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1. Introduction

In this paper all rings are commutative with identity and all modules unitary.

Let v1 : R1 → R̄ and v2 : R2 → R̄ be homomorphisms of two discrete valuation

domains Ri onto a common field R̄. Denote the pullback R = {(r1, r2) ∈ R1⊕R2 :

v1(r1) = v2(r2)} by (R1
v1−→ R̄

v2←− R2), where R̄ = R1/J(R1) = R2/J(R2). Then

R is a ring under coordinate-wise multiplication. Denote the kernel of vi, i = 1, 2,

by Pi. Then Ker(R → R̄) = P = P1 × P2, R/P ∼= R̄ ∼= R1/P1
∼= R2/P2, and

P1P2 = P2P1 = 0 (so R is not a domain). Furthermore, for i 6= j, 0 → Pi →
R → Rj → 0 is an exact sequence of R-modules (see [20]). Modules over pullback

rings has been studied by several authors (see for example, [1,5,9,15,19,25,32]).

Notably, there is the important work of Levy [22], resulting in the classification of

all finitely generated indecomposable modules over Dedekind-like rings. Klingler

[19] extended this classification to lattices over certain non-commutative Dedekind-

like rings, and Haefner and Klingler classified lattices over certain non-commutative

pullback rings, which they called special quasi triads, see [16,17]. Common to all

these classification is the reduction to a “matrix problem” over a division ring, see [6]

and [29, Section 17.9] for a background of matrix problems and their applications.

Here we should point out that the classification of all indecomposable modules over

an arbitrary unitary ring (including finite-dimensional algebras over an algebraically
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closed field) is an impossible task. In particular, an infinite-dimensional version of

tame representation type is in fact wild representation type. For a discussion of

this kind of problems the reader is referred to the papers by Ringel [28] and Simson

[30].

The concept of 2-absorbing ideal, which is a generalization of prime ideal, was

introduced and studied by Badawi in [2]. Various generalizations of prime ideals

are also studied in [3] and [4]. Recall that a proper ideal I of a ring R is called a

2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or

bc ∈ I. Recently (see [26,33]), the concept of 2-absorbing ideal is extended to the

context of 2-absorbing submodule which is a generalization of prime submodule.

Recall from [26] that a proper R-submodule N of a module M is said to be a

2-absorbing submodule of M if whenever a, b ∈ R, m ∈ M and abm ∈ N , then

am ∈ N or bm ∈ N or ab ∈ (N :R M).

In the present paper we introduce a new class of R-modules, called 2-absorbing

multiplication modules, and we study it in details from the classification problem

point of view. We are mainly interested in case either R is a discrete valuation do-

main or R is a pullback of two discrete valuation domains. First, we give a complete

description of the 2-absorbing multiplication modules over a discrete valuation do-

main. Let R be a pullback of two discrete valuation domains over a common factor

field. Next, the main purpose of this paper is to give a complete description of

the indecomposable 2-absorbing multiplication R-modules with finite-dimensional

top over R/rad(R) (for any module M we define its top as M/Rad(R)M). The

classification is divided into two stages: the description of all indecomposable sep-

arated 2-absorbing multiplication R-modules and then, using this list of separated

2-absorbing multiplication modules we show that non-separated indecomposable

2-absorbing multiplication R-modules with finite-dimensional top are factor mod-

ules of finite direct sums of separated indecomposable 2-absorbing multiplication

R-modules. Then we use the classification of separated indecomposable 2-absorbing

multiplication modules from Section 3, together with results of Levy [21,22] on the

possibilities for amalgamating finitely generated separated modules, to classify the

non-separated indecomposable 2-absorbing multiplication modules M with finite-

dimensional top (see Theorem 4.5). We will see that the non-separated modules

may be represented by certain amalgamation chains of separated indecomposable

2-absorbing multiplication modules (where infinite length 2-absorbing multiplica-

tion modules can occur only at the ends) and where adjacency corresponds to

amalgamation in the socles of these separated 2-absorbing multiplication modules.
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For the sake of completeness, we state some definitions and notations used

throughout. Let R be the pullback ring as mentioned in the beginning of in-

troduction. An R-module S is defined to be separated if there exist Ri-modules

Si, i = 1, 2, such that S is a submodule of S1 ⊕ S2 (the latter is made into an

R-module by setting (r1, r2)(s1, s2) = (r1s1, r2s2)). Equivalently, S is separated

if it is a pullback of an R1-module and an R2-module and then, using the same

notation for pullbacks of modules as for rings, S = (S/P2S → S/PS ← S/P1S)

