EXTENSIONS OF GM-RINGS OVER GENERALIZED POWER SERIES RINGS

Lunqun Ouyang and Dayong Liu

Received: 18 January 2007; Revised: 8 May 2007
Communicated by Huanyin Chen

Abstract. Let \(R \) be a reduced ring, \((S, \leq)\) a cancellative torsion-free strictly ordered monoid, it is shown that ring \(\mathbb{R}^{S, \leq} \) is a GM−ring if and only if \(R \) is a GM−ring. We also investigate GM−rings for some special Morita contexts and module extensions over generalized power series rings.

Mathematics Subject Classification (2000): 16U99, 16E50
Keywords: GM−rings, module extension, generalized power series

1. Introduction

All rings considered here are associative with identity and \(R \) denotes such a ring. We use \(U(R) \) to denote the group of units of \(R \). Any concept and notation not defined here can be found in [6, 7].

A ring \(R \) is said to be a GM−ring provided that for any \(x, y \in R \), there exist idempotents \(e, f \in R \) and \(u \in U(R) \) such that \(x = eu, y = fu^{-1} \in U(R) \). A ring \(R \) is called a clean ring if for any \(x \in R \), there exists \(e^2 = e \in R \) such that \(x - e \in U(R) \). Clearly, all clean rings are GM−rings. Many examples and results of GM−rings are given in [1, 2].

Let \((S, \leq)\) be an ordered set. Recall that \((S, \leq)\) is artinian if every strictly decreasing sequence of elements of \(S \) is finite, and that \((S, \leq)\) is narrow if every subset of pairwise order-incomparable elements of \(S \) is finite. Let \((S, \leq)\) be a strictly ordered monoid and \(R \) a ring. Let \(\mathbb{R}^{S, \leq} \) be the set of all maps \(f : S \to R \) such that \(supp(f) = \{ s \in S | f(s) \neq 0 \} \) is artinian and narrow. With pointwise addition and the operation of convolution

\[
(fg)(s) = \sum_{(u,v) \in X_s(f,g)} f(u)g(v)
\]

This research is supported by Hunan Provincial Natural Science Foundation of China (06jj20053) and Scientific Research Fund of Hunan Province Education Department (06A017).
Let $X_s(f, g) = \{(u, v) \in S \times S | s = u + v, f(u) \neq 0, g(v) \neq 0\}$ be a finite set by [8, Theorem 4.1] for every $s \in S$ and $f, g \in [[[R^{S, \leq}]]], [[[R^{S, \leq}]]]$ becomes a ring, with unit element e^*, namely

\[e^*(0) = 1, \quad e^*(s) = 0 \text{ for every } s \in S, \quad s \neq 0. \]

The elements of $[[[R^{S, \leq}]]]$ are called generalized power series with coefficients in R and exponents in S. For any $a \in R$, $C_a \in [[[R^{S, \leq}]]]$ is given by $C_a(0) = a, C_a(s) = 0$ for all $0 \neq s \in S$. Ordered monoid (S, \leq) is said to satisfy condition (S0) in case $s \geq 0$ for all $s \in S$. Henceforth, unless otherwise mentioned, in this paper, (S, \leq) will always denote a strictly ordered monoid satisfying condition (S0).

In this paper, we show that if R is a reduced ring, then ring $[[[R^{S, \leq}]]]$ is a GM-ring if and only if R is a GM-ring. We also investigate GM-rings for some special Morita Contexts and module extensions rings over generalized power series rings. These given generalizations of [3, Theorem], [2, Theorem 6] and [2, Theorem 11].

2. Main results

Lemma 2.1. [6] Let R be a ring, $M_{n \times n}(R)$ the ring of all $n \times n$ matrices with entries in R. Then $[[[M_{n \times n}(R)^{S, \leq}]]] \cong M_{n \times n}([[R^{S, \leq}]]]).$

Lemma 2.2. [8] Let (S, \leq) be a cancellative torsion-free strictly ordered monoid and satisfy condition (S0), and let $f \in [[[R^{S, \leq}]]]$. Then $f \in U([[R^{S, \leq}]])$ if and only if $f(0) \in U(R)$.

