GALOIS MODULE STRUCTURE OF FIELD EXTENSIONS

Patrik Lundström

Received: 31 January 2007; Revised: 24 April 2007
Communicated by Derya Keskin Tütüncü

Abstract. We show, in two different ways, that every finite field extension has a basis with the property that the Galois group of the extension acts faithfully on it. We use this to prove a Galois correspondence theorem for general finite field extensions. We also show that if the characteristic of the base field is different from two and the field extension has a normal closure of odd degree, then the extension has a self-dual basis upon which the Galois group acts faithfully.

Mathematics Subject Classification (2000): 12F10, 12G05
Keywords: Galois theory, normal basis, self-dual basis

1. Introduction

If K/k is a finite field extension and G is a subgroup of the group $\text{Aut}_k(K)$ of k-automorphisms of K, then the action of G on K induces a left $k[G]$-module structure on K in a natural way. If the order of G equals the degree $[K : k]$ of K as a vector space over k, then K/k is a Galois extension and the well known normal basis theorem (see e.g. Theorem 13.1 in [8]) implies that K is a free $k[G]$-module with one generator. This result can of course be formulated more concretely by saying that there is an element x in K such that the conjugates $g(x)$, $g \in G$, form a basis for K as a vector space over k. If the order of G is less than $[K : k]$, then K is still a free $k[G]$-module but not necessarily with one generator. In fact, if we let K^G denote the subfield of elements x in K with the property that $g(x) = x$ for all $g \in G$, then the following result holds.

Theorem 1. If K/k is a finite field extension and G is a subgroup of $\text{Aut}_k(K)$, then K is a free $k[G]$-module with $[K^G : k]$ generators.

This result follows directly from the normal basis theorem. In fact, since the extension K/K^G is Galois, the field K is a free $K^G[G]$-module with one generator. If we pick such a generator x and a basis A for K^G as a vector space over k, then it is easy to check that the set of products ax, $a \in A$, freely generates K as a left
In Section 2, we give two different direct proofs of Theorem 1, that is, proofs that do not use the normal basis theorem. Both of these proofs are based on descent, that is, the fact that a basis with the desired property exists for the extension $K \otimes_k L$ where L is a normal closure of K. The first proof is a variant of an idea of Noether and Deuring (see [10] and [6]) which involves the Krull-Schmidt theorem. The second proof is a generalization of a folklore idea using Hilbert’s theorem 90. As a by product of Theorem 1, we obtain a Galois correspondence theorem for general finite field extensions (see Theorem 3). This correspondence is more or less well known but rarely stated in the literature.

Now suppose that K/k is separable and let S denote the set of embeddings of K into L. The trace map $\text{tr}_{K/k} : K \to k$, defined by $\text{tr}_{K/k}(x) = \sum_{s \in S} s(x)$, $x \in K$, induces a symmetric bilinear form $q_K : K \times K \to k$ by the relation $q_K(x, y) = \text{tr}_{K/k}(xy)$, $x, y \in K$. The bilinear form q_K is also a G-form, that is, it is invariant under the action of G. The G-form structure of (K, q_K) has been extensively studied (see e.g. [2], [3], [4], [5], [7] and [9]). In [3] Bayer-Fluckiger and Lenstra show that if K/k is Galois, the characteristic of k is different from two and the order $|G|$ of the group G is odd, then (K, q_K) is isomorphic to the G-form $(k[G], q_0)$, where q_0 is the unit G-form, that is, the k-bilinear map $k[G] \times k[G] \to k$ defined by the relations $q_0(g, g) = 1$ and $q_0(g, g') = 0$ if $g \neq g'$ for all $g, g' \in G$. It is easy to see that such an isomorphism exists precisely when K/k has a normal basis which is self-dual with respect to the bilinear form q_K. Bayer-Fluckiger and Lenstra utilize a general result (see Theorem 2.1 in [3]) concerning hermitian modules and in a special case G-forms (see Theorem 4) to show the existence of self-dual normal bases. In Section 3, we use this idea to prove the following generalization of their result.

Theorem 2. Let K/k be a finite separable field extension and suppose that G is a subgroup of $\text{Aut}_k(K)$. If the characteristic of k is different from two and K/k has a normal closure L/k of odd degree, then (K, q_K) is isomorphic to the direct sum of $[K^G : k]$ copies of the unit G-form $(k[G], q_0)$.

