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Abstract. We prove that, for any positive integer n, there exists a minimal

finite set S(n) of finite groups such that: a group G is the union of n of

its proper subgroups (but not the union of fewer than n proper subgroups)

if and only if G has a quotient isomorphic to some group K ∈ S(n). We

prove, furthermore, that such a minimal finite set S(n) is in fact unique up to

isomorphism of its members. Finally, an analogue of this result can be proved

when “subgroups” is replaced more generally by “cosets”.
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1. Introduction

It is well-known that a group cannot be the union of two proper subgroups.

The question as to when a group is the union of three proper subgroups was first

answered by Scorza [19], who showed that a group has this property if and only

if it has a quotient isomorphic to the Klein four-group C2 × C2. The analogous

questions with three replaced by four, five and six subgroups were answered by

Cohn [8], while the case of seven subgroups was handled by Tomkinson [17].

Following Cohn [8], for any group G let us write σ(G) = n if G can be expressed

as the union of n proper subgroups but not as the union of fewer than n proper

subgroups. Then we may summarize the results described above as follows:

Theorem 1. (i) There is no group G with σ(G) = 1 or 2.

(ii) σ(G) = 3 if and only if G has a quotient isomorphic to C2 × C2.

(iii) σ(G) = 4 if and only if σ(G) ̸= 3 and G has a quotient isomorphic to S3

or C3 × C3.

(iv) σ(G) = 5 if and only if σ(G) /∈ {3, 4} and G has a quotient isomorphic to

the alternating group A4.
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(v) σ(G) = 6 if and only if σ(G) /∈ {3, 4, 5} and G has a quotient isomorphic

to D5, C5×C5, or W , where W = C4nC5 is the group of order 20 defined

by a5 = b4 = e, ba = a2b.

(vi) There is no group G with σ(G) = 7.

These beautiful results, due to three different authors, suggest that perhaps

there are similar “finite criteria” for determining whether σ(G) = n for any positive

integer n. In this paper, we prove the following general existence theorem:

Theorem 2. For any positive integer n there is a minimal finite set S(n) of finite

groups, uniquely defined up to isomorphism of its members, such that: σ(G) = n if

and only if σ(G) /∈ {3, 4, . . . , n−1} and G has a quotient isomorphic to some group

K ∈ S(n).

Theorem 1 may thus be viewed as giving effective versions of Theorem 2 in cases

of small n. Namely, up to isomorphism of their members, we have S(1) = S(2) = ϕ,

S(3) = {C2 × C2}, S(4) = {S3, C3 × C3}, S(5) = {A4}, S(6) = {D5, C5 × C5,W},
and S(7) = ϕ.

2. Proof of Theorem 2

Let S(n) be a set consisting of one representative from each isomorphism class

of the groups K having the property that σ(K) = n but no nontrivial quotient L

of K satisfies σ(L) = n. (Note that S(n) may be empty, as the cases n = 1, 2, and

7 illustrate.) We show that S(n) has all the desired properties.

First, let G be any group with σ(G) = n, and write G = ∪n
i=1Ai for some proper

subgroups Ai of G. Set H = ∩n
i=1Ai. Then, by Neumann’s Theorem [13], there

exists a finite constant f(n), depending only on n, such that the index of H in G is

less than f(n).1 Let M = core (H) denote the intersection of the conjugates of H.

Then evidently we also have σ(G/M) = n, for G/M = ∪n
i=1(Ai/M), and if G/M

were the union of fewer than n proper subgroups Bj/M , then so would G = ∪jBj ,

a contradiction.

It follows now that G/M is isomorphic to a subgroup of the symmetric group

S[G:H], since the action of G by left multiplication on the left cosets of H yields a

homomorphism G → Perm (G/H) whose kernel is seen to be M . Thus

|G/M | ≤ |S[G:H]| ≤ |Sf(n)| = f(n)! . (1)

1More generally Neumann’s Theorem states that, if G is expressed as an irredundant union

∪n
i=1xiAi of cosets—i.e., G = ∪n

i=1xiAi but no coset xjAj is contained in the union ∪i̸=jxiAi of

the others—then [G : ∩n
i=1Ai] ≤ f(n) for some constant f(n) depending only on n.
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Let N ⊇ M be a normal subgroup of G that is maximal with respect to the property

that σ(G/N) = n (such a maximal N exists because the index of M in G is finite).

It follows that G/N is isomorphic to some group in S(n), and thus any group G

with σ(G) = n must have some quotient isomorphic to a group in S(n) of order at

most f(n)! .

