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Abstract. Composition is the operation of replacing variables in a polyno-

mial by other polynomials. In this paper, we show that composition commutes

with SAGBI basis computation (possibly under different monomial orderings)

if the leading monomials of the composition polynomials are a permuted pow-

ering.
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1. Introduction

Our interest in the subject of this paper is inspired by Hong ([6], [7]), where he

addresses the problem of the behavior of Gröbner bases ([1], [2]) under composition

of polynomials. Let K[x1, . . . , xn] denote the polynomial ring over the field K

and G be a subset of K[x1, . . . , xn]. Let F be a Gröbner basis (with respect to a

monomial ordering >) of the ideal generated by G and Θ be a list of n polynomials.

We say that composition by Θ commutes with the Gröbner basis computation if the

composed set F ◦Θ is also a Gröbner basis (with respect to the monomial ordering

>
′
) of G ◦ Θ. We would like to investigate the conditions on Θ under which the

composition commutes with the Gröbner basis computation. The case when > and

>
′

are the same monomial orderings is completely dealt with in [7]. There is a

sequel of this paper also by Hong ([6]), which is devoted to the case when F ◦Θ is

a Gröbner bases under >
′

(possibly different from >). He shows that this happens

if the list of the leading monomials of Θ is a permuted powering (see Section 2.2

for terminology).

The concept of Gröbner basis for ideals of a polynomial ring over a field K

can be adapted in a natural way to K-subalgebras of a polynomial ring. In [11]

SAGBI (Subalgebra Analog to Gröbner Basis for Ideals) basis for the K-subalgebra

of K[x1, . . . , xn] are defined, this concept was independently developed in [8]. Since

many of the basic concepts of Gröbner bases transfer to the subalgebra case, it is
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natural to investigate the conditions under which composition by a set Θ commutes

with SAGBI bases computation. The case of the same monomial ordering is treated

in [9]. Let S be a SAGBI basis (with respect to monomial ordering >) of the

subalgebra generated by G. The subject of this paper is to show that S ◦ Θ is a

SAGBI basis of G◦Θ with respect to some monomial ordering >
′

(possibly different

from >) if the list of the leading monomials of Θ is a permuted powering (Theorem

3.1).

The natural application of the results in this paper is the same as for Gröbner

bases in [6]. Composed objects often occur in real-life mathematical models, and

given a set G of polynomials in which the variables are defined in terms of other

variables, it should be more efficient to compute a SAGBI basis of G before carrying

out the composition. (Note, however, that in contrast to Gröbner bases, SAGBI

bases computation may not terminate). We also mention that polynomial composi-

tion is a widely studied area. Since commutation with Gröbner bases computation

implies commutation with SAGBI bases computation, all the compositions with

leading monomial iterated powering in Section 5 of [6] clearly apply to the SAGBI

case.

The paper is organized as follows. In Section 2, we briefly describe the underlying

concept of SAGBI basis and composition of polynomials. After setting up the nec-

essary notation, we present Lemma 2.12, which shows that the compositions with

leading monomial iterated powering are compatible with non-equality. In Section

3, we present the main theorem (Theorem 3.1). The proof of this theorem is a con-

sequence of Lemma 3.2 and Lemma 3.5. We have implemented a procedure based

on our main theorem in a computer algebra system SINGULAR ([4]). In Section 4,

we provide computational examples with associated C.P.U time of this procedure

and also a current implementation of the SAGBI basis construction algorithm in

SINGULAR.

2. Notation and definition

In this section, we will review some basic terminology and results of SAGBI

basis theory and composition of polynomials that will be used in the subsequent

sections. The reader who is already familiar with the theory is also encouraged to

skim through this section in order to get familiar with the notational convention.

By a monomial in K[x1, . . . , xn] we mean an element of the form xα1
1 . . . xαn

n with

α1, . . . , αn ∈ N = {0, 1, 2, . . . }, we denote the set of all terms by Monn. Note that

1 = x0
1 . . . x

0
n ∈Monn.
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If G is a subset of K[x1, . . . , xn] (not necessarily finite), then the subalgebra of

K[x1, . . . , xn] generated by G is usually denoted K[G]. This notion is natural since

the elements of K[G] are precisely the polynomials in the set of formal variables G,

viewed as elements of K[G].