Bayer-Fluckiger [1] has shown that finite Galois extensions of odd degree have self-dual normal bases in the case when the characteristic of the base field is two also. It is not clear to the author if Theorem 2 can be extended to this case.

2. Galois module structure

In this section, we give two different proofs of Theorem 1. Then we use this result to obtain a Galois correspondence theorem for general finite field extensions.
(see Theorem 3). We will use the following two standard facts from field theory. Let \(F/F' \) be a field extension.

(F1) If \(H \) is a finite subgroup of \(\text{Aut}_{F'}(F) \), then \([F : F^H] = |H| \) and for any
field \(K' \), with \(F^H \subseteq K' \subseteq F, F/K' \) is Galois.

(F2) If \(F/F' \) is finite and Galois, then \([F : F'] = |\text{Aut}_{F'}(F)| \).

Now we show Theorem 1. We claim that it is enough to show the result for separable extensions. To show the claim we need some more notations and a lemma. Let
\(K_1/k \) be the maximally separable subextension of \(K/k \). Then \(K/K_1 \) is purely inseparable and since the restriction map from \(\text{Aut}_k(K) \) to \(\text{Aut}_k(K_1) \) is a bijection, we can, by abuse of notation, assume that \(G \) is a subset of both of these groups.

Lemma 1. There is a basis \(B \) for \(K \) as a vector space over \(K_1 \) with the property that \(s(b) = b, s \in S, b \in B \).

Proof. By induction over the degree of \(K \) over \(K_1 \), we can assume that \(K = K_1(b) \) for some purely inseparable \(b \in K \) over \(K_1 \). By it’s definition \(B := \{1, b, b^2, \ldots, b^{p^n}-1\} \), where \([K : K_1] = p^n\), has the desired property. \(\square \)

Now we show the claim. By Lemma 1, \(K = \bigoplus_{b \in B} K_1 b \) where each \(b \) belongs to \(K^G \). If we assume that \(K_1 \) is a free \(k[G] \)-module with \([K_1^G : k]\) generators, then, by
(F1), \(K \) is a free \(k[G] \)-module with \n\[[K : K_1][K_1^G : k] = \frac{[K : K^G][K^G : K_1^G][K_1^G : k]}{[K_1 : K_1^G]} = \frac{[G][K^G : k]}{|G|} = [K^G : k] \]
generators and the claim follows. From now on we assume that \(K/k \) is separable.

First proof of Theorem 1. Recall that if \(X \) is a finite set, then \(L[X] \) is defined to be the set of formal sums \(\sum_{x \in X} l_x x \), where \(l_x \in L, x \in X \). If \(G \) acts on \(X \), then \(L[X] \) is, in a natural way, a left \(L[G] \)-module. In the following lemma we let \(G \) act on \(S^{-1} := \{s^{-1} \mid s \in S\} \) by composition from the left. The action of \(G \) on \(K \) induces a left \(L[G] \)-module structure on \(K \otimes_k L \).

Lemma 2. The left \(L[G] \)-modules \(K \otimes_k L \) and \(L[S^{-1}] \) are isomorphic.

Proof. Define a map \(\varphi : K \otimes_k L \to L[S^{-1}] \) by the relation \(\varphi(a \otimes b) = \sum_{s \in S} s(a) b s^{-1}, a \in K, b \in L \). It is clear that \(\varphi \) is \(L \)-linear. Now we show that \(\varphi \) respects the action of \(G \). Take \(a \in K, b \in L \) and \(g \in G \). Then \(\varphi(g(a \otimes b)) = \varphi(g(a) \otimes b) = \sum_{s \in S} sg(a) b g s^{-1} \). If we put \(t := sg \), then \(s^{-1} = gt^{-1} \) and hence \(\varphi(g(a \otimes b)) = \sum_{t \in S} t(a) b t^{-1} = g \sum_{t \in S} t(a) b t^{-1} = g \varphi(a \otimes b) \). By \(L \)-dimensionality, we only need to show that \(\varphi \) is injective to finish the proof. Suppose that \(\varphi(x) = 0 \)
for some $x \in K \otimes_k L$. Take a basis a_t, $t \in S$, for K as a vector space over k. Then we can choose $l_t \in L$, $t \in S$, such that $x = \sum_{t \in S} a_t \otimes l_t$. Therefore $0 = \varphi(\sum_{t \in S} a_t \otimes l_t) = \sum_{s \in S} \sum_{t \in S} s(a_t) l_t s^{-1}$. This implies that $\sum_{t \in S} s(a_t) l_t = 0$, $s \in S$. However, by Dedekind’s linear independence theorem (see e.g. Theorem 4.1 in [8]), the matrix $(s(a_t))_{s,t}$ is non-singular. Therefore $l_t = 0$, $t \in S$, which in turn implies that $x = 0$.