In particular, if G is a group in S(n), then the corresponding normal subgroupM

must equal {1}, so by (1) we have |G| ≤ f(n)!. Thus any element of S(n) must have

order at most f(n)!, implying that S(n) is a set of finite groups. Moreover, since

there are only finitely many groups G of order at most f(n)! (up to isomorphism),

and since only a subset of these can satisfy σ(G) = n, our set S(n) must be a finite

set for any positive integer n.

Thus we have shown that if G is any group with σ(G) = n, then it must have

a quotient isomorphic to some group K in the finite set S(n) of finite groups.

Conversely, suppose G is a group such that σ(G) /∈ {3, 4, . . . , n − 1} and G has a

quotient isomorphic to some group K ∈ S(n). Then since K is covered by n proper

subgroups, the inverse images of these subgroups, under a surjective homomorphism

ϕ : G → K, form a covering of G by n proper subgroups; it follows that σ(G) = n.

It remains only to prove the minimality and uniqueness of the set S(n), up to

isomorphism of its members. To this end, suppose S is any other set of groups such

that, for all groups G, we have:

σ(G) = n if and only if σ(G) /∈ {3, 4, . . . , n− 1} and

G has a quotient isomorphic to some group K ∈ S.
(2)

Assume, furthermore, that there exists a group H ∈ S(n) not represented in S,

i.e., no group isomorphic to H is an element of S. Because σ(H) = n, by (2) the

group H must have a quotient H/B isomorphic to some K ∈ S. Since H is not

represented in S, this quotient must be non-trivial, i.e., B ̸= 1. Now the group K

cannot satisfy σ(K) ≤ n, for if σ(K) < n, then any covering of K by fewer than

n proper subgroups would lift to such a covering of H; and if σ(K) = n, then the

group H cannot be a member of S(n) by the definition of S(n) (since B ̸= 1). It

follows that σ(K) > n.

Thus the group K satisfies σ(K) /∈ {3, 4, . . . , n − 1}, and K has a quotient

(namely itself) in S. By property (2) of S, it follows that σ(K) = n, a contradiction.

We are forced to conclude that H is indeed represented in S, and thus every element

of S(n) has a representative in S. Therefore S(n) is the unique minimal set S

satisfying (2), up to isomorphism of its members, and this completes the proof. �
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3. An analogue of Theorem 2 for coverings by cosets

The argument in the proof of Theorem 2 can also be applied in many other

contexts. First, we may wish to express a group more generally as a union of cosets

of subgroups. The arguments of Section 2 apply equally well in this situation, and

as such, we may classify groups that are the unions of n cosets.

However, it is easy to cover a group G by cosets if we allow trivial covers : for

any group G, and any subgroup H having finite index n in G, the group G may

be covered by the n (left or right) cosets of H. To prevent such trivial coverings

(and variants, e.g., where one breaks up a given coset of H further into cosets of

some subgroup of H), Parmenter [15] has formulated the definition of a nontrivial

covering by cosets. A nontrivial covering of G by n cosets xiAi is one in which

each Ai is a maximal subgroup of G and the cosets xiAi are not all left cosets or

all right cosets of the same subgroup A for any subgroup A.

Let us write σ′(G) = n if G is the nontrivial union of n cosets but not of fewer

cosets. Then Theorem 2 can be extended to the context of nontrivial coverings of

groups by n cosets as follows:

Theorem 3. For any positive integer n, there exists a minimal finite set T (n)

of finite groups, uniquely defined up to isomorphism of its members, such that:

σ′(G) = n if and only if σ′(G) /∈ {3, 4, . . . , n−1} and G has a quotient isomorphic

to some group K ∈ T (n).

The proof of Theorem 3 is essentially identical to that of Theorem 2. It would be

nice to have effective versions of Theorem 3 for small values of n, just like Theorem 1

gives for Theorem 2. It is easy to see that we again have T (1) = T (2) = ϕ.

Moreover, a bit of work shows that we also have T (3) = S(3) = {C2×C2}. However,

it is certainly not true that T (n) can be taken to be the same as S(n) for all n. For

example, Cohn has shown that σ(A5) = 10 and σ(S5) = 16, but it is easily seen

that both A5 and S5 can be covered nontrivially by fewer than 10 cosets. Thus

T (10) ̸= S(10) and T (16) ̸= S(16).