In this paper we always assume that monomial orderings are global monomial or-

derings (i.e. well orderings). Let > be a monomial ordering on Monn( see for exam-

ple [3]). We can associate to every non-zero polynomial f ∈ K[x1, . . . , xn] its leading

monomial, denoted by LM>(f)(∈ Monn). We call the coefficient of LM>(f) the

leading coefficient of f denoted by LC>(f), LC>(f)LM>(f) is called leading term

denoted by LT>(f). We also define, for a subset G ⊂ K[x1, . . . , xn], LM>(G) =

{LM>(f) | f ∈ G}.

2.1. Review of SAGBI basis theory. Here we gather the theory concerning

SAGBI bases that we will need. For a more complete exposition we refer to [11].

Definition 2.1. A G-monomial is a finite power product of the form m(G) =

gα1
1 . . . gαm

m where gi ∈ G for i = 1, . . . ,m, and α1, . . . , αm ∈ N.

Definition 2.2. A subset S (may be infinite) of K[G] is called SAGBI basis of

K[G] with respect to > if

K[LM>(K[G])] = K[LM>(S)].

We can show that if S is a SAGBI basis for K[G], then S generates K[G], i.e.

K[G] = K[S]. When we say that S is a SAGBI basis, we simply mean that S is a

SAGBI basis of K[S].

Definition 2.3. We say that two G-monomials m(G),m
′
(G) form a critical pair

(m(G),m
′
(G)) of G if LM>(m(G)) = LM>(m

′
(G)). If c ∈ K such that m(G)

and cm
′
(G) have the same leading coefficient, then we define the T -polynomial of

(m(G),m
′
(G)) as T (m(G),m′(G)) = m(G)− cm′

(G).

The next theorem gives the criterion for a set to be a SAGBI basis of K[G].

Theorem 2.4. (c.f. [11]) A subset S of K[x1, . . . , xn] is a SAGBI basis with respect

to > if and only if the T -polynomial of every critical pair (m(S),m
′
(S)) of S either

equal to zero, or can be written as

T (m,m
′
) =

t∑
i=1

cimi(S), LM>(m(S)) = LM>(m
′
(S)) > LM>(mi(S)) ∀i.
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2.2. Composition of polynomials. We fix first some notations and notions.

These we will be used throughout the paper.

• f and g are two non-zero polynomials and p, q are two monomials in

K[x1, . . . , xn].

• Θ is a list (θ1, . . . , θn) of n non-zero polynomials in K[x1, . . . , xn].

• LM>(Θ) is the list (LM>(θ1), . . . , LM>(θn)).

• Mat(LM>(Θ)) is the exponent matrix of LM>(Θ), that is, the n×n matrix

whose (i, j)-th entry is given by degxi
(LM>(θj)). In other words, the j-th

column of the matrix consists of the exponents of the leading monomial of

θj .

Now we define the process of composition of polynomials.

Definition 2.5. Let f ∈ K[x1, . . . , xn]. We define the composition of f by Θ,

written as f ◦Θ, as the polynomial obtained from f by replacing each xi by θi. We

also define, for a subset G ⊂ K[x1, . . . , xn], G ◦Θ = {g ◦Θ | g ∈ G}.

Now we state some basic properties and facts about the composition and leading

monomials. These will be used throughout the paper.

Proposition 2.6. (c.f. [6])

a) (f + g) ◦Θ=f ◦Θ + g ◦Θ.

b) (fg) ◦Θ=(f ◦Θ)(g ◦Θ).

c) LM>(fg) = LM>(f)LM>(g).

d) LM>(p ◦Θ)=p ◦ LM>(Θ).

Remark 2.7. We have a natural correspondence between the set G = {g1, g2, . . .}
and G◦Θ = {g1◦Θ, g2◦Θ, . . .} therefore for any G-monomial m(G), its composition

with Θ satisfies

m(G) ◦Θ = m(G ◦Θ)

Also all the critical pairs of G ◦Θ are of the form (m(G ◦Θ),m
′
(G ◦Θ)), for some

G-monomials m(G), m
′
(G).