To finish the first proof of Theorem 1 note that the isomorphism in Lemma 2 implies an isomorphism $K^\oplus[L:k] \cong k[S^{-1}]^\oplus[L:k]$ of $k[G]$-modules. Therefore, by the Krull-Schmidt theorem (see e.g. Theorem 7.5 in [8]), $K \cong k[S^{-1}]$ as $k[G]$-modules. Since the action of G on S^{-1} is faithful, $k[S^{-1}]$ decomposes into a direct sum of copies of $k[G]$, the number of these copies being equal to the number of orbits for the action of G on S^{-1}, which, in turn, by (F1), equals $|S|/|G| = [K : k]/[K : K^G] = [K^G : k]$. This ends the first proof.

Second proof of Theorem 1. This proof uses the language of Galois cohomology (for the details, see e.g. pp. 158-162 in [11]). Put $G' := \text{Aut}_k(L)$ and $V := k[S^{-1}]$. Let E_V denote the set of all isomorphism classes of left $k[G']$-modules V' with the property that $V \otimes_k L$ and $V' \otimes_k L$ are isomorphic as left $L[G']$-modules. Now we show that E_V can be embedded in a pointed cohomology set. We can define an action of G' on the set of $L[G']$-module isomorphisms $f : V \otimes_k L \to V' \otimes_k L$ by $g(f) = g \circ f \circ g^{-1}$, $g \in G'$, where G' acts on the second factor in $V \otimes_k L$. It is easy to check that $G' \ni g \mapsto p_g := f^{-1} \circ g(f) \in \text{Aut}_{L[G']}(V \otimes_k L)$ is a cocycle, that is, a map satisfying $p_{gh} = p_g(p_h)$, $g, h \in G'$. Two cocycles p and p' are called cohomologous, denoted $p \sim p'$, if there exists $a \in \text{Aut}_{L[G']}(V \otimes_k L)$ such that $p'_g = a^{-1}p_g(a^{-1})$, $g \in G'$. Then \sim is an equivalence relation on the set of cocycles and the corresponding quotient set, denoted $H^1(G', \text{Aut}_{L[G']}(V \otimes_k L))$, is called the first cohomology set of G' in $\text{Aut}_{L[G']}(V \otimes_k L)$. By making p correspond to $V' \otimes_k L$ we get a canonical map from E_V to $H^1(G', \text{Aut}_{L[G']}(V \otimes_k L))$. Since $(V \otimes_k L)^{G'} = V$ it follows that this map is injective. However, by Hilbert’s theorem 90 (see e.g. Exercise 2 on p. 160 in [11]), the cohomology set $H^1(G', \text{Aut}_{L[G']}(V \otimes_k L))$ is trivial. Therefore K and $k[S^{-1}]$ are isomorphic $k[G']$-modules and we can end the second proof in the same way as in the first proof.

A Galois correspondence. Let F denote the set of fields between K and k and let G denote the set of subgroups of $G := \text{Aut}_k(K)$. Define functions $\alpha : G \to F$ and $\beta : F \to G$ by $\alpha(G') = K^{G'}$, $G' \in G$ and $\beta(F') = \text{Aut}_{K^{F'}}(K)$, $F' \subseteq F$. Also, let β' denote the restriction of β to $F' := \{K' \in F \mid K' \supseteq K^G\}$.

Theorem 3. With the above notations, \(\alpha \) and \(\beta \) are inclusion reversing maps satisfying \(\beta \alpha = \text{id}_G \) and \(\alpha \beta(K') \supseteq K' \), \(K' \in \mathbf{F} \), with equality if and only if \(K' \in \mathbf{F}' \). In particular, \(\beta' \alpha = \text{id}_G \) and \(\alpha \beta' = \text{id}_F \).