Lemma 2.3. Let R be a ring, and $e_1^2 = e_1, e_2^2 = e_2 \in R$. Then $[[[(e_1 Re_2)^{S, \leq}]]] = C_{e_1}[[[R^{S, \leq}]]]C_{e_2}$.

Proof. For any $f \in C_{e_1}[[[R^{S, \leq}]]]C_{e_2}$, there exists $g \in [[[R^{S, \leq}]]]$ such that $f = C_{e_1}gC_{e_2}$. Thus for any $s \in S$, we have $f(s) = (C_{e_1}gC_{e_2})(s) = C_{e_1}(0)(gC_{e_2})(s) = C_{e_1}(0)g(s)e_2(0) = e_1g(s)e_2 \in e_1Re_2$. So $f \in [[[e_2 Re_2]^{S, \leq}]]$. Hence $C_{e_1}[[[R^{S, \leq}]]]C_{e_2} \subseteq [[[e_1 Re_2]^{S, \leq}]]$. Conversely, for any $f \in [[[e_1 Re_2]^{S, \leq}]]$ and any $s \in supp(f)$, there exists $r_s \in R$ such that $0 \neq f(s) = e_1r_s e_2 \in e_1Re_2$. Define a map $g : S \rightarrow R$ via

\[g(s) = \begin{cases} r_s, & s \in supp(f) \\ 0, & s \in S \setminus supp(f) \end{cases} \]

Clearly, $supp(g) = supp(f)$. Thus $g \in [[[R^{S, \leq}]]]$. For any $s \in supp(f), (C_{e_1}gC_{e_2})(s) = e_1g(s)e_2 = e_1r_se_2 = f(s)$, for any $s \in S \setminus supp(f), (C_{e_1}gC_{e_2})(s) = 0 = f(s)$. Thus $f = C_{e_1}gC_{e_2} \in C_{e_1}[[[R^{S, \leq}]]]C_{e_2}$. This implies that $[[[(e_1 Re_2)^{S, \leq}]]] \subseteq C_{e_1}[[[R^{S, \leq}]]]C_{e_2}$. Therefore we have $[[[(e_1 Re_2)^{S, \leq}]]] = C_{e_1}[[[R^{S, \leq}]]]C_{e_2}$. \qed
Lemma 2.4. If R is a GM–ring. Then $[[R^{S\leq}]]$ is a GM–ring.

Proof. Let $f, g \in [[R^{S\leq}]]$, there exist $e^2 = e, f^2 = f \in R$ and $u \in U(R)$ such that $f(0) = eu, g(0) = fu^{-1} \in U(R)$ by R is a GM–ring. Since $C_0C_{u^{-1}} = e^2$, and $(f - C_0C_u, u)(0) \in U(R)$, it is easy to see that $f - C_0C_u - C_fC_u^{-1} \in U(R)$, and $C_0^2 = C_e, C_f^2 = C_f, C_u \in U(R)$. Thus $[[R^{S\leq}]]$ is a GM–ring.

Example 1 Let $\mathbb{N} \cup \{0\}$ denote the monoid which consists of natural numbers and zero. If $S = \mathbb{N} \cup \{0\}$ with the usual order. Then $[[R^{S\leq}]] \cong R[[X]]$ (rings of formal power series in one indeterminate and coefficients in R). So if R is a GM–ring, then $R[[X]]$ is also a GM–ring. [2, Theorem 14]

Example 2 Let $S = \mathbb{N}^n \cup \{0\}$, with the usual order($\Pi \leq_i$), or the lexicographic ($\text{lex} \leq_i$) order, or the reverse lexicographic($\text{revlex} \leq_i$) order. If R is a GM–ring, then $[[R^{\mathbb{N}^n \cup \{0\}, \Pi \leq_i}]]$, $[[R^{\mathbb{N}^n \cup \{0\}, \text{lex} \leq_i}]]$, $[[R^{\mathbb{N}^n \cup \{0\}, \text{revlex} \leq_i}]]$ are also GM–rings. Since rational number field \mathbb{Q} and real number field \mathbb{R} are GM–rings, then $[[\mathbb{Q}^{\mathbb{N}^n \cup \{0\}, \Pi \leq_i}]]$, $[[\mathbb{Q}^{\mathbb{N}^n \cup \{0\}, \text{lex} \leq_i}]]$ and $[[\mathbb{Q}^{\mathbb{N}^n \cup \{0\}, \text{revlex} \leq_i}]]$ are also GM–rings.