[20, Corollary 3.3] and S ⊆ (S/P2S)⊕ (S/P1S). Also S is separated if and only if

P1S ∩ P2S = 0 [20, Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of a sep-

arated R-module, indeed every R-module has a “minimal” such representation: a

separated representation of an R-module M is an epimorphism ϕ = (S
f→ S′ →M)

of R-modules where S is separated and, if ϕ admits a factorization ϕ : S
f→ S′ →M

with S′ separated, then f is one-to-one. The module K = Ker(ϕ) is then an R̄-

module, since R̄ = R/P and PK = 0 [20, Proposition 2.3]. An exact sequence

0 → K → S → M → 0 of R-modules with S separated and K an R̄-module is a

separated representation of M if and only if PiS ∩K = 0 for each i and K ⊆ PS

[20, Proposition 2.3]. Every module M has a separated representation, which is

unique up to isomorphism [20, Theorem 2.8]. Moreover, R-homomorphisms lift

to a separated representation, preserving epimorphisms and monomorphisms [20,

Theorem 2.6].

Definition 1.1. (a) IfR is a ring andN is a submodule of anR-moduleM , the ideal

{r ∈ R : rM ⊆ N} is denoted by (N : M). Then (0 : M) is the annihilator of M . A

proper submodule N of a module M over a ring R is said to be a prime submodule

if whenever rm ∈ N , for some r ∈ R, m ∈ M , then m ∈ N or r ∈ (N : M), so

(N : M) = P is a prime ideal of R, and N is said to be a P -prime submodule. The

set of all prime submodules in an R-module M is denoted by Spec(M) [23,24].

(b) AnR-moduleM is defined to be a multiplication module if for each submodule

N of M , N = IM , for some ideal I of R. In this case we can take I = (N :R M)

[14].

(c) A proper submodule N of a module M is said to be semiprime if whenever

rkm ∈ N for some m ∈ M , r ∈ R, and positive integer k, then rm ∈ N . The

set of all semiprime submodules in an R-module M is denoted by seSpec(M). An

R-module M is defined to be a semiprime multiplication module if seSpec(M) = ∅
or for every semiprime submodule N of M , N = IM , for some ideal I of R [12].
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(d) A proper submodule N of a module M is said to be a 2-absorbing submodule

if whenever a, b ∈ R, m ∈M and abm ∈ N , then am ∈ N or bm ∈ N or ab ∈ (N :R

M) [26,33]. The set of all 2-absorbing submodules in an R-module M is denoted

by abSpec(M).

(e) A submodule N of an R-module M is called a pure submodule if any finite

system of equations over N which is solvable in M is also solvable in N . A sub-

module N of an R-module M is called relatively divisible (or an RD-submodule) in

M if rN = N ∩ rM for all r ∈ R [27,31].

(f) A module M is pure-injective if it has the injective property relative to all

pure exact sequences [27,31].

Remark 1.2. (i) Let R be a Dedekind domain, M an R-module and N a submodule

of M . Then N is pure in M if and only if IN = N ∩ IM for each ideal I of R.

Moreover, N is pure in M if and only if N is an RD-submodule of M [27,31].

(ii) Let N be an R-submodule of M . It is clear that N is an RD-submodule of

M if and only if for all m ∈M and r ∈ R, rm ∈ N implies that rm = rn for some

n ∈ N . Furthermore, if M is torsion-free, then N is an RD-submodule if and only

if for all m ∈ M and for all non-zero r ∈ R, rm ∈ N implies that m ∈ N . In this

case, N is an RD-submodule if and only if N is a prime submodule.

2. Basic properties of 2-absorbing multiplication modules

In this section, we give a complete description of the 2-absorbing multiplication

modules over a discrete valuation domain. Our starting point is the following

definition.

Definition 2.1. Let R be a commutative ring. An R-module M is defined to

be a 2-absorbing multiplication module if abSpec(M) = ∅ or for every 2-absorbing

submodule N of M , N = IM , for some ideal I of R.

One can easily show that if M is a 2-absorbing multiplication module, then

N = (N :R M)M for every 2-absorbing submodule N of M . We need the following

lemma proved in [33, Lemma 2.4] and [26, Lemmas 2.1, 2.2, and Theorem 2.3],

respectively.

