

ABSORBING MULTIPLICATION MODULES OVER PULLBACK RINGS

S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari

Received: 4 March 2016; Revised: 3 November 2016 Communicated by A. Çiğdem Özcan

ABSTRACT. Following some ideas and a technique introduced in [Comm. Algebra 41 (2013), pp. 776-791] we give a complete classification, up to isomorphism, of all indecomposable 2-absorbing multiplication modules with finitedimensional top over pullback of two discrete valuation domains with the same residue field.

Mathematics Subject Classification (2010): 03C45, 03C05, 16D70 Keywords: Pullback, separated, non-separated, 2-absorbing multiplication module, pure-injective module

1. Introduction

In this paper all rings are commutative with identity and all modules unitary. Let $v_1: R_1 \to \overline{R}$ and $v_2: R_2 \to \overline{R}$ be homomorphisms of two discrete valuation domains R_i onto a common field \overline{R} . Denote the pullback $R = \{(r_1, r_2) \in R_1 \oplus R_2 :$ $v_1(r_1) = v_2(r_2)$ by $(R_1 \xrightarrow{v_1} \bar{R} \xleftarrow{v_2} R_2)$, where $\bar{R} = R_1/J(R_1) = R_2/J(R_2)$. Then R is a ring under coordinate-wise multiplication. Denote the kernel of v_i , i = 1, 2, by P_i . Then $\operatorname{Ker}(R \to \overline{R}) = P = P_1 \times P_2$, $R/P \cong \overline{R} \cong R_1/P_1 \cong R_2/P_2$, and $P_1P_2 = P_2P_1 = 0$ (so R is not a domain). Furthermore, for $i \neq j, 0 \rightarrow P_i \rightarrow P_i$ $R \to R_i \to 0$ is an exact sequence of *R*-modules (see [20]). Modules over pullback rings has been studied by several authors (see for example, [1,5,9,15,19,25,32]). Notably, there is the important work of Levy [22], resulting in the classification of all finitely generated indecomposable modules over Dedekind-like rings. Klingler [19] extended this classification to lattices over certain non-commutative Dedekindlike rings, and Haefner and Klingler classified lattices over certain non-commutative pullback rings, which they called special quasi triads, see [16,17]. Common to all these classification is the reduction to a "matrix problem" over a division ring, see [6] and [29, Section 17.9] for a background of matrix problems and their applications. Here we should point out that the classification of all indecomposable modules over an arbitrary unitary ring (including finite-dimensional algebras over an algebraically closed field) is an impossible task. In particular, an infinite-dimensional version of tame representation type is in fact wild representation type. For a discussion of this kind of problems the reader is referred to the papers by Ringel [28] and Simson [30].

The concept of 2-absorbing ideal, which is a generalization of prime ideal, was introduced and studied by Badawi in [2]. Various generalizations of prime ideals are also studied in [3] and [4]. Recall that a proper ideal I of a ring R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. Recently (see [26,33]), the concept of 2-absorbing ideal is extended to the context of 2-absorbing submodule which is a generalization of prime submodule. Recall from [26] that a proper R-submodule N of a module M is said to be a 2-absorbing submodule of M if whenever $a, b \in R, m \in M$ and $abm \in N$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$.

In the present paper we introduce a new class of R-modules, called 2-absorbing multiplication modules, and we study it in details from the classification problem point of view. We are mainly interested in case either R is a discrete valuation domain or R is a pullback of two discrete valuation domains. First, we give a complete description of the 2-absorbing multiplication modules over a discrete valuation domain. Let R be a pullback of two discrete valuation domains over a common factor field. Next, the main purpose of this paper is to give a complete description of the indecomposable 2-absorbing multiplication R-modules with finite-dimensional top over R/rad(R) (for any module M we define its top as M/rad(R)M). The classification is divided into two stages: the description of all indecomposable separated 2-absorbing multiplication *R*-modules and then, using this list of separated 2-absorbing multiplication modules we show that non-separated indecomposable 2-absorbing multiplication R-modules with finite-dimensional top are factor modules of finite direct sums of separated indecomposable 2-absorbing multiplication R-modules. Then we use the classification of separated indecomposable 2-absorbing multiplication modules from Section 3, together with results of Levy [21,22] on the possibilities for amalgamating finitely generated separated modules, to classify the non-separated indecomposable 2-absorbing multiplication modules M with finitedimensional top (see Theorem 4.5). We will see that the non-separated modules may be represented by certain amalgamation chains of separated indecomposable 2-absorbing multiplication modules (where infinite length 2-absorbing multiplication modules can occur only at the ends) and where adjacency corresponds to amalgamation in the socles of these separated 2-absorbing multiplication modules. For the sake of completeness, we state some definitions and notations used throughout. Let R be the pullback ring as mentioned in the beginning of introduction. An R-module S is defined to be separated if there exist R_i -modules S_i , i = 1, 2, such that S is a submodule of $S_1 \oplus S_2$ (the latter is made into an R-module by setting $(r_1, r_2)(s_1, s_2) = (r_1s_1, r_2s_2)$). Equivalently, S is separated if it is a pullback of an R_1 -module and an R_2 -module and then, using the same notation for pullbacks of modules as for rings, $S = (S/P_2S \to S/PS \leftarrow S/P_1S)$ [20, Corollary 3.3] and $S \subseteq (S/P_2S) \oplus (S/P_1S)$. Also S is separated if and only if $P_1S \cap P_2S = 0$ [20, Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of a separated R-module, indeed every R-module has a "minimal" such representation: a separated representation of an R-module M is an epimorphism $\varphi = (S \xrightarrow{f} S' \to M)$ of R-modules where S is separated and, if φ admits a factorization $\varphi : S \xrightarrow{f} S' \to M$ with S' separated, then f is one-to-one. The module $K = \text{Ker}(\varphi)$ is then an \overline{R} module, since $\overline{R} = R/P$ and PK = 0 [20, Proposition 2.3]. An exact sequence $0 \to K \to S \to M \to 0$ of R-modules with S separated and K an \overline{R} -module is a separated representation of M if and only if $P_i S \cap K = 0$ for each i and $K \subseteq PS$ [20, Proposition 2.3]. Every module M has a separated representation, which is unique up to isomorphism [20, Theorem 2.8]. Moreover, R-homomorphisms lift to a separated representation, preserving epimorphisms and monomorphisms [20, Theorem 2.6].