Let $(S_1, \leq_1), (S_2, \leq_2), \ldots, (S_n, \leq_n)$ be cancellative torsion-free strictly ordered monoids satisfying the condition (S0). If R is a GM–ring, then $[[R^{S_1 \times S_2 \times \cdots \times S_n, \Pi \leq_i}]]$, $[[R^{S_1 \times S_2 \times \cdots \times S_n, \text{lex} \leq_i}]]$ are also GM–rings.

A ring R is called reduced if it has no nonzero nilpotent element. It was proved in [5, Lemma 3.4] that if R is a reduced ring, and (S, \leq) is a cancellative torsion-free strictly ordered monoid. Then for every idempotent $f^2 = f \in [[R^{S\leq}]]$, there exists an idempotent $e \in R$ such that $f = C_e$.

Lemma 2.5. Let R be a reduced ring, (S, \leq) a cancellative torsion-free strictly ordered monoid. If $[[R^{S\leq}]]$ is a GM–ring, then R is a GM–ring.

Proof. Let $a, b \in R$, then $C_a, C_b \in [[R^{S\leq}]]$. Since $[[R^{S\leq}]]$ is a GM–ring, there exist $C_e^2 = C_e, C_f^2 = C_f \in [[R^{S\leq}]]$ where $e^2 = e \in R, f^2 = f \in R$, and $\tau \in U([[R^{S\leq}]]$ such that $C_a - C_e\tau, C_b - C_f\tau^{-1} \in U([[R^{S\leq}]]$. Thus $(C_a - C_e\tau)(0) = a - e\tau(0) \in U(R)$ and $(C_b - C_f\tau^{-1})(0) = b - f\tau^{-1}(0) \in U(R)$. This implies that R is a GM–ring.

Example 3 Let R be a reduced ring. If the formal power series ring $R[[X]]$ is a GM–ring, then so is R by Lemma 2.5. This can be proved in a directly simple manner. Given any $x, y \in R$, we have $x, y \in R[[X]]$ as well. Thus we can find
idempotents \(e(x), f(x) \in R[[X]] \) and a unit \(u(x) \in R[[X]] \) such that \(x - e(x)u(x), y - f(x)u(x)^{-1} \in U(R[[X]]) \). It is well known that \(h(x) \in R[[X]] \) is a unit if and only if \(h(0) \in R \) is a unit, and if \(R \) is a reduced ring, then the set of all idempotents in \(R[[X]] \) equal to the set of all idempotents in \(R \). Thus we know \(x - e(0)u(0), y - f(0)u(0)^{-1} \in U(R) \), One easily checks that \(e(0) = e, f(0) = f \) are idempotents and \(u(0) \in R \) is a unit. Thus \(R \) is a GM-ring.

Let \(e_1, e_2, \ldots, e_n \in R \) be idempotents. Clearly,

\[
\begin{pmatrix}
C_{e_1}[[R^{S, \leq}]]C_{e_1} & \ldots & C_{e_1}[[R^{S, \leq}]]C_{e_n} \\
\vdots & \ddots & \vdots \\
C_{e_n}[[R^{S, \leq}]]C_{e_1} & \ldots & C_{e_n}[[R^{S, \leq}]]C_{e_n}
\end{pmatrix}
= \begin{pmatrix}
C_{e_1}r_{11}C_{e_1} & \ldots & C_{e_1}r_{1n}C_{e_n} \\
\vdots & \ddots & \vdots \\
C_{e_n}r_{n1}C_{e_1} & \ldots & C_{e_n}r_{nn}C_{e_n}
\end{pmatrix}_{r_{ij} \in [[R^{S, \leq}]](0 \leq i, j \leq n)}
\]

form a ring with the identity \(\text{diag}(C_{e_1}, \ldots, C_{e_n}) \).