Definition 2.8. The composition of > by Θ, written as >◦Θ is the binary relation

over Monn defined such that, for all monomials p, q

p >◦Θ q ⇐⇒ p ◦ LM>(Θ) > q ◦ LM>(Θ).

The relation >◦Θ is not necessarily a monomial ordering. For a counter example

see [6]. However, under some condition on Θ it becomes a monomial ordering.
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Definition 2.9. The list LM>(Θ) is called a permuted powering, if and only if ,

LM>(Θ) = (xλ1

π(1), . . . , x
λn

π(n))

for some permutation of π of (1, . . . , n) and some λ1, . . . , λn > 0.

Lemma 2.10. ([6]) Let LT>(Θ) be a permuted powering. Then

(i) >◦Θ is a monomial ordering. In this case we denote it by >Θ.

(ii) LM>(f ◦Θ) = LM>Θ(f) ◦ LM>(Θ).

Definition 2.11. We say that composition by Θ is compatible with non-equality,

if, for all monomials p, q we have

p 6= q =⇒ p ◦ LM>(Θ) 6= q ◦ LM>(Θ).

Lemma 2.12. If LM>(Θ) is a permuted powering then composition by Θ is com-

patible with non-equality.

Proof. Let p = xα1 . . . xαn and q = xβ1 . . . xβn . As LM>(Θ) is permuted powering,

therefore we have p◦LM>(Θ) = xα1λ1

π(1) . . . x
αnλn

π(n) and q ◦LM>(Θ) = xβ1λ1

π(1) . . . x
βnλn

π(n) .

If p 6= q then αi 6= βi for some i, it implies αiλi 6= βiλi. This shows that p ◦
LM>(Θ) 6= q ◦ LM>(Θ). �

3. Main result

Theorem 3.1. (Main theorem) If the list LM>(Θ) is a permuted powering and

S is a SAGBI basis of K[G] with respect to >Θ then S ◦ Θ is a SAGBI basis of

K[G ◦Θ] with respect to >.

The proof of main theorem is based on the following lemma.

Lemma 3.2. If LM>(Θ) is a permuted powering and S is a SAGBI basis with

respect to >Θ then S ◦Θ is a SAGBI basis with respect to >.

Before proving of Lemma 3.2 we will give Lemma 3.3.

Lemma 3.3. Assume that LM>(Θ) is a permuted powering. For some S-monomial

m(S),m
′
(S), if (m(S ◦Θ),m

′
(S ◦Θ)) is a critical pair of S ◦Θ with respect to >

then (m(S),m
′
(S)) is a critical pair of S with respect to >Θ.

Proof. Assume that (m(S ◦ Θ),m
′
(S ◦ Θ)) is a critical pair of S ◦ Θ with re-

spect to > then LM>(m(S ◦ Θ)) = LM>(m
′
(S ◦ Θ)). We know from Remark

2.7 that m(S ◦ Θ) = m(S) ◦ Θ and m
′
(S ◦ Θ) = m

′
(S) ◦ Θ so by Lemma 2.10
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we get LM>Θ
(m(S)) ◦ LM>(Θ) = LM>Θ

(m
′
(S)) ◦ LM>(Θ). Since our compo-

sition is compatible with non-equality with respect to > (Lemma 2.12), we get

LM>Θ(m(S)) = LM>Θ(m
′
(S)) i.e (m(S),m

′
(S)) is a critical pair of S with re-

spect to >Θ. �

Now we give the proof of Lemma 3.2

Proof. Assume that LM>(Θ) is a permuted powering. Let S is a SAGBI basis

with respect to >Θ. We need to show S ◦ Θ is a SAGBI basis with respect to >.