Definition 1.1. (a) If R is a ring and N is a submodule of an R-module M, the ideal $\{r \in R : rM \subseteq N\}$ is denoted by (N : M). Then (0 : M) is the annihilator of M. A proper submodule N of a module M over a ring R is said to be a *prime submodule* if whenever $rm \in N$, for some $r \in R$, $m \in M$, then $m \in N$ or $r \in (N : M)$, so (N : M) = P is a prime ideal of R, and N is said to be a *P*-prime submodule. The set of all prime submodules in an R-module M is denoted by Spec(M) [23,24].

(b) An *R*-module *M* is defined to be a *multiplication module* if for each submodule *N* of *M*, N = IM, for some ideal *I* of *R*. In this case we can take $I = (N :_R M)$ [14].

(c) A proper submodule N of a module M is said to be *semiprime* if whenever $r^k m \in N$ for some $m \in M$, $r \in R$, and positive integer k, then $rm \in N$. The set of all semiprime submodules in an R-module M is denoted by seSpec(M). An R-module M is defined to be a *semiprime multiplication module* if $seSpec(M) = \emptyset$ or for every semiprime submodule N of M, N = IM, for some ideal I of R [12].

(d) A proper submodule N of a module M is said to be a 2-absorbing submodule if whenever $a, b \in R, m \in M$ and $abm \in N$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$ [26,33]. The set of all 2-absorbing submodules in an R-module M is denoted by abSpec(M).

(e) A submodule N of an R-module M is called a *pure submodule* if any finite system of equations over N which is solvable in M is also solvable in N. A submodule N of an R-module M is called *relatively divisible* (or an RD-submodule) in M if $rN = N \cap rM$ for all $r \in R$ [27,31].

(f) A module M is *pure-injective* if it has the injective property relative to all pure exact sequences [27,31].

Remark 1.2. (i) Let R be a Dedekind domain, M an R-module and N a submodule of M. Then N is pure in M if and only if $IN = N \cap IM$ for each ideal I of R. Moreover, N is pure in M if and only if N is an RD-submodule of M [27,31].

(ii) Let N be an R-submodule of M. It is clear that N is an RD-submodule of M if and only if for all $m \in M$ and $r \in R$, $rm \in N$ implies that rm = rn for some $n \in N$. Furthermore, if M is torsion-free, then N is an RD-submodule if and only if for all $m \in M$ and for all non-zero $r \in R$, $rm \in N$ implies that $m \in N$. In this case, N is an RD-submodule if and only if N is a prime submodule.

2. Basic properties of 2-absorbing multiplication modules

In this section, we give a complete description of the 2-absorbing multiplication modules over a discrete valuation domain. Our starting point is the following definition.

Definition 2.1. Let R be a commutative ring. An R-module M is defined to be a 2-absorbing multiplication module if $abSpec(M) = \emptyset$ or for every 2-absorbing submodule N of M, N = IM, for some ideal I of R.

One can easily show that if M is a 2-absorbing multiplication module, then $N = (N :_R M)M$ for every 2-absorbing submodule N of M. We need the following lemma proved in [33, Lemma 2.4] and [26, Lemmas 2.1, 2.2, and Theorem 2.3], respectively.

- **Lemma 2.2.** (i) Let $K \subseteq N$ be submodules of an *R*-module *M*. Then *N* is a 2-absorbing submodule of *M* if and only if *N*/*K* is a 2-absorbing submodule of *M*/*K*.
 - (ii) Let I be an ideal of R and N be a 2-absorbing submodule of M. If $a \in R$, $m \in M$ and $Iam \subseteq N$, then $am \in N$ or $Im \subseteq N$ or $Ia \subseteq (N : M)$.