Theorem 2.6. Let \(e_1, e_2, \ldots, e_n \) be idempotents of a ring \(R \). If all \(e_iRe_i \) are GM-rings, then so is the ring

\[
\begin{pmatrix}
C_{e_1}[[R^{S, \leq}]]C_{e_1} & \ldots & C_{e_1}[[R^{S, \leq}]]C_{e_n} \\
\vdots & \ddots & \vdots \\
C_{e_n}[[R^{S, \leq}]]C_{e_1} & \ldots & C_{e_n}[[R^{S, \leq}]]C_{e_n}
\end{pmatrix}
\]

Proof. Clearly, the ring \(\begin{pmatrix}
e_1Re_1 & \ldots & e_1Re_n \\
\vdots & \ddots & \vdots \\
e_nRe_1 & \ldots & e_nRe_n
\end{pmatrix} \) is a GM-ring by virtue of [2, Lemma 1]. Since

\[
\begin{pmatrix}
e_1Re_1 & \ldots & e_1Re_n \\
\vdots & \ddots & \vdots \\
e_nRe_1 & \ldots & e_nRe_n
\end{pmatrix}^{S, \leq}
\]

\[
\begin{pmatrix}
\text{diag}(e_1, \ldots, e_n)M_n(R)\text{diag}(e_1, \ldots, e_n)^{S, \leq}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\text{diag}(e_1, \ldots, e_n)^{S, \leq}\text{diag}(M_n(R))^{S, \leq}\text{diag}(e_1, \ldots, e_n)^{S, \leq}
\end{pmatrix}
\]

\[
\text{diag}(C_{e_1}, \ldots, C_{e_n})M_n([[R^{S, \leq}]]\text{diag}(C_{e_1}, \ldots, C_{e_n}))
\]
\[
\begin{pmatrix}
C_1[R^{S,\leq}]C_1 & \cdots & C_1[R^{S,\leq}]C_n \\
\vdots & \ddots & \vdots \\
C_n[R^{S,\leq}]C_1 & \cdots & C_n[R^{S,\leq}]C_n
\end{pmatrix}
\]

Apply Lemma 2.4, we get the result.

Let \(M \) be an \(R^- \) module. \([M^{S,\leq}]\) denotes the set of all maps \(\phi : S \to M \) such that \(\text{supp}(\phi) = \{ s \in S | \phi(s) \neq 0 \} \) is artinian and narrow. From [9], it is immediate that \([M^{S,\leq}]\) is an \([R^{S,\leq}]\) module. For any \(f \in [R^{S,\leq}], \phi \in [M^{S,\leq}] \) and \(s \in S \), the scalar multiplication is defined as follow:

\[
(f\phi)(s) = \sum_{(u,v) \in X_s(f,\phi)} f(u)\phi(v).
\]

Let \(A_1, A_2, A_3 \) be associative rings with identity. Let \(M_{21}, M_{31}, M_{32} \) be \((A_2, A_1)-, (A_3, A_1)-, (A_3, A_2)-\)bimodule, respectively. Let \(\psi : M_{32} \otimes_{A_2} M_{21} \to M_{31} \) be an \((A_3, A_1)-\)homomorphism, and let

\[
T = \begin{pmatrix} A_1 & 0 & 0 \\ M_{21} & A_2 & 0 \\ M_{31} & M_{32} & A_3 \end{pmatrix},
T^S = \begin{pmatrix}
[[A_1^{S,\leq}]] & 0 & 0 \\
[[M_{21}^{S,\leq}]] & [[A_2^{S,\leq}]] & 0 \\
[[M_{31}^{S,\leq}]] & [[M_{32}^{S,\leq}]] & [[A_3^{S,\leq}]]
\end{pmatrix},
\]

with the usual matrix operations (see[4]), \(T \) is a ring. Now we show that \(T^S \) is also a ring.

Theorem 2.7. There exists a \(((A_3^{S,\leq}],[A_1^{S,\leq}]))-\)homomorphism

\[
\psi^S : [[M_{32}^{S,\leq}]] \otimes [[M_{21}^{S,\leq}]] \to [[M_{31}^{S,\leq}]]
\]
such that with the usual matrix operations , \(T^S \) is a ring.