Lemma 2.2. (i) Let K ⊆ N be submodules of an R-module M . Then N is a

2-absorbing submodule of M if and only if N/K is a 2-absorbing submodule

of M/K.

(ii) Let I be an ideal of R and N be a 2-absorbing submodule of M . If a ∈ R,

m ∈M and Iam ⊆ N , then am ∈ N or Im ⊆ N or Ia ⊆ (N : M).
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(iii) Let I, J be ideals of R and N be a 2-absorbing submodule of M . If m ∈M
and IJm ⊆ N , then Im ∈ N or Jm ⊆ N or IJ ⊆ (N : M).

(iv) Let N be a proper submodule of M . Then N is a 2-absorbing submodule of

M if and only if IJK ⊆ N for some ideals I, J of R and a submodule K

of M implies that IK ⊆ N or JK ⊆ N or IJ ⊆ (N : M).

Proposition 2.3. Let M be a 2-absorbing multiplication module over a commuta-

tive ring R. Then the following hold:

(i) If I is an ideal of R and N a non-zero R-submodule of M with I ⊆ (N : M),

then M/N is a 2-absorbing multiplication R/I-module.

(ii) If N is a submodule of M , then M/N is a 2-absorbing multiplication R-

module.

(iii) Every direct summand of M is a 2-absorbing multiplication submodule.

(iv) If I is an ideal of R with I ⊆ (0 : M), then M is a 2-absorbing multiplication

R-module if and only if M is 2-absorbing multiplication as an R/I-module.

Proof. (i) Let K/N be a 2-absorbing submodule of M/N . Then by Lemma 2.1

(i), K is a 2-absorbing submodule of M , so K = (K : M)M , where I ⊆ (N : M) ⊆
(K : M) = J . An inspection will show that K/N = (J/I)(M/N).

(ii) Take I = 0 in (i). (iii) Follows from (ii).

(iv) It is easy to see that N is a 2-absorbing R-submodule of M if and only if

N is a 2-absorbing R/I-submodule of M . Now the assertion follows the fact that

(N :R M) = (N :R/I M). �

Remark 2.4. (i) Let R and R′ be any commutative rings, g : R→ R′ a surjective

homomorphism and M an R′-module. It is clear that if N is a 2-absorbing R-

submodule of M , then N is a 2-absorbing R′-submodule of M . Suppose that M is

a 2-absorbing multiplication R′-module and let N be a 2-absorbing R-submodule of

M . Then N = JM for some ideal J of R′. It follows that I = g−1(J) is an ideal

of R with g(I) = J . Then IM = g(I)M = JM = N . Thus M is a 2-absorbing

multiplication R-module.

(ii) Let M be a 2-absorbing multiplication module over an integral domain R

(which is not a field), and let T (M) be the torsion submodule of M with T (M) 6= M .

Then T (M) is a prime (so 2-absorbing) submodule M such that (T (M) : M) = 0

(see [24, Lemma 3.8]); hence T (M) = 0. Thus M is either torsion or torsion-free.

(iii) Let R = M = Z be the ring of integers. If N = 4Z, then N is a 2-

absorbing submodule of M , but it is not semiprime. So a 2-absorbing does not need

to be semiprime. If K = 30Z, then an inspection will show that K is a semiprime
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submodule of M that it is not 2-absorbing. Hence a semiprime does not need to be 2-

absorbing. So the class of semiprime multiplication and 2-absorbing multiplication

modules are different concepts.

Proposition 2.5. Let R be a discrete valuation domain with unique maximal ideal

P = Rp. Then R, E = E(R/P ), the injective hull of R/P , Q(R), the field of

fractions of R, and R/Pn (n ≥ 1) are 2-absorbing multiplication modules.

Proof. By [8, Lemma 2.6], every non-zero proper submodule L of E is of the form

L = An = (0 :E Pn) (n ≥ 1), L = An = Ran and PAn+1 = An. However no An

is a 2-absorbing submodule of E, for if n is a positive integer then P 3An+3 = An,

but PAn+3 = An+2 * An, P 2An+3 = An+1 * An and P 3E = E * An (see Lemma

2.1). Now we conclude that abSpec(E) = ∅. Thus E is a 2-absorbing multiplication

module.