Proof. First we show that \(\beta \alpha = \text{id}_G \). Take \(G' \in G \). It is clear that \(H := \beta \alpha(G') = \text{Aut}_{K'}(K) \supseteq G' \). To show the reversed inclusion we first note that, by Theorem 1, the elements in \(K' \) correspond to elements \(x = (\sum_{g \in G} k_{g,i}g)_{i=1}^{[K':k]} \) in \(k[G]^\otimes [K':k] \) satisfying \(g'x = x, g' \in G' \). This is equivalent to the conditions \(k_{g,g'} = k_{g,i}, g' \in G', g \in G, 1 \leq i \leq [K^G : k] \). In particular, this implies that \(y := (\sum_{g \in G} g')_{i=1}^{[K':k]} \) belongs to \((k[G]^\otimes [K':k])^{G'} \). Therefore \(hy = y, h \in H \), which implies that \(H \subseteq G' \).

For the second part of the proof take \(K' \in \mathbf{F} \). The inclusion \(K'' := \alpha \beta(K') = \text{Aut}_{K''}(K) \supseteq K' \) is obvious. If equality holds, then \(K' \supseteq K^G \). On the other hand, suppose that \(K' \supseteq K'' \). Then \(K/K' \) is Galois, which, by (F1) and (F2), implies that \([K : K''] = [\text{Aut}_{K''}(K)] = [K : K'] \). Therefore \([K'' : K'] = 1 \) and hence \(K'' = K' \). The last part is clear. \(\square \)

3. The trace form

The trace form \(q_K \) on \(K \) induces in a natural way an \(L \)-bilinear \(G \)-form \(q_L \) on \(K \otimes_k L \). Also, define a \(G \)-form \(r \) on \(L[S^{-1}] \) by the relation \(r(s_i^{-1}, s_j^{-1}) = 1 \) and \(r(s_i^{-1}, s_j^{-1}) = 0 \) if \(s_1 \neq s_2 \) for all \(s_1, s_2 \in S \).

Lemma 3. The \(G \)-forms \((K \otimes_k L, q_L) \) and \((L[S^{-1}], r) \) are isomorphic.

Proof. Define \(\varphi : K \otimes_k L \rightarrow L[S^{-1}] \) as in the proof of Lemma 2. All we need to show is that \(\varphi \) respects the bilinear forms. Take \(a, a' \in K \) and \(b, b' \in L \). Then \(q_L(a \otimes b, a' \otimes b') = q_K(a, a')bb' = \text{tr}_{K/k}(aa')bb' = \sum_{s} s(aa')bb' = \sum_{s} s(a)s(a')bb' = \sum_{s_1, s_2} s_1(s_1(a)b_2(a')b'r(s_1^{-1}, s_2^{-1}) = r(\sum_{s_1} s_1(a)b_{s_1^{-1}}), \sum_{s_2} s_2(a')b_{s_2^{-1}} = r(\varphi(a \otimes b), \varphi(a' \otimes b'))). \(\square \)

Remark 1. Lemma 2 and Lemma 3 (and their proofs) are generalizations from Galois extensions to the case of separable extensions of isomorphisms established by Conner and Perlis in [5].

From now on assume that all fields are of characteristic different from two. To prove Theorem 2, we need the following result.

Theorem 4. ([3]) If two \(G \)-forms become isomorphic over an extension of odd degree, then they are isomorphic.

Suppose that \(K/k \) has a normal closure \(L/k \) of odd degree. By Lemma 3 and Theorem 4, the \(G \)-forms \((K, q_K) \) and \((k[S^{-1}], r) \) are isomorphic. With the same
argument as in the first proof of Theorem 1 it is clear that $(k[S^{-1}], r)$ is isomorphic to the direct sum of $[K^G : k]$ copies of the unit G-form $(k[G], q_0)$. This ends the proof of Theorem 2.

Remark 2. If we let G be the trivial group, then Theorem 2 implies the existence of a self-dual basis for all finite separable field extensions K/k with the property that L/k is of odd degree. This generalizes a result by Conner and Perlis (see (I.6.5) in [5] and Proposition 5.1 in [3]).

References

Patrik Lundström

University West
Department of Technology, Mathematics and Computer Science
Gärdhemsvägen 4, Box 957, 461 29 Trollhättan, Sweden
E-mail: patrik.lundstrom@hv.se