Proof. Since \(M_{32}, M_{21} \) is \((A_3, A_2)-,(A_3, A_1)-\)bimodule, respectively, according to [9], it is easy to see that \([M_{32}^{S,\leq}]\) is a \(((A_3^{S,\leq}],[A_2^{S,\leq}]))-\)bimodule, and \([M_{21}^{S,\leq}]\) is a \(((A_2^{S,\leq}],[A_1^{S,\leq}]))-\)bimodule. Consider following diagram:

\[
\begin{array}{ccc}
[[M_{32}^{S,\leq}]] \times [[M_{21}^{S,\leq}]] & \xrightarrow{\pi} & [[M_{32}^{S,\leq}]] \\
\downarrow & & \uparrow \psi^S \\
[[M_{31}^{S,\leq}]] & \xrightarrow{\theta} & [[M_{21}^{S,\leq}]]
\end{array}
\]
Let $n \in [[M_{32}^{S,\leq}]]$ and $m \in [[M_{21}^{S,\leq}]]$. Define a map

$$\alpha_{[n, m]} : S \rightarrow M_{31}, \quad \alpha_{[n, m]}(s) = \sum_{(u, v) \in X_s(n, m)} \psi(n(u) \otimes m(v))$$

for any $s \in S$. It is clearly that $\text{supp}(\alpha_{[n, m]}) \subseteq \text{supp}(n) + \text{supp}(m)$, thus $\alpha_{[n, m]} \in [[M_{31}^{S,\leq}]]$.

Define a map $f : [[M_{32}^{S,\leq}]] \times [[M_{21}^{S,\leq}]] \rightarrow [[M_{31}^{S,\leq}]]$, where $f((n, m)) = \alpha_{[n, m]}$ for any $(n, m) \in [[M_{32}^{S,\leq}]] \times [[M_{21}^{S,\leq}]]$. Let $n_1, n_2 \in [[M_{32}^{S,\leq}]], m \in [[M_{21}^{S,\leq}]]$. By the preceding discussions, there exist $\alpha_{[n_1, m]}, \alpha_{[n_2, m]}, \alpha_{[n_1 + n_2, m]} \in [[M_{31}^{S,\leq}]]$. For all $s \in S$,

$$\alpha_{[n_1 + n_2, m]}(s) = \sum_{(u, v) \in X_s(n_1 + n_2, m)} \psi((n_1 + n_2)(u) \otimes m(v))$$

$$= \sum_{(u, v) \in X_s(n_1 + n_2, m)} \psi(n_1(u) \otimes m(v)) + \sum_{(u, v) \in X_s(n_1 + n_2, m)} \psi(n_2(u) \otimes m(v)).$$

If $(u', v') \in X_s(n_1, m)$, but $(u', v') \in X_s(n_1 + n_2, m)$, then we have $(n_1 + n_2)(u') = 0$. So $n_2(u') \neq 0$, thus $(u', v') \in X_s(n_2, m)$ and $\psi(n_1(u') \otimes m(v')) + \psi(n_2(u') \otimes m(v')) = \psi((n_1(u') + n_2(u')) \otimes m(v')) \neq 0$. Likewise, if $(u', v') \in X_s(n_2, m)$, but $(u', v') \in X_s(n_1 + n_2, m)$, we also have $(u', v') \in X_s(n_1, m)$ and $\psi(n_1(u') \otimes m(v')) + \psi(n_2(u') \otimes m(v')) = \psi((n_1(u') + n_2(u')) \otimes m(v')) = 0$. So

$$\alpha_{[n_1 + n_2, m]}(s) = \sum_{(u, v) \in X_s(n_1 + n_2, m)} \psi(n_1(u) \otimes m(v))$$

$$+ \sum_{(u, v) \in X_s(n_1 + n_2, m)} \psi(n_2(u) \otimes m(v))$$

$$= \alpha_{[n_1, m]}(s) + \alpha_{[n_2, m]}(s) = (\alpha_{[n_1, m]} + \alpha_{[n_2, m]})(s).$$

Thus $\alpha_{[n_1 + n_2, m]} = \alpha_{[n_1, m]} + \alpha_{[n_2, m]}$, hence $f((n_1 + n_2, m)) = f((n_1, m)) + f((n_2, m))$.

Analogously, we see that $f((m, n_1 + n_2)) = f((m, n_1)) + f((m, n_2))$ for all $n \in [[M_{32}^{S,\leq}]], m_1, m_2 \in [[M_{21}^{S,\leq}]]$.

