and r2 = c − b where a, b ∈ D are nonzero. Since D has

characteristic 0, r1 ̸= c and r2 ̸= c, so a and b are nonzero. Substituting these

expressions for r1 and r2 into (3.1) and simplifying the equation gives the equation

m2a
2 +m1b

2 = (2m2a+ 2m1b)c. Solving this for c gives the formula above.

To complete the proof, we prove that if a and b are nonzero and if a = (−m1/m2)b,

then the relation (3.1) has no solution. Again let r1 = c− a and r2 = c− b to ob-

tain the equation m2a
2 +m1b

2 = (2m2a+ 2m1b)c. Now assume a = (−m1/m2)b.

Substituting into our equation, we have m2[(−m1/m2)b]
2+m1b

2 = 0, or (m2
1/m2+

m1)b
2 = 0, which is a contradiction since b ̸= 0 and m2

1/m2 +m1 ̸= 0.

The converse follows from Lemma 3.1. �

Remarks. (1). The formulas in [8] for nice symmetric polynomials with four roots

are similar to formulas (3.2)-(3.4) but are not exactly the same as these. The proof

in [8] assumes r1 < r2 and then uses Rolle’s theorem for R to conclude r1 < c < r2.

Thus, Rolle’s theorem guarantees the existence of a, b > 0 such that r1 = c− a and

r2 = c + b; but, for arbitrary integral domains D, we cannot use Rolle’s theorem

to establish the existence of such an a and b since D is not necessarily ordered.

However, we may conclude such a nonzero a and b exist as we did in the proof

above, but all we may say now is that r1, r2, and c are all distinct. Thus, formulas

(3.2)-(3.4) are not exactly the same as the formulas in [8].

(2). Since Theorem 3.2 is an equivalence, we may find representatives of all the

equivalence classes of D-nice symmetric polynomials of the type (m1,m1,m2,m2)

by choosing nonzero a and b so that a ̸= (−m1

m2
)b and using formulas (3.2)-(3.4)

above. In this sense, our formulas give all examples of D-nice symmetric polyno-

mials of the type (m1,m1,m2,m2).

We now give two examples of Z[i]-nice symmetric polynomials we have found

using formulas (3.2)-(3.4).

Example 3.3. Suppose m1 = 2 and m2 = 5. Let a = 2i and b = 1 + i. Then

the formulas give c = 1
37 + 31

37 i, r1 = 1
37 − 43

37 i, r2 = − 36
37 − 6

37 i. Stretching our

polynomial horizontally by a factor of 37, we see that our polynomial is equivalent

to the following Z[i]-nice polynomial:

p(x) = [x2 − (1− 43i)2]2[x2 − (36 + 6i)2]5, (3.5)

p′(x) = 14x[x2 − (1− 43i)2][x2 − (36 + 6i)2]4[x2 − (1 + 31i)2].
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Example 3.4. Suppose m1 = 6 and m2 = 5. Let a = 3+ i and b = 6− i. Then the

formulas give c = 3198
1301 − 473

1301 i, r1 = − 705
1301 − 1774

1301 i, r2 = −4608
1301 + 828

1301 i. Stretching

our polynomial horizontally by a factor of 1301, we see that our polynomial is

equivalent to the following Z[i]-nice polynomial:

p(x) = [x2 − (705 + 1774i)2]6[x2 − (4608− 828i)2]5, (3.6)

p′(x) = 22x[x2 − (705 + 1774i)2]5[x2 − (4608− 828i)2]4

· [x2 − (3198− 473i)2].

These two examples are not equivalent to nice polynomials (i.e., to Z-nice poly-

nomials). To see this, first note that any two D-nice symmetric polynomials with

four roots centered at 0 are equivalent using only horizontal stretches or compres-

sions. Because horizontal stretches and compressions preserve the ratio a/b where

a = c−r1 and b = c−r2 and because nice symmetric polynomials with four distinct

roots centered at the origin satisfy a/b ∈ Q, we see that these two examples are not

equivalent to nice polynomials because the ratios a/b /∈ Q.