We will use Theorem 2.4, so let (m(S ◦Θ),m
′
(S ◦Θ)) be arbitrary critical pair of

S ◦Θ with respect to >. From Lemma 3.3, we know that (m(S),m
′
(S)) is critical

pair of S with respect to >Θ. Since S is a SAGBI basis with respect to >Θ, by

Theorem 2.4 we can write

m(S)− cm
′
(S) =

∑
i

cimi(S) (or zero) where c, ci ∈ K and (1)

LM>Θ(m(S)) = LM>Θ(m
′
(S)) >Θ LM>Θ(mi(S)) ∀i. (2)

Composing the equation (1) with Θ and using proposition 2.6 we get

m(S ◦Θ)− cm
′
(S ◦Θ) =

∑
i

cimi(S ◦Θ) (or zero). (3)

From the definition of the relation >Θ, we get the inequality in (2) as

LM>Θ
(m(S))◦LM>(Θ) = LM>Θ

(m
′
(S))◦LM>(Θ) > LM>Θ

(mi(S))◦LM>(Θ) ∀i.

Using Lemma 2.10, this becomes

LM>(m(S ◦Θ)) = LM>(m
′
(S ◦Θ)) > LM>(mi(S ◦Θ)) ∀i. (4)

The leading terms of the left-hand side of (3) cancel. Thus (3) and (4) together

give a representation as in Theorem 2.4, and since the critical pair (m(S◦Θ),m
′
(S◦

Θ)) of S ◦ Θ with respect to > was arbitrary, we conclude that S ◦ Θ is a SAGBI

basis with respect to >. �

The following lemma is not difficult to prove.

Lemma 3.4. K[S] = K[G] ⇒ K[S ◦Θ] = K[G ◦Θ].

Lemma 3.5. Consider the following statements.

(A) S is a SAGBI basis of K[G] with respect >Θ then S ◦Θ is SAGBI basis of

K[G ◦Θ] with respect to >.

(B) S is SAGBI basis with respect >Θ then S ◦ Θ is SAGBI basis with respect

to >.
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Then (B) ⇒ (A).

Proof. Let S be a SAGBI basis of K[G] with respect >Θ then we trivially have S

is SAGBI basis with respect >Θ. Then from (B), we have, S ◦ Θ is SAGBI basis

with respect to >. Since S is SAGBI basis of K[G] with respect to > therefore

K[S] = K[G]. Then by Lemma 3.4, we have K[S ◦ Θ] = K[G ◦ Θ]. Therefore, we

conclude that S ◦Θ is SAGBI basis of K[G ◦Θ] with respect to >. �

The proof of the Main Theorem 3.1 is an immediate consequence of Lemma 3.2

and Lemma 3.5.

4. Examples

In this section we illustrate the use of the main theorem by several examples (see

[7] for examples of compositions Θ such that LM>(Θ) is a permuted powering).

The main theorem can be immediately applied to the case of finitely generated

monomial subalgebras and symmetric subalgebra.

Example 4.1. Let G be set of monomials. Let Θ be such that LM>(Θ) is a

permuted powering. Then G ◦ Θ is a SAGBI basis with respect to >. This follows

immediately from the main theorem and the fact that G is already a SAGBI basis

of K[G] under every monomial ordering, in particular under >Θ .

For example, let G = {x3y, xy2} and Θ = (x2 − 2xy + 7, 2y5 − y2 + 1). Let

> be the lexicographical ordering with x > y. Then clearly LM>(Θ) = (x2, y5) is

permuted powering. Thus we conclude that

G ◦Θ = {(x2 − 2xy + 7)
3
(2y5 − y2 + 1), (x2 − 2xy + 7)(2y5 − y2 + 1)

2}

is a SAGBI basis with respect to >.

The case of the symmetric algebra is similar because the elementary symmetric

polynomials form a SAGBI basis with respect to all monomial orderings ([11]).

Therefore for a set G of elementary symmetric polynomials in K[x1, . . . , xn] and

for any Θ such that LM>(Θ) is a permuted powering, G ◦Θ is a SAGBI basis with

respect to >.

Now we give more examples illustrating the use of the main theorem of this

paper.

Example 4.2. Considered ring Q[x, y, z]. Let

G = {x2z, y2, xy + y, 2xy2 + y3}
Θ = ((x3 + y + z)3, (x+ y2 + z)3, (x+ y + z)3)
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We would like to compute the SAGBI basis of G ◦ Θ with respect to w-degree

reverse lexicographical monomial ordering with w = (2, 3, 6), where x > y > z.