EXTENSIONS OF GM-RINGS
For any \(n \in [[M_{32}^{S \leq}]], \tau \in [[A_2^{S \leq}]], m \in [[M_{21}^{S \leq}]] \) and any \(s \in S \), we have

\[
f((n \tau, m))(s) = \alpha_{[n \tau, m]}(s) = \sum_{(u', u) \in X_s(n \tau, m)} \psi((n \tau)(u') \otimes m(u)) = \sum_{(u', u) \in X_s(n \tau, m)} \psi(\sum_{(v, w) \in X_u(n, \tau)} (n(v) \tau(w) \otimes m(u)) = \sum_{(u', u) \in X_s(n \tau, m)} \sum_{(v, w) \in X_u(n, \tau)} \psi(n(v) \tau(w) \otimes m(u)) = \sum_{(v,w,u) \in X} \psi(n(v) \tau(w) \otimes m(u)) = \sum_{(v,w,u) \in X_s(n, \tau, m)} \psi(n(v) \otimes \tau(w) m(u)) = \sum_{(v,w,u) \in X_s(n, \tau, m)} f(n, \tau m)(s).
\]

Where \(X = \{(v, w, u) \in X_s(n, \tau, m) | n \tau(v + w) = 0\} \). Thus we have \(f(n \tau, m) = f(n, \tau m) \) and hence \(f \) is a bilinear balanced morphism. Then there exists a homomorphism \(\psi^S : [[M_{32}^{S \leq}]] \otimes [[M_{21}^{S \leq}]] \rightarrow [[M_{21}^{S \leq}]] \) such that the preceding diagram commutes.

Next, we check that \(\psi^S \) is a bimodule homomorphism. For any \(a \in [[A_3^{S \leq}]], n \in [[M_{32}^{S \leq}]], m \in [[M_{21}^{S \leq}]] \) and any \(s \in S \).

\[
\psi^S(an, m)(s) = \alpha_{[an, m]}(s) = \sum_{(u', u) \in X_s(an, m)} \psi((an)(u') \otimes m(u)) = \sum_{(u', u) \in X_s(an, m)} \psi(\sum_{v, w) \in X_u(a, n)} (a(v)n(w) \otimes m(u)) = \sum_{(v,w,u) \in X_s(a, n, m)} a(v) \psi(n(w) \otimes m(u)) = a\psi^S(n, m)(s).
\]
Thus \(\psi^S(\alpha n, m) = a \psi^S(\alpha m, n) \). This implies that \(\psi^S \) is a left \([A_1^{S \leq}]\)-module homomorphism. Analogously, it is easy to verify that \(\psi^S \) is a right \([A_1^{S \leq}]\)-module homomorphism. Thus \(\psi^S \) is a bimodule homomorphism. With the usual matrix operations, \(T^S \) is a ring, see [4].

\[\text{Lemma 2.5.} \]

Theorem 2.8. Let \(A_1, A_2, A_3 \) be reduced rings, \((S, \leq)\) a cancellative torsion-free strictly ordered monoid. Then the following conditions are equivalent:

1. \(A_1, A_2, \) and \(A_3 \) are GM-rings.
2. The formal triangular matrix ring over generalized power series

\[
T^S = \begin{pmatrix}
[A_1^{S \leq}] & 0 & 0 \\
[M_{21}^{S \leq}] & [A_2^{S \leq}] & 0 \\
[M_{31}^{S \leq}] & [M_{32}^{S \leq}] & [A_3^{S \leq}]
\end{pmatrix}
\]

is a GM-ring.

Proof. (1) \(\Rightarrow \) (2) Since \(A_1, A_2, \) and \(A_3 \) are GM-rings, so are rings \([A_1^{S \leq}], [A_2^{S \leq}]\) and \([A_3^{S \leq}]\) by virtue of Lemma 2.4. According to [2, Theorem 6], the result follows.

(2) \(\Rightarrow \) (1) Applying [2, Theorem 6], we have \([A_1^{S \leq}], [A_2^{S \leq}]\) and \([A_3^{S \leq}]\) are GM-rings. Then according to Lemma 2.5, we get the result.