Clearly, 0 is a 2-absorbing submodule of Q(R). To show that 0 is the only 2-

absorbing submodule of Q(R), we assume the contrary and let N be a non-zero

2-absorbing submodule of Q(R). Since N is a non-zero submodule, there exists a/b,

where a, b ∈ R, so that a/b ∈ N . Clearly, 1/b /∈ N (otherwise, b/b = 1/1 ∈ N which

is a contradiction). Now we have a2(1/ab) = a/b ∈ N , but a(1/ab) = 1/b /∈ N and

a2Q(R) * N . This contradicts the fact that N is a 2-absorbing submodule. Thus

seSpec(Q(R)) = {(0)} and hence Q(R) is 2-absorbing multiplication. Finally, in

the cases of R and R/Pn these follows because they are multiplication modules. �

Theorem 2.6. Let R be a discrete valuation domain with a unique maximal ideal

P = Rp. Then the class of indecomposable 2-absorbing multiplication modules over

R, up to isomorphism, consists of the following:

(i) R;

(ii) R/Pn, n ≥ 1, the indecomposable torsion modules;

(iii) E(R/P ), the injective hull of R/P ;

(iv) Q(R), the field of fractions of R.

Proof. By [7, Proposition 1.3], these modules are indecomposable. Being 2-absorbing

multiplication follows from Proposition 2.5. Now let M be an indecomposable 2-

absorbing multiplication and choose any non-zero element a ∈ M . Let h(a) =

sup{n : a ∈ PnM} (so h(a) is a nonnegative integer or ∞). Also let (0 : a) = {r ∈
R : ra = 0}: thus (0 : a) is an ideal of the form Pm or 0. Because (0 : a) = Pm+1

implies that pma 6= 0 and p.pma = 0, we can choose a so that (0 : a) = P or 0.

Let abSpec(M) = ∅. Since Spec(M) ⊆ abSpec(M), it follows from [23, Lemma

1.3, Proposition 1.4] that M is a torsion divisible R-module with PM = M and
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M is not finitely generated. We may assume that (0 : a) = P . By an argument

like that in [8, Proposition 2.7 Case 2 ], M ∼= E(R/P ). So we may assume that

abpSpec(M) 6= ∅.
If h(a) = n and (0 : a) = 0, (resp. h(a) = n and (0 : a) = P ), then by a similar

argument like that in [12, Theorem 3.8 Case 2] (resp. ([12, Theorem 3.8 Case 3]

and [18, Theorem 5]), we get M ∼= R (resp. M ∼= R/Pn+1). So we may assume

that h(a) =∞.

If (0 : a) = P , then by an argument like that in [8, Proposition 2.7 Case 2], we

get M ∼= E(R/P ); so abSpec(M) = ∅ by Proposition 2.5, contrary to assumption.

So we may assume that h(a) =∞ and (0 : a) = 0. By an argument like that in [10,

Theorem 2.12 Case 3], we get M ∼= Q(R). �

Theorem 2.7. Let M be a 2-absorbing multiplication module over a discrete val-

uation domain with a maximal ideal P = Rp. Then M is of the form M = N ⊕K,

where N is a direct sum of copies of R/Pn (n ≥ 1) and K is a direct sum of copies

of E(R/P ) and Q(R). In particular, every 2-absorbing multiplication R-module not

isomorphic with R is pure-injective.

Proof. Let T denote the indecomposable summand of M . Then by Proposition 2.2

(iii), T is an indecomposable 2-absorbing multiplication module. Now the assertion

follows from Theorem 2.6 and [7, Proposition 1.3]. �

3. The separated case

Throughout this section we shall assume unless otherwise stated, that

R = (R1
v1−→ R̄

v2←− R2) (1)

is the pullback of two discrete valuation domains R1, R2 with maximal ideals P1, P2

generated respectively by p1, p2, P denotes P1⊕P2 and R1/P1
∼= R2/P2

∼= R/P ∼= R̄

is a field. In particular, R is a commutative Noetherian local ring with unique

maximal ideal P . The other prime ideals of R are easily seen to be P1 (that is

P1 ⊕ 0) and P2 (that is 0⊕ P2). Let T be an R-submodule of a separated module

S = (S1
f1−→ S̄

f2←− S2), with projection maps πi : S � Si. Set T1 = {t1 ∈ S1 :