We now determine conditions on a and b so that our formulas (3.2)-(3.4) give a

D-nice symmetric polynomial with exactly four roots. To do so, we find all ratios

a/b so that the formulas (3.2)-(3.4) fail to give a D-nice symmetric polynomial with

exactly four roots. We consider the three cases r1 = ±r2, r1 = 0, and r2 = 0. By the

proof of Theorem 3.2, c is undefined iff a/b = −m1/m2, and no D-nice symmetric

polynomials exist when a/b = −m1/m2; so the case where c is undefined has already

been considered.

Case 1. Suppose a and b are chosen so that r1 = ±r2. We solve the two equations

r1 = ±r2 for a in terms of b, which is equivalent to solving the equations c − a =

±(c− b). Solving c− a = c− b for a gives us a = b. We now solve c− a = −(c− b)

for a, which is equivalent to the equation 2c = a + b. Using (3.2), we now have
m2a

2+m1b
2

m2a+m1b
= a+b. By clearing fractions, we obtain the equation m2ab+m1ab = 0.

If a and b are both nonzero (so ab is nonzero), then this last equation is equivalent

to m1 = −m2, which is a contradiction since D has characteristic 0. Thus, a = 0

or b = 0 but not both. Furthermore, it is easy to see that if a = b ̸= 0, then r1 = r2

and if a = 0 or b = 0 (but not both), then r1 = −r2. Thus, r1 = ±r2 iff a = 0

or b = 0 (but not both) or a = b ̸= 0. Thus, we require that a and b be distinct

nonzero elements of QF(D).

Case 2. Suppose a and b are chosen so that r1 = 0. By (3.3), r1 = 0 iff c = a, so

we solve the equation c = a for the ratio a/b. Replacing c by the expression in (3.2)
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and clearing fractions gives us the equation m1b
2 − 2m1ab − m2a

2 = 0. We now

divide both sides by b2 ̸= 0 and rewrite the equation as m2(
a
b )

2 + 2m1
a
b −m1 = 0,

where a/b is regarded as a variable. By the quadratic formula,

a

b
=

−m1 ±
√
m1(m1 +m2)

m2
. (3.7)

These steps are reversible, so choosing a/b equal to one of these numbers gives

r1 = 0. Thus, r1 = 0 iff a/b is one of the numbers in (3.7). However, r1 will never

be 0 if m1(m1 +m2) =
dm1

2 is not a square in D.

Case 3. Suppose a and b are chosen so that r2 = 0. By (3.4), r2 = 0 iff c = b, so

we solve the equation c = b for the ratio a/b. Proceeding as in Case 2, we obtain

the equation m2(
a
b )

2 − 2m2
a
b −m1 = 0. By the quadratic formula,

a

b
=

m2 ±
√
m2(m1 +m2)

m2
. (3.8)

These steps are reversible, so choosing a/b equal to one of these numbers gives

r2 = 0. Thus, r2 = 0 iff a/b is one of the numbers in (3.8). However, r2 will never

be 0 if m2(m1 +m2) =
dm2

2 is not a square in D.

Cases 1-3 lead to the following proposition.

Proposition 3.5. [Conditions on a/b so that the formulas give a D-nice symmetric

polynomial with exactly four roots.] Assume the hypotheses of Theorem 3.2, and

suppose nonzero a and b are chosen. Then the formulas (3.2)-(3.4) give exactly

four roots iff the ratio a/b is not an element of the set {1,−m1

m2
, R1, R2, R3, R4}

where R1 and R2 are the numbers defined in (3.7) and R3 and R4 are the numbers

defined in (3.8).

We now count equivalence classes of D-nice symmetric polynomials of the type

(m1,m1,m2,m2) over integral domains D of characteristic 0. We first note that any

twoD-nice symmetric polynomials obtained from formulas (3.2)-(3.4) are equivalent

iff their ratios a/b are equal. We state this result more precisely and prove it below.