Following the notation of [10], the monomial ordering responds to the matrix M
2 3 6

0 0 −1

0 −1 0

.

First we check that LM>(Θ) = (x9, y6, z3) is a permuted powering. Thus the

main theorem of this paper applies. Next we determine the monomial ordering >Θ

by multiplying the matrix M with the exponent matrix of LM>(Θ)
9 0 0

0 6 0

0 0 3


obtaining a matrix for >Θ.

18 18 18

0 0 −3

0 −6 0

.

This corresponds to the degree reverse lexicographical ordering. Thus we compute

the SAGBI basis S of G with respect to the degree reverse lexicographical ordering,

obtaining

S = {x2z, y2, xy + y, y3 + 2xy2, 2xy2 + y2}.

From this we obtain a SAGBI basis of G ◦ Θ with respect to the w-degree reverse

lexicographical ordering, simply by composing of S with Θ.

The next examples show that the above illustration of the main theorem can be

used to compute SAGBI basis efficiently. We have performed experiments in the

computer algebra system SINGULAR ([4]). CPU time was evaluated on an Intel

Xeon X7560 2.3 GHz system with 96 GB memory under Ubuntu Server 10.04 . In

this regard we took Example 4.2 as the first example. Further we have the following

examples, in which we consider the ring Q[x, y, z].

Example 4.3.

G = {x2, y2, xy + y, 2xy2 + y9}
Θ = ((x2 + y), (y2 + z), (x+ z2))

> is a degree reverse lexicographical ordering.
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Example 4.4.

G = {x2, x4 + x5 + x6, x7, y2, y3 + x8}
Θ = ((x2 + yz)2, (y2 + xz)2, (x+ z2)2)

> is a degree reverse lexicographical ordering.

Example 4.5.

G = {x2z2, y2z2, xyz2 + yz, 2xy2z3 + y7z7}
Θ = ((x+ z3)3, (x2 + y)2, (y2 + z))

> is a degree reverse lexicographical ordering.

Example 4.6.

G = {x2y4, y4z2, xy4z + y2z, 2xy6z2 + y10z5}
Θ = ((z + x2), (y), (x+ y3))

> is a lexicographical ordering such that z > x > y.

In Examples 4.3, and 4.4 >, we obviously see that LM>(Θ) is a permuted pow-

ering, thus the main theorem of this paper applies. Next one easily finds that >Θ

is same as >. (In general, whenever Mat(LM>(Θ)) is a diagonal matrix with the

same diagonal entries, we have >Θ=>). Hence first we compute a SAGBI basis S

of G with respect to >Θ and compose it by Θ obtaining a SAGBI basis of S ◦ Θ

with respect to >.

In Example 4.5, we have LM>(Θ) = (z9, x4, y2), therefore the LM>(Θ) is a per-

muted powering. By the same process as in example 4.1 we obtain the matrix of >Θ
4 2 9

0 −2 0

−4 0 0

.

In Example 4.6, we have LM>(Θ) = (z, y, x), therefore the LM>(Θ) is a per-

muted powering. It is easy to see that >Θ is also a lexicographical ordering such

that x > z > y.

Table 1 compares the the time (in seconds) for the computation of the SAGBI

basis of G◦Θ using main theorem and the current implementations of SAGBI basis

algorithm in SINGULAR.

4.1. Conclusion. The examples show that it is very efficient to use the procedure

based on our main theorem to compute a SAGBI basis K[G ◦Θ] in case of Θ is a

permuted powering. It shows that composition problem deserves more careful con-

sideration. One may ask about the generalization of the composition problem to
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Example comp SAGBI

4.2 0 47

4.3 27 157

4.4 18 311

4.5 142 too expensive

4.6 12 85

Table 1

the reduced case. The conditions under which composition commutes with reduced

Gröbner basis computation is discussed in [5]. Nevertheless, it still is an open prob-

lem as to when composition commutes with reduced SAGBI basis computation.
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