Example 4 Let \(A_1, A_2, A_3 \) be reduced rings and \(N \) the semigroup of natural numbers. Let \(S = N \cup \{0\} \), with the usual order. then

\[
T^S = \begin{pmatrix}
[A_1^{S \leq}] & 0 & 0 \\
[M_{21}^{S \leq}] & [A_2^{S \leq}] & 0 \\
[M_{31}^{S \leq}] & [M_{32}^{S \leq}] & [A_3^{S \leq}]
\end{pmatrix}
\]

\[
\cong \begin{pmatrix}
A_1[[X]] & 0 & 0 \\
M_{21}[[X]] & A_2[[X]] & 0 \\
M_{31}[[X]] & M_{32}[[X]] & A_3[[X]]
\end{pmatrix}
\]

where \(A_1[[X]](i = 1, 2, 3) \) is the ring of formal power series, and \(M_{ij}[[X]](i = 2, 3, j = 1, 2) \) is a bimodule of power series rings. If \(A_1, A_2, A_3 \) are GM-rings, then \(T^S \) is also a GM-ring. Actually, let

\[
F = \begin{pmatrix}
f_1 & 0 & 0 \\
m_{21} & f_2 & 0 \\
m_{31} & m_{32} & f_3
\end{pmatrix} \in T^S, \quad G = \begin{pmatrix}
g_1 & 0 & 0 \\
n_{21} & g_2 & 0 \\
n_{31} & n_{32} & g_3
\end{pmatrix} \in T^S.
\]

Since \(A_i(i = 1, 2, 3) \) is a GM-ring, by Lemma 2.4, we have \(A_i[[X]] \) is also a GM-ring. Thus there exist \(e_i = e_i, p_i^2 = p_i \in A_i[[X]], u_i \in U(A_i[[X]]) \) and \(v_i \in U(A_i[[X]]) \), \(v_i' \in U(A_i[[X]]) \) such that \(f_i = e_i + v_i + v_i' \) and \(g_i = p_i u_i + v_i \).
Set
\[F_1 = \begin{pmatrix} e_1 & 0 & 0 \\ 0 & e_2 & 0 \\ 0 & 0 & e_3 \end{pmatrix}, \quad W = \begin{pmatrix} u_1 & 0 & 0 \\ 0 & u_2 & 0 \\ 0 & 0 & u_3 \end{pmatrix}, \quad K_1 = \begin{pmatrix} v_1 & 0 & 0 \\ m_{21} & v_2 & 0 \\ m_{31} & m_{32} & v_3 \end{pmatrix}. \]

It is easy to verify that \(F_1^2 = F_1 \in T^S \), and
\[K_1 = \begin{pmatrix} v_1^{-1} & 0 & 0 \\ -v_2^{-1}m_{21}v_1^{-1} & v_2^{-1} & 0 \\ v_3^{-1}m_{32}v_2^{-1} - v_3^{-1}m_{31}v_1^{-1} & -v_3^{-1}m_{32}v_2^{-1} & v_3^{-1} \end{pmatrix} \]
\[= \begin{pmatrix} v_1^{-1} & 0 & 0 \\ -v_2^{-1}m_{21}v_1^{-1} & v_2^{-1} & 0 \\ v_3^{-1}m_{32}v_2^{-1} - v_3^{-1}m_{31}v_1^{-1} & -v_3^{-1}m_{32}v_2^{-1} & v_3^{-1} \end{pmatrix} K_1 \]
\[= \text{diag}(1,1,\ldots,1), \]

This means that \(F_1 \) is an idempotent and \(K_1 \) is a unit. Moreover, \(F = F_1W + K_1 \) and \(W \) is a unit. Analogously, we have an idempotent \(F_2 = \begin{pmatrix} p_1 & 0 & 0 \\ 0 & p_2 & 0 \\ 0 & 0 & p_3 \end{pmatrix} \), and a unit \(K_2 = \begin{pmatrix} v'_1 & 0 & 0 \\ n_{21} & v'_2 & 0 \\ n_{31} & n_{32} & v'_3 \end{pmatrix} \) such that \(G = F_2W^{-1} + K_2 \). Therefore we conclude that \(T^S \) is a \(GM \)-ring. Conversely, if \(T^S \) is a \(GM \)-ring, similar to the proof of Theorem 6 in [2], we obtain that \(A_i[[X]] \) is a \(GM \)-ring. Then by Lemma 2.5, we have \(A_i(i = 1, 2, 3) \) is a \(GM \)-ring.