Proposition 3.6. [Necessary and sufficient conditions for two D-nice symmet-

ric polynomials of the type (m1,m1,m2,m2) to be equivalent.] Let D be an inte-

gral domain of characteristic 0. Suppose p1(x) = (x2 − r21)
m1(x2 − r22)

m2 where

p′1(x) = dx(x2−r21)
m1−1(x2−r22)

m2−1(x2− c21) and p2(x) = (x2−s21)
m1(x2−s22)

m2

where p′2(x) = dx(x2 − s21)
m1−1(x2 − s22)

m2−1(x2 − c22) are two D-nice symmetric

polynomials with four distinct roots. Let a1 = c1 − r1, b1 = c1 − r2, a2 = c2 − s1,

and b2 = c2 − s2. Then p1(x) and p2(x) are equivalent iff a1

b1
= a2

b2
.
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Proof. Since p1(x) and p2(x) are symmetric, monic, and centered at 0, p1(x) and

p2(x) are equivalent using only horizontal stretches and compressions. Since hori-

zontal stretches and compressions preserve the ratio a/b defined by formulas (3.3)-

(3.4) above, the result follows. �

Corollary 3.7. [Number of equivalence classes of D-nice symmetric polynomials

of the type (m1,m1,m2,m2) where D has characteristic 0.] Let D be an integral

domain of characteristic 0, and let m1 and m2 be any two positive integers. Then

there exist infinitely many equivalence classes of D-nice symmetric polynomials of

the type (m1,m1,m2,m2).

Proof. Fix m1 and m2. Define the set A = {1,−m1

m2
, R1, R2, R3, R4} as in Propo-

sition 3.5. Choose all nonzero ratios a/b ∈ QF(D)−A, and use formulas (3.2)-(3.4)

to find r1, r2, and c. Then each ratio a/b gives a QF(D)-nice symmetric polynomial

with four distinct roots, which is equivalent to a D-nice symmetric polynomial with

four distinct roots. Using Proposition 3.6 and that QF(D) − A is infinite, we see

that any two distinct examples we have constructed are not equivalent, so the result

follows. �

4. The Case of Integral Domains D of Characteristic p > 2

We now consider the analogous problem over integral domains D of characteristic

p > 2. First note that if D has characteristic 2, then p(x) = p(−x) = −p(x), so any

p(x) ∈ D[x] is both symmetric and antisymmetric with center 0. Thus, solving the

problem of constructing all D-nice symmetric polynomials with four roots where D

has characteristic 2 is the same as solving the problem of constructing all D-nice

polynomials with four roots where D has characteristic 2. However, the problem

of constructing all D-nice polynomials with four distinct roots over any integral

domain D, including those of characteristic 2, has not been solved, so we assume

D has characteristic p > 2. We give more details in Section 5.

The proof of Lemma 3.1 does not use the assumption that D has characteristic

0, only the assumption that the degree of p′(x) is d− 1 if p(x) has degree d. Thus,

Lemma 3.1 does apply to p(x) = (x2 − r21)
m1(x2 − r22)

m2 if the degree d of p(x)

is not a multiple of p since p′(x) has degree d − 1, so formulas (3.2)-(3.4) may be

used to construct these types of D-nice symmetric polynomials. But we will show

in Theorem 4.1 below that if the degree of p(x) is not a multiple of p but one of

the multiplicities m1 and m2 is a multiple of p, then we need not use formulas

(3.2)-(3.4) to construct these types of D-nice symmetric polynomials. However,
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Lemma 3.1 does not apply to p(x) = (x2 − r21)
m1(x2 − r22)

m2 if the degree d of p(x)

is a multiple of p since p′(x) has degree d− 2 or less. Therefore, D-nice symmetric

polynomials of these types need to be considered separately since formulas (3.2)-

(3.4) cannot be used to construct these. But we do not need to derive a formula

for constructing D-nice symmetric polynomials of these types, as we will show in

Theorem 4.1 below. Then we will show formulas are required for the construction

of D-nice symmetric polynomials with four roots only when none of the numbers

m1, m2, and d = 2m1 + 2m2 are multiples of p.

Theorem 4.1. [Results for the cases where D has characteristic p > 2 and exactly

one of m1, m2, and d = 2m1+2m2 is a multiple of p.] Let D be an integral domain

of characteristic p > 2. Suppose p(x) = (x2 − r21)
m1(x2 − r22)

m2 ∈ D[x] has degree

d = 2m1+2m2, and suppose exactly one of the numbers d, m1, and m2 is a multiple

of p. Then p(x) is D-nice iff p(x) splits in D[x] and p′(x) ̸= 0.

Proof. To prove this result, we consider three cases. In each case, we differentiate

p(x) by the product rule and simplify the derivative. In all cases, it is easy to see

that p′(x) splits in D[x] if p′(x) ̸= 0.