(t1, t2) ∈ T for some t2 ∈ S2} and T2 = {t2 ∈ S2 : (t1, t2) ∈ T for some t1 ∈ S1}.
Then for each i, i = 1, 2, Ti is an Ri-submodule of Si and T ≤ T1 ⊕ T2. Moreover,

we can define a mapping π′1 = π1|T : T � T1 by sending (t1, t2) to t1; hence

T1 ∼= T/(0 ⊕ Ker(f2) ∩ T ) ∼= T/(T ∩ P2S) ∼= (T + P2S)/P2S ⊆ S/P2S. So we

may assume that T1 is a submodule of S1. Similarly, we may assume that T2 is a

submodule of S2 (note that Ker(f1) = P1S1 and Ker(f2) = P2S2).
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Proposition 3.1. Let S = (S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S) be any

separated module over the pullback ring as in (1).

(i) If T is a 2-absorbing submodule of S, then T1 is a 2-absorbing submodule

S1 and T2 is a 2-absorbing submodule S2.

(ii) abSpec(S) = ∅ if and only if abSpec(Si) = ∅ for i = 1, 2.

Proof. (i) Let abs1 ∈ T1 for some a, b ∈ R1 and s1 ∈ S1. If a /∈ P1, then bs1 ∈ T1
since a is invertible, and so we are done. Similarly, if b /∈ P1, then as1 ∈ T1. So

we may assume that a, b ∈ P1. Then v1(ab) = v2(0) = 0; hence (ab, 0) ∈ R. By

assumption, (s1, s2) ∈ S for some s2 ∈ S2. Since abs1 ∈ T1∩P1S, 0 ∈ T2∩P2S and

f1(abs1) = f2(0), we get (abs1, 0) = (a, 0)(b, 0)(s1, s2) ∈ T . Now T is a 2-absorbing

submodule gives (as1, 0) ∈ T or (bs1, 0) ∈ T or (ab, 0) ∈ (T :R S) = (T1 :R1

S1)× (T2 :R2 S2) which implies that as1 ∈ T1 or bs1 ∈ T1 or ab ∈ (T1 :R1 S1). Thus

T1 is a 2-absorbing submodule S1. Similarly, T2 is a 2-absorbing submodule S2.

(ii) Assume that abSpec(S) = ∅ and let π be the projection map of R onto R1.

Suppose that abSpec(S1) 6= ∅ and let T1 be a 2-absorbing submodule of S1, so T1 is

a 2-absorbing R-submodule of S1 = S/(0⊕ P2)S; hence abSpec(S) 6= ∅ by Lemma

2.2 (i), which is a contradiction. Similarly, abSpec(S2) = ∅. The other implication

is clear by (i). �

Theorem 3.2. Let S = (S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S) be any

separated module over the pullback ring as (1). Then S is a 2-absorbing multipli-

cation R-module if and only if each Si is a 2-absorbing multiplication Ri-module,

i = 1, 2.

Proof. By Proposition 3.1 (ii), abSpec(S) = ∅ if and only if abSpec(Si) = ∅ for

i = 1, 2. So we may assume that abSpec(S) 6= ∅. Assume that S is a separated 2-

absorbing multiplication R-module. If S̄ = 0, then by [7, Lemma 2.7], S = S1⊕S2;

hence for each i, Si is 2-absorbing multiplication by Proposition 2.3 (iii). So we

may assume that S̄ 6= 0. Since (0 ⊕ P2) ⊆ ((0 ⊕ P2)S : S), Proposition 2.3 (i)

gives S1
∼= S/(0 ⊕ P2)S is a 2-absorbing multiplication R/(0 ⊕ P2) ∼= R1-module.

Similarly, S2 is a 2-absorbing multiplication R2-module.