Corollary 2.9. Let \(R \) be a reduced ring, \((S, \leq)\) a cancellative torsion-free strictly ordered monoid. A ring \(R \) is a \(GM \)-ring if and only if the ring of all \(n \times n \) lower triangular matrices over \([[[R^{S,\leq}]])\) is a \(GM \)-ring.

Proof. According to Theorem 2.8, the result follows. \(\square \)

Analogously, let \(R \) be a reduced ring, \((S, \leq)\) a cancellative torsion-free strictly ordered monoid. we deduce that a ring \(R \) is a \(GM \)-ring if and only if the ring of all \(n \times n \) upper triangular matrices over \([[[R^{S,\leq}]])\) is a \(GM \)-ring.

Let \(M \) be a \((R, R)\)-bimodule, then the module extension of \(R \) by \(M \) is the ring \(R \bowtie M \) with the usual addition and multiplication defined by \((r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2) \) for \(r_1, r_2 \in R \) and \(m_1, m_2 \in M \). Now we investigate \(GM \)-rings for module extension of \([[[R^{S,\leq}]])\) by \([[[M^{S,\leq}]])\) and introduce a large class of such rings.
Lemma 2.10. Let ring $R \bowtie M$ be the module extension of R by M. Let $[[R^{S} \leq]] \bowtie [[M^{S} \leq]]$ be the module extension of $[[R^{S} \leq]]$ by $[[M^{S} \leq]]$. Then $[[R^{S} \leq]] \bowtie [[M^{S} \leq]] \cong [[[R \bowtie M]^{S} \leq]]$.

Proof. Let
\[
T(R, M) = \left\{ \begin{pmatrix} r & m \\ 0 & r \end{pmatrix} \mid r \in R, m \in M \right\},
\]
\[
T^{*}(R, M) = \left\{ \begin{pmatrix} f & m \\ 0 & f \end{pmatrix} \mid f \in [[R^{S} \leq]], m \in [[M^{S} \leq]] \right\}.
\]
With the usual matrix operations, $T(R, M)$ and $T^{*}(R, M)$ are rings. As in the proof of [7, Proposition 4.3], it is easy to show that $T^{*}(R, M) \cong [[T(R, M)^{S} \leq]]$. Moreover, $R \bowtie M \cong T(R, M)$ and $[[R^{S} \leq]] \bowtie [[M^{S} \leq]] \cong T^{*}(R, M)$. So $[[R^{S} \leq]] \bowtie [[M^{S} \leq]] \cong [[[R \bowtie M]^{S} \leq]]$, as asserted. \hfill \Box

Theorem 2.11. Let R be a ring, M a (R, R) bimodule. If R is a GM ring, then $[[R^{S} \leq]] \bowtie [[M^{S} \leq]]$ is a GM ring.

Proof. Since R is a GM ring, so is ring $R \bowtie M$ by [2, Theorem 11]. Use the fact that $[[R^{S} \leq]] \bowtie [[M^{S} \leq]] \cong [[[R \bowtie M]^{S} \leq]]$, then the result follows by Lemma 2.4. \hfill \Box

Corollary 2.12. Let R be a ring. If R is a GM ring, then $[[R^{S} \leq]] \bowtie [[R^{S} \leq]]$ is a GM ring.

Proof. It is an immediate consequence of Theorem 2.11. \hfill \Box

Corollary 2.13. Let R be an exchange ring with artinian primitive factors. Then $[[R^{S} \leq]] \bowtie [[R^{S} \leq]]$ is a GM ring.

Proof. Since R is an exchange ring with artinian primitive factors, it is a GM ring. Thus we get the result by Corollary 2.12. \hfill \Box

Acknowledgements. The authors are grateful to the referee for his (her) careful reading the article and nice suggestions which lead to the current versions of Examples 1, 2 and 3.

References

Lunqun Ouyang
1. Department of Mathematics, Hunan Normal University, Changsha 410081, P. R. China
2. Department of Mathematics, Hunnan Science and Technology University, Xiangtan 411201, P. R. China
E-mail: Ouyanglqtxy@163.com

Dayong Liu
Department of Mathematics, Hunan Normal University, Changsha 410081, P. R. China
E-mail: liudy7082@sina.com