Case 1. m1 is a multiple of p, and m2 and d are not. Then p′(x) = 2m2x(x
2 −

r21)
m1(x2 − r22)

m2−1, which always splits in D[x] since p′(x) is never 0.

Case 2. m2 is a multiple of p, and m1 and d are not. Then p′(x) = 2m1x(x
2 −

r21)
m1−1(x2 − r22)

m2 , which always splits in D[x] since p′(x) is never 0.

Case 3. d is a multiple of p, but m1 and m2 are not. Then p′(x) = (−2m1r
2
2 −

2m2r
2
1)x(x

2 − r21)
m1−1(x2 − r22)

m2−1, splits in D[x] if m1r
2
2 ̸= m2r

2
1. Otherwise,

p′(x) = 0. �

Remarks. (1). If more than one of the numbers m1, m2, and d = 2m1 +2m2 is a

multiple of p, then p′(x) = 0. By our definition, any polynomial p(x) ∈ D[x] where

p′(x) = 0 is not D-nice.

(2). By Theorem 4.1 and its proof, if exactly one of the numbers m1, m2, d =

2m1+2m2 is a multiple of p, then we may construct D-nice symmetric polynomials

of these types simply by choosing polynomials that split inD[x] if d is not a multiple

of p. If d is a multiple of p, we choose polynomials p(x) = (x2 − r21)
m1(x2 − r22)

m2

that split in D[x] where m1r
2
2 ̸= m2r

2
1, which is equivalent to the condition that

r2/r1 ̸= ±
√
m2/m1. It is easy to see that if m2/m1 is not a square in QF(D), then

p′(x) is never 0. Thus, the problem of p′(x) = 0 where exactly one of m1, m2, and
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d = 2m1 + 2m2 is a multiple of p arises only when d is a multiple of p and m2/m1

is a square in QF(D).

A polynomial p(x) = (x2−r21)
m1(x2−r22)

m2 ∈ D[x] that splits where none of the

numbers m1, m2, and d = 2m1 + 2m2 are multiples of p is not necessarily D-nice.

For example, p(x) = (x2−12)(x2−62) splits in Z/(7)[x], but p(x) is not Z/(7)-nice.
So we need formulas (3.2)-(3.4) to construct D-nice symmetric polynomials of these

types.

Theorem 4.2. [Extension of Theorem 3.2 and Proposition 3.5 to the case where

none of m1, m2, d = 2m1 + 2m2 are multiples of p.] Suppose D is an integral

domain of characteristic p > 2 and QF(D) is its field of fractions. Suppose p(x) =

(x2 − r21)
m1(x2 − r22)

m2 ∈ QF (D)[x] has degree d = 2m1 + 2m2, and suppose none

of m1, m2, and d are multiples of p. Then Theorem 3.2 and Proposition 3.5 apply

to p(x).

Proof. The proof is the same as the proofs of Theorem 3.2 and Proposition 3.5. �

We now give three more examples we have found using formulas (3.2)-(3.4).

Example 4.3. Let D = Z/(11), m1 = 4, and m2 = 3. Choose a = 2 and b = 3.

Then the formulas give c = 5, r1 = 3, and r2 = 2. So our D-nice symmetric

polynomial is

p(x) = (x2 − 32)4(x2 − 22)3, (4.1)

p′(x) = 3x(x2 − 32)3(x2 − 22)2(x2 − 52).

Example 4.4. Let D = Z/(7), m1 = 2, and m2 = 1. Choose b = 1, and a = 2.

Then the formulas give c = 6, r1 = 4, and r2 = 5. So our D-nice symmetric

polynomial is

p(x) = (x2 − 42)2(x2 − 52), (4.2)

p′(x) = 6x(x2 − 42)(x2 − 62).