Conversely, assume that each Si is a 2-absorbing multiplication Ri-module and

let T = (T1 → T̄ ← T2) be a 2-absorbing submodule of S. We may assume

that (T : S) 6= 0. If (T : S) = Pn
1 ⊕ Pm

2 for some positive integers m,n, then

Si 6= 0 for i = 1, 2, (T1 :R1 S1) = Pn
1 , and (T2 :R2 S2) = Pm

2 by [12, Proposition

4.2 (i)]. Now by Proposition 3.1 (i), T1 = Pn
1 S1 ⊆ P1S1 since S1 is 2-absorbing

multiplication. Similarly, T2 = Pm
2 S2 ⊆ P2S2. If k = min{m,n}, then by an
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argument like that in [12, Proposition 4.5 Case 1], we get T = P kS, and so S is

2-absorbing multiplication. If (T : S) = Pn
1 ⊕ 0 for some positive integer n, then

T2 is a 2-absorbing R2-submodule of S2 with (T2 :R2 S2) = 0; so T2 = 0. Similarly,

T1 = Pn
1 S1. It follows that T ⊆ T1 ⊕ T2 = (Pn

1 ⊕ 0)S. For the other inclusion,

assume that t = (pn1 , 0)(s1, s2) = (pn1 s1, 0) ∈ (Pn
1 ⊕0)S. Then t ∈ T since pn1 s1 ∈ T1

and f1(pn1 s1) = 0 = f2(0) (note that Ker(f1) = P1S1 and Ker(f2) = P2S2); hence

T = (Pn
1 ⊕ 0)S. Similarly, if (T : S) = 0 ⊕ Pm

2 for some positive integer m, then

we get T = (0⊕ Pm
2 )S. Thus S is a 2-absorbing multiplication R-module. �

Lemma 3.3. Let R be the pullback ring as in (1). Then, up to isomorphism, the

following separated R-modules are indecomposable and 2-absorbing multiplication:

(i) R;

(ii) S = (E(R1/P1) → 0 ← 0), (0 → 0 ← E(R2/P2)), where E(Ri/Pi) is the

Ri-injective hull of Ri/Pi for i = 1, 2;

(iii) S = (Q(R1) → 0 ← 0), (0 → 0 ← Q(R2)), where Q(Ri) is the field of

fractions of Ri for i = 1, 2;

(iv) S = (R1/P
n
1 → R̄← R2/P

m
2 ) for all positive integers n,m.

Proof. By [7, Lemma 2.8], these modules are indecomposable. Being 2-absorbing

multiplication follows from Theorem 2.6 and Theorem 3.2. �

For each i, let Ei be the Ri-injective hull of Ri/Pi, regarded as an R-module,

so E1, E2 are the modules listed under (ii) in Lemma 3.3. We refer to modules of

type (ii) in Lemma 3.3 as P1-Prüfer and P2-Prüfer, respectively.

Proposition 3.4. Let R be the pullback ring as in (1), and let S 6= R be a separated

2-absorbing multiplication R module. Then the following hold:

(i) S is of the form S = M ⊕ N , where M is a direct sum of copies of the

modules as in (iv), N is a direct sum of copies of the modules as in (ii)-

(iii) of Lemma 3.3.

(ii) Every separated 2-absorbing multiplication R-module not isomorphic with

R is pure-injective.

Proof. (i) Let T denote an indecomposable summand of S. Then we can write T =

(T1 → T̄ ← T2), and T is a 2-absorbing multiplication R-module by Proposition

2.2 (iii). First suppose that T̄ = 0. Then by [7, Lemma 2.7 (i)], T = T1 or T2 and

so T is an indecomposable 2-absorbing multiplication Ri-module for some i and,

since T = PT , is type (ii) or (iii) in the list Lemma 3.3. So we may assume that

T̄ 6= 0.
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By Theorem 2.6 and Theorem 3.2, Ti is an indecomposable 2-absorbing mul-

tiplication Ri-module, for each i = 1, 2. Hence, by the structure of 2-absorbing

multiplication modules over a discrete valuation domain (see Theorem 2.7), we

must have Ti = E(Ri/Pi) or Q(Ri) or Ri/P
n
i (n ≥ 1). Since T 6= PT it follows

that for each i = 1, 2, Ti is torsion and it is not divisible Ri-module. Then there

are positive integers m,n and k such that Pm
1 T1 = 0, P k

2 T2 = 0 and PnT = 0. For

t ∈ T , let o(t) denote the least positive integer m such that Pmt = 0. Now choose

t ∈ T1∪T2 with t̄ 6= 0 and such that o(t) is maximal (given that t̄ 6= 0). There exists

a t = (t1, t2) such that o(t) = n, o(t1) = m and o(t2) = k. Then for each i = 1, 2,

Riti is pure in Ti (see [7, Theorem 2.9]). Thus, R1t1 ∼= R1/(0 : t1) ∼= R1/P
m
1 is

a direct summand of T1 since R1t1 is pure-injective; hence T1 = R1t1 since T1 is

indecomposable. Similarly, T2 = R2t2 ∼= R2/P
k
2 . Let M̄ be the R̄-subspace of T̄

generated by t̄. Then M̄ ∼= R̄. Let M = (R1t1 → M̄ ← R2t2). Then T = M , and

T satisfies the case (iv) (see [7, Theorem 2.9]).