4. Remarks

For a general value of n, it seems a difficult problem to explicitly compute S(n)

and T (n). In theory, the proof of Theorem 2 gives a finite method to determine S(n)

(or T (n)) for any given n: namely, examine all groups G of order less than or equal

to f(n)!, and determine which of these groups satisfy σ(G) = n (or σ′(G) = n) and

do not have a quotient with the same property. The best known general bounds for
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f(n) (due to Tomkinson [18]) give f(n) ≤ max{(n − 1)2, (n − 2)3} · (n − 3)! < n!.

Thus we obtain the upper bound n!! (the factorial of the factorial of n) for the order

of groups in S(n) and T (n). Therefore, a priori, one might need to examine groups

of order up to n!! in order to determine S(n) and T (n). However, in practice, for

particular values of n these bounds can be reduced significantly, as in the work of

Bryce, Fedri, and Serena [6] who have shown that the optimal value of f(5) is 16.

We note that the arguments used in the proof of Theorem 2 can also be applied

in a number of other contexts. For example, if one wishes to classify groups that

possess coverings by n proper subgroups (or cosets) having a given property, then

the arguments of Theorem 2 again apply, provided that this property is preserved

under liftings via surjective homomorphisms. For example, since normal subgroups

lift to normal subgroups under surjective maps, the arguments of Theorem 2 imply

that a group G is the union of n proper normal subgroups if and only if G is not

a union of fewer than n such subgroups and G has a quotient isomorphic to some

K ∈ Snormal(n), where Snormal(n) is a (uniquely determined minimal) finite set of

finite groups.

There has been much work on coverings of groups by normal subgroups, begun

by Brodie, Chamberlain, and Kappe [4], and continued, e.g., by Parmenter [15] and

the author [2]. From the latter work one may determine Snormal(n) explicitly for

all n. Indeed, it follows from [2, Corollary 1] and the arguments of Theorem 2 that

Snormal(n) =

{Cp × Cp} for n = p+ 1, where p is a prime; and

ϕ otherwise.

For nontrivial coverings by cosets of normal subgroups, one similarly must have

a unique minimal set Tnormal(n) with the analogous properties. In fact, the work

of Parmenter [15] yields the interesting result that if a group G is the nontrivial

union of n cosets of normal subgroups, then G must also be the union of ≤ n

proper normal subgroups. It follows from this work that the minimal number of

cosets of proper normal subgroups required to nontrivially cover a group G is always

the same as the minimal number of proper normal subgroups required to cover G.

Hence Tnormal(n) = Snormal(n) for all n.

Other types of coverings that are preserved under liftings via surjective homo-

morphisms are uniform coverings (see e.g., Sun [16]), coverings by cosets of dis-

tinct subgroups (see, e.g., Erdös [9]), as well as coverings by noncyclic subgroups

(or cosets), nonabelian subgroups (or cosets), nonsolvable subgroups (or cosets),

nonnilpotent subgroups (or cosets), and subgroups (or cosets) having indices in a
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specified set. For any of these types of coverings, one may formulate an analogue

of Theorem 2 (or Theorem 3) for such coverings. We believe much of the literature

on coverings of groups can be reconsidered (and, in many cases, simplified) from

this point of view.

An expository account of this work and related covering problems is given in [3].

References

[1] M. Bhargava, Problem E1592, Amer. Math. Monthly, 71 (1964), 319.

[2] M. Bhargava, When is a group the union of proper normal subgroups? Amer.

Math. Monthly, 109(5) (2002), 471–473.

[3] M. Bhargava, Groups as unions of subgroups, Amer. Math. Monthly, to appear.

[4] M. A. Brodie, R. F. Chamberlain, and L.-C. Kappe, Finite coverings by normal

subgroups, Proc. Amer. Math. Soc., 104(3) (1988), 179–188.

[5] M. A. Berger, A. Felzenbaum, and A. Fraenkel, The Herzog-Schnheim conjec-

ture for finite nilpotent groups, Canad. Math. Bull., 29(3) (1986), 329–333.

[6] R. A. Bryce, V. Fedri and L. Serena, Covering groups with subgroups, Bull.

Austral. Math. Soc., 55(3) (1997), 469–476.

[7] R. A. Bryce, V. Fedri and L. Serena, A generalized Hughes property of finite

groups, Comm. Algebra, 31(9) (2003), 4215–4243.

[8] J. H. E. Cohn, On n-sum groups, Math. Scand., 75 (1994), 44–58.

[9] P. Erdos, On integers of the form 2k + p and some related problems, Summa

Brasil. Math., 2 (1950), 113–123.

[10] P. E. Holmes, Subgroup coverings of some sporadic groups, preprint.

[11] M. S. Lucido, On the covers of finite groups, Groups St. Andrews, vol. II

(2001), 395–399.
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