Example 4.5. Let D = Z/(5)[y], m1 = m2 = 1. Choose a = 4y4+3y3+y2+y+2

and b = y3 + 4y + 1. Then the formulas give c = (4y4+3y3+y2+y+2)2+(y3+4y+1)2

2(4y4+3y3+y2+y+2)+2(y3+4y+1) ,

r1 = c − (4y4 + 3y3 + y2 + y + 2), and r2 = c − (y3 + 4y + 1). Stretching our

polynomial horizontally by a factor of 2(4y4 + 3y3 + y2 + y + 2) + 2(y3 + 4y + 1),
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we see that our polynomial is equivalent to the D-nice symmetric polynomial

p(x) = [x2 − (4y8 + 3y7 + 3y6 + 2y5 + y4 + y2 + y + 3)2]

· [x2 − (y8 + y7 + y4 + 4y3 + 4y2 + 3y + 4)2], (4.3)

p′(x) = 4x[x2 − (y8 + 4y7 + 3y6 + 4y5 + y4 + y3 + y2 + 2y)2].

We now count equivalence classes of D-nice symmetric polynomials of the type

(m1,m1,m2,m2) over integral domains D of characteristic p > 2. We first assume

D is infinite.

Corollary 4.6. [Number of equivalence classes of D-nice symmetric polynomials of

the type (m1,m1,m2,m2) where D has characteristic p > 2 and is infinite.] Suppose

D is an infinite integral domain of characteristic p > 2, and suppose not all of m1,

m2, and d = 2m1 + 2m2 are multiples of p. Then there exist infinitely many

equivalence classes of D-nice symmetric polynomials of the type (m1,m1,m2,m2).

Proof. Assume the hypotheses in the statement above, but first assume none of

m1, m2, and d = 2m1 + 2m2 are multiples of p. Then the number of equivalence

classes of D-nice symmetric polynomials of the type (m1,m1,m2,m2) is infinite.

To see this, we use the same argument in the proof of Corollary 3.7.

Now assume exactly one of the numbers m1, m2, and d = 2m1 + 2m2 is a

multiple of p. Then, by Theorem 4.1, p(x) = (x2 − r21)
m1(x2 − r22)

m2 is D-nice iff

p(x) splits in D[x] and p′(x) ̸= 0. By Remark 2 after Theorem 4.1, p′(x) = 0 iff

d is a multiple of p and r2/r1 = ±
√
m2/m1. Since any two D-nice polynomials

p1(x) = (x2 − s21)
m1(x2 − s22)

m2 and p2(x) = (x2 − t21)
m1(x2 − t22)

m2 with nonzero

roots are equivalent using only horizontal stretches or compressions, p1(x) and

p2(x) are equivalent iff s2/s1 = t2/t1. Since D is infinite and the ratio r2/r1 for

p(x) above may assume any value in QF(D) except 0, ±1, and possibly two other

values—the number of equivalence classes of such D-nice symmetric polynomials is

infinite. �

We now consider those types of D-nice symmetric polynomials with four roots

in which exactly one of the numbers m1, m2, and d = 2m1 + 2m2 is a multiple of

p and D is finite. We need to consider several cases, as the proof of Theorem 4.1

and Remark 2 following the proof suggest.

Corollary 4.7. [Number of equivalence classes of D-nice symmetric polynomials

of the type (m1,m1,m2,m2) where D has characteristic p > 2, D is finite, and

exactly one of m1, m2, and d = 2m1 + 2m2 is a multiple of p.] Suppose D is an
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integral domain with pn elements where p > 2. Suppose exactly one of the numbers

m1, m2, and d = 2m1 + 2m2 is a multiple of p.

(a) If d is not a multiple of p, then the number of equivalence classes of D-nice

symmetric polynomials of the type (m1,m1,m2,m2) is pn − 3.

(b) If d is a multiple of p and m1 = m2 in D or if d is a multiple of p and

m2/m1 is not a square in D, then the number of equivalence classes of

D-nice symmetric polynomials of the type (m1,m1,m2,m2) is pn − 3.

(c) If d is a multiple of p and if m1 ̸= m2 in D and if m2/m1 is a square in D,

then the number of equivalence classes of D-nice symmetric polynomials of

the type (m1,m1,m2,m2) is pn − 5.

Proof. (a). We use a similar argument as in the second part of the proof of

Corollary 4.6 above. Since D is finite, QF(D) = D. However, note here that, for

any such D-nice symmetric polynomial p(x) = (x2− r21)
m1(x2− r22)

m2 with exactly

four roots, r2/r1 may assume any value in D except 0,±1 since d is not a multiple

of p. Thus, the number of equivalence classes of such D-nice symmetric polynomials

is pn − 3 if D has pn elements.