(ii) Apply (i) and [7, Theorem 2.9]. �

Theorem 3.5. Let S 6= R be an indecomposable separated 2-absorbing multiplica-

tion module over the pullback ring as in (1). Then S is isomorphic to one of the

modules listed in Lemma 3.3.

Proof. Apply Proposition 3.4 and Lemma 3.3. �

4. The nonseparated case

We continue to use the notation already established, so R is the pullback ring

as in (1). In this section we find the indecomposable non-separated 2-absorbing

multiplication modules with finite-dimensional top. It turns out that each can

be obtained by amalgamating finitely many separated indecomposable 2-absorbing

multiplication modules.

Proposition 4.1. Let R be a pullback ring as in (1).

(i) E(R/P ) is a non-separated 2-absorbing multiplication R-module.

(ii) If 0→ K → S →M → 0 is a separated representation of an R-module M ,

then abSpecR(S) = ∅ if and only if abSpecR(M) = ∅.

Proof. (i) It is enough to show that abpSpec(E(R/P )) = ∅. Assume that L is any

submodule of E(R/P ) described in [13, Proposition 3.1 (iii)]. However no L, say

E1 + An, is a 2-absorbing submodule of E(R/P ), for if n is any positive integer,

then P 3(E1 + An+3) = E1 + An, but P (E1 + An+3) = E1 + An+2 * E1 + An
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and P 3E(R/P ) = E(R/P ) * E1 + An (see Lemma 2.2). Therefore, E(R/P ) is a

non-separated 2-absorbing multiplication R-module (see [7, p. 4053]).

(ii) Assume that abSpecR(S) = ∅ and let abSpecR(M) 6= ∅. Then there exists a

submodule T/K of M ∼= S/K such that T/K ∈ abSpecR(M); so T ∈ abSpecR(S)

by Lemma 2.2 (i) which is a contradiction. Therefore abSpecR(M) = ∅. For the

other implication, suppose that abSpecR(M) = ∅, and let abSpecR(S) 6= ∅. So S

has a 2-absorbing submodule T with K ⊆ T by [11, Proposition 4.3 (ii)]; hence

T/K is a 2-absorbing submodule of M by Lemma 2.2 (i) which is a contradiction.

Thus abSpecR(S) = ∅. �

Theorem 4.2. Let R be a pullback ring as in (1) and let M be any non-separated

R-module. Let 0→ K → S →M → 0 be a separated representation of M . Then S

is 2-absorbing multiplication if and only if M is 2-absorbing multiplication.

Proof. By Proposition 4.1 (ii), we may assume that abSpec(S) 6= ∅. Suppose that

M is a 2-absorbing multiplication R-module and let U be a non-zero 2-absorbing

submodule of S. Then by [11, Proposition 4.3], K ⊆ U , and so U/K is a 2-

absorbing submodule of S ∼= M/K by Lemma 2.2 (i). By an argument like that

in [12, Theorem 5.3], we get S is 2-absorbing multiplication. Conversely, assume

that S is a 2-absorbing multiplication R-module. Then S ∼= M/K is 2-absorbing

multiplication by Proposition 2.3 (ii), as required. �

Proposition 4.3. Let R be a pullback ring as in (1) and let M be an indecomposable

2-absorbing multiplication non-separated R-module with finite-dimensional top over

R̄. Let 0 → K → S → M → 0 be a separated representation of M . Then the

following hold:

(i) S is pure-injective.

(ii) R do not occur among the direct summands of S.

Proof. (i) Since S/PS ∼= M/PM by [7, Proposition 2.6 (i)], we get S has finite-

dimensional top. Now the assertion follows from Theorem 4.2 and Proposition 3.4.