(b). The proof is similar to the proof of part (a) above; but now note that if

m1 = m2 in D, ±
√

m2/m1 = ±1, so r2/r1 may assume any value in D except

0,±1. If m2/m1 is not a square in D, then p′(x) ̸= 0 for any p(x) ∈ D[x] that

splits. In either case, r2/r1 may assume any value in D except 0,±1.

(c). Again, use an argument similar to the ones in (a) and (b) above, but

now note that r2/r1 may assume any value in D except 0,±1,±
√

r2/r1. By the

hypotheses in (c), all five of these values are distinct, so the number of equivalence

classes of such D-nice symmetric polynomials is pn − 5. �

If D is finite, then counting equivalence classes of D-nice symmetric polynomials

with four roots of those types in which the degree d and the multiplicities m1 and

m2 are not multiples of p requires several cases because the problem of r1 = 0 or

r2 = 0 for appropriate choices of a and b in formulas (3.2)-(3.4) may or may not

arise. As mentioned in Section 3, at least one of these two problems arises if at

least one of the two numbers dm1

2 or dm2

2 is a square in D. So we need to consider

the case where neither of these two numbers is a square in D, the two cases where

exactly one of these numbers is a square in D, and the case where both numbers are

squares inD. Earlier, when we had counted equivalence classes ofD-nice symmetric

polynomials where D is infinite and formulas (3.2)-(3.4) apply, we did not need to
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consider these cases separately because the set QF(D) − A is infinite in all cases.

However, if D is finite, the number of elements in QF(D)−A = D−A varies as m1

and m2 vary, even if D is fixed. Thus, if D is finite, we do need to consider these

cases separately.

Corollary 4.8. [Number of equivalence classes of D-nice symmetric polynomials of

the type (m1,m1,m2,m2) where D has characteristic p > 2, D is finite, and none

of m1, m2, and d = 2m1 + 2m2 are multiples of p.] Let D be an integral domain

with pn elements where p > 2. Furthermore, suppose none of the numbers m1, m2,

and d = 2m1 + 2m2 are multiples of p.

(a) If neither of the two numbers dm1

2 and dm2

2 are squares in D, then the

number of equivalence classes of D-nice symmetric polynomials of the type

(m1,m1,m2,m2) is pn − 3.

(b) If exactly one of the two numbers dm1

2 and dm2

2 is a square in D, then the

number of equivalence classes of D-nice symmetric polynomials of the type

(m1,m1,m2,m2) is pn − 5.

(c) If both of the numbers dm1

2 and dm2

2 are squares in D, then the num-

ber of equivalence classes of D-nice symmetric polynomials of the type

(m1,m1,m2,m2) is pn − 7.

Proof. (a). We follow the argument in the proof of Corollary 3.7, but we now note

that the ratio a/b may assume any value in D except 0, 1, and −m1/m2 since none

of R1, R2, R3, and R4 defined in Proposition 3.5 lie in D. Thus, by Proposition 3.6,

the number of equivalence classes of these types of D-nice symmetric polynomials

is pn − 3.

(b). Suppose dm1

2 is a square in D, but dm2

2 is not a square in D. Hence,

R1, R2 ∈ D, but R3, R4 /∈ D. Thus, the ratio a/b may assume any value in D

except 0, 1, −m1/m2, R1, and R2. It is not hard to check that all five of these are

distinct, so the number of values a/b may assume is pn − 5, which is the number of

equivalence classes of these types of D-nice symmetric polynomials.

The argument of the case where dm2

2 is a square in D but dm1

2 is not is similar.

(c). Now assume both of the numbers dm1

2 and dm2

2 are squares in D, so

R1, R2, R3, R4 ∈ D. Thus, the ratio a/b may assume any value in D except 0,

1, −m1/m2, R1, R2, R3, and R4. It is not hard to check that all seven of these are

distinct, so the number of values a/b may assume is pn − 7, which is the number of

equivalence classes of these types of D-nice symmetric polynomials. �
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5. Open Problems

As we have seen in the beginning of Section 4, the problem of constructing all

D-nice symmetric polynomials over integral domains D of characteristic 2 remains

unsolved because all polynomials p(x) over integral domains D of characteristic 2

are symmetric with center 0. We state the relations between the roots and critical

points of all polynomials p(x) ∈ D[x] with four roots over integral domains D of

characteristic 2 to show why this problem remains unsolved. As before, we may

assume p(x) is monic. By the equivalence of the horizontal translation, we may

assume p(x) has a root at 0. If the degree d of p(x) is odd, then the degree of its

derivative is d − 1, so p(x) = xm0(x − r1)
m1(x − r2)

m2(x − r3)
m3 with derivative

p′(x) = xm0−1(x− r1)
m1−1(x− r2)

m2−1(x− r3)
m3−1(x− c1)(x− c2)(x− c3). Since

d is odd and D has characteristic 2, d = 1 in D. We now state these relations.

Proposition 5.1. Let D be an integral domain of characteristic 2. Suppose p(x) =

xm0(x − r1)
m1(x − r2)

m2(x − r3)
m3 ∈ D[x] with derivative p′(x) = xm0−1(x −

r1)
m1−1(x − r2)

m2−1(x − r3)
m3−1(x − c1)(x − c2)(x − c3) is a polynomial of odd

degree d = m0 +m1 +m2 +m3 with four roots in D. Then p(x) is D-nice iff there

exist c1, c2, and c3 in D such that

m1r1 +m2r2 +m3r3 = c1 + c2 + c3, (5.1)

(m1 +m2)r1r2 + (m1 +m3)r1r3 + (m2 +m3)r2r3 = c1c2 + c1c3 + c2c3, (5.2)

m0r1r2r3 = c1c2c3. (5.3)

Proof. This is a direct consequence of [9, Theorem 3.2]. These relations may also

be established directly by using an argument similar to the one used to establish

[8, Lemma 3.1]. �

If the degree d of p(x) is even, then the degree of its derivative is d − 2 or less.

We now state the relations between the roots and critical points of p(x) ∈ D[x]

where D has characteristic 2 and the degree of p(x) is even. Note that p(x) still

has the same form as above, but p′(x) does not.

Proposition 5.2. Let D be an integral domain of characteristic 2. Suppose p(x) =

xm0(x − r1)
m1(x − r2)

m2(x − r3)
m3 ∈ D[x] is a polynomial of even degree d =

m0 +m1 +m2 +m3.
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(a) Suppose the derivative p′(x) has degree d− 2. Then p(x) with four roots in

D is D-nice iff there exist c1 and c2 in D such that

(m1 +m2)r1r2 + (m1 +m3)r1r3 + (m2 +m3)r2r3 =

(m1r1 +m2r2 +m3r3)(c1 + c2), (5.4)

(m1 +m2 +m3)r1r2r3 = (m1r1 +m2r2 +m3r3)c1c2. (5.5)

(b) Suppose the derivative p′(x) has degree d− 3. Then p(x) with four roots in

D is D-nice iff there exists c in D such that

(m1+m2+m3)r1r2r3 = [(m1+m2)r1r2+(m1+m3)r1r3+(m2+m3)r2r3]c. (5.6)

(c) If the derivative p′(x) has degree d − 4, then p(x) is D-nice iff p(x) splits

in D[x] and p′(x) ̸= 0.

Proof. This is a direct consequence of [9, Theorem 3.4]. �

No formula has been found for the solutions in D to relations (5.1)-(5.3), to

relations (5.4)-(5.5), and to relation (5.6). Thus, the problem of constructing all

D-nice symmetric polynomials over integral domains of characteristic 2 remains

unsolved. We conclude our discussion by formally stating this open problem.

Problem 5.3. Find formulas for all D-nice (symmetric) polynomials with four

roots over integral domains D of characteristic 2 by solving the relations stated in

Propositions 5.1 and 5.2 in D.

Problem 5.4. Which types of D-nice (symmetric) polynomials with four roots

over integral domains D of characteristic 2 exist? For each type that exists, how

many equivalence classes of that type are there?

As mentioned earlier, the following problem remains unsolved. We repeat it here

for convenience.

Problem 5.5. Find formulas for all D-nice polynomials with four roots over all in-

tegral domains D of any characteristic, and use these formulas to count equivalence

classes of all types of such D-nice polynomials.
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