(ii) follows from [12, Lemma 5.5]. �

Let R be a pullback ring as in (1) and let M be an indecomposable 2-absorbing

multiplication non-separated R-module with finite-dimensional top over R̄. Con-

sider the separated representation 0→ K → S →M → 0. By Proposition 4.3, S is

pure-injective. So in the proofs of [7, Lemma 3.1, Propositions 3.2 and 3.4] (here the

pure-injectivity of M implies the pure-injectivity of S by [7, Proposition 2.6 (ii)] we

can replace the statement “M is an indecomposable pure-injective non-separated
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R-module” by “M is an indecomposable 2-absorbing multiplication non-separated

R-module”: because the main key in those results are the pure-injectivity of S, the

indecomposability and the non-separability of M . So we have the following result:

Corollary 4.4. Let R be a pullback ring as in (1) and let M be an indecomposable

2-absorbing multiplication non-separated R-module with M/PM finite-dimensional

over R̄, and let 0 → K → S → M → 0 be a separated representation of M . Then

the following hold:

(i) the quotient fields Q(R1) and Q(R2) of R1 and R2 do not occur among the

direct summands of S.

(ii) S is a direct sum of finitely many indecomposable 2-absorbing multiplication

modules.

(iii) At most two copies of modules of infinite length can occur among the inde-

composable summands of S.

Recall that every indecomposable R-module of finite length is 2-absorbing multi-

plication since it is a quotient of a 2-absorbing multiplication R-module (see Propo-

sition 2.2 (ii)). So by Corollary 4.4 (iii), the infinite length non-separated indecom-

posable 2-absorbing multiplication modules are obtained in just the same way as

the deleted cycle type indecomposable ones are, except that at least one of the two

”end” modules must be a separated indecomposable 2-absorbing multiplication of

infinite length (that is, P1-Prüfer and P2-Prüfer). Note that one can not have, for

instance, a P1-Prüfer module at each end (consider the alternation of primes P1, P2

along the amalgamation chain). So, apart form any finite length modules: we have

amalgamations involving two Prüfer modules as well as modules of finite length (the

injective hull E(R/P ) is the simplest module of this type), a P1-Prüfer module and

a P2-Prüfer module. If the P1-Prüfer and the P2-Prüfer are direct summands of S

then we will describe these modules as doubly infinite. Those where S has just

one infinite length summand we will call singly infinite (the reader is referred

to [7] for more details). It remains to show that the modules obtained by these

amalgamations are, indeed, indecomposable 2-absorbing multiplication modules.

Theorem 4.5. Let R = (R1 → R̄ ← R2) be the pullback of two discrete valuation

domains R1, R2 with common factor field R̄. Then the class of indecomposable non-

separated 2-absorbing multiplication modules with finite-dimensional top consists of

the following:

(i) The indecomposable modules of finite length (apart from R/P which is sep-

arated);
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(ii) The doubly infinite 2-absorbing multiplication modules;

(iii) The singly infinite 2-absorbing multiplication modules (except the two prüfer

modules (ii) in Lemma 3.3).

Proof. We know already that every indecomposable 2-absorbing multiplication

non-separated module has one of these forms so it remains to show that the modules

obtained by these amalgamation are, indeed, indecomposable 2-absorbing multipli-

cation modules. Let M be an indecomposable non-separated 2-absorbing multipli-

cation R-module with finite-dimensional top and let 0 → K
i−→ S

ϕ−→ M → 0 be

a separated representation of M .

(i) Every indecomposable R-module of finite length is 2-absorbing multiplication

since it is a quotient of a 2-absorbing multiplication R-module (see Proposition 2.3

(ii)). The indecomposability follows from [21, 1.9].

(ii) and (iii) (involving one or two Prüfer modules) M is 2-absorbing multipli-

cation since they are a quotient of a 2-absorbing multiplication R-module (also

see Proposition 4.1 (i)). Finally, the indecomposability follows from [7, Theorem

3.5]. �

Remark 4.6. (i) Let R be the pullback ring as described in Theorem 4.5. Then by

[7, Theorem 3.5] and Theorem 4.5, every indecomposable 2-absorbing multiplication

R-module with finite-dimensional top is pure-injective.

(ii) For a given field k, the infinite-dimensional k-algebra k[x, y : xy = 0](x,y) is

the pullback (k[x](x) → k ← k[y](y)) of two discrete valuation domains k[x](x), k[y](y)

(see [1, Section 6]). This paper includes the classification of those indecomposable

2-absorbing multiplication modules over k-algebra k[x, y : xy = 0](x,y) which have

finite-dimensional top.
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