- (iii) Let I, J be ideals of R and N be a 2-absorbing submodule of M. If $m \in M$ and $IJm \subseteq N$, then $Im \in N$ or $Jm \subseteq N$ or $IJ \subseteq (N : M)$.
- (iv) Let N be a proper submodule of M. Then N is a 2-absorbing submodule of M if and only if $IJK \subseteq N$ for some ideals I, J of R and a submodule K of M implies that $IK \subseteq N$ or $JK \subseteq N$ or $IJ \subseteq (N : M)$.

Proposition 2.3. Let M be a 2-absorbing multiplication module over a commutative ring R. Then the following hold:

- (i) If I is an ideal of R and N a non-zero R-submodule of M with I ⊆ (N : M), then M/N is a 2-absorbing multiplication R/I-module.
- (ii) If N is a submodule of M, then M/N is a 2-absorbing multiplication Rmodule.
- (iii) Every direct summand of M is a 2-absorbing multiplication submodule.
- (iv) If I is an ideal of R with $I \subseteq (0:M)$, then M is a 2-absorbing multiplication R-module if and only if M is 2-absorbing multiplication as an R/I-module.

Proof. (i) Let K/N be a 2-absorbing submodule of M/N. Then by Lemma 2.1 (i), K is a 2-absorbing submodule of M, so K = (K : M)M, where $I \subseteq (N : M) \subseteq (K : M) = J$. An inspection will show that K/N = (J/I)(M/N).

(ii) Take I = 0 in (i). (iii) Follows from (ii).

(iv) It is easy to see that N is a 2-absorbing R-submodule of M if and only if N is a 2-absorbing R/I-submodule of M. Now the assertion follows the fact that $(N:_R M) = (N:_{R/I} M).$

Remark 2.4. (i) Let R and R' be any commutative rings, $g: R \to R'$ a surjective homomorphism and M an R'-module. It is clear that if N is a 2-absorbing Rsubmodule of M, then N is a 2-absorbing R'-submodule of M. Suppose that M is a 2-absorbing multiplication R'-module and let N be a 2-absorbing R-submodule of M. Then N = JM for some ideal J of R'. It follows that $I = g^{-1}(J)$ is an ideal of R with g(I) = J. Then IM = g(I)M = JM = N. Thus M is a 2-absorbing multiplication R-module.

(ii) Let M be a 2-absorbing multiplication module over an integral domain R(which is not a field), and let T(M) be the torsion submodule of M with $T(M) \neq M$. Then T(M) is a prime (so 2-absorbing) submodule M such that (T(M) : M) = 0(see [24, Lemma 3.8]); hence T(M) = 0. Thus M is either torsion or torsion-free.

(iii) Let $R = M = \mathbb{Z}$ be the ring of integers. If $N = 4\mathbb{Z}$, then N is a 2absorbing submodule of M, but it is not semiprime. So a 2-absorbing does not need to be semiprime. If $K = 30\mathbb{Z}$, then an inspection will show that K is a semiprime submodule of M that it is not 2-absorbing. Hence a semiprime does not need to be 2absorbing. So the class of semiprime multiplication and 2-absorbing multiplication modules are different concepts.

Proposition 2.5. Let R be a discrete valuation domain with unique maximal ideal P = Rp. Then R, E = E(R/P), the injective hull of R/P, Q(R), the field of fractions of R, and R/P^n ($n \ge 1$) are 2-absorbing multiplication modules.

Proof. By [8, Lemma 2.6], every non-zero proper submodule L of E is of the form $L = A_n = (0 :_E P^n)$ $(n \ge 1)$, $L = A_n = Ra_n$ and $PA_{n+1} = A_n$. However no A_n is a 2-absorbing submodule of E, for if n is a positive integer than $P^3A_{n+3} = A_n$, but $PA_{n+3} = A_{n+2} \not\subseteq A_n$, $P^2A_{n+3} = A_{n+1} \not\subseteq A_n$ and $P^3E = E \not\subseteq A_n$ (see Lemma 2.1). Now we conclude that $abSpec(E) = \emptyset$. Thus E is a 2-absorbing multiplication module.

Clearly, 0 is a 2-absorbing submodule of Q(R). To show that 0 is the only 2absorbing submodule of Q(R), we assume the contrary and let N be a non-zero 2-absorbing submodule of Q(R). Since N is a non-zero submodule, there exists a/b, where $a, b \in R$, so that $a/b \in N$. Clearly, $1/b \notin N$ (otherwise, $b/b = 1/1 \in N$ which is a contradiction). Now we have $a^2(1/ab) = a/b \in N$, but $a(1/ab) = 1/b \notin N$ and $a^2Q(R) \notin N$. This contradicts the fact that N is a 2-absorbing submodule. Thus seSpec $(Q(R)) = \{(0)\}$ and hence Q(R) is 2-absorbing multiplication. Finally, in the cases of R and R/P^n these follows because they are multiplication modules. \Box

Theorem 2.6. Let R be a discrete valuation domain with a unique maximal ideal P = Rp. Then the class of indecomposable 2-absorbing multiplication modules over R, up to isomorphism, consists of the following:

- (i) R;
- (ii) R/P^n , $n \ge 1$, the indecomposable torsion modules;
- (iii) E(R/P), the injective hull of R/P;
- (iv) Q(R), the field of fractions of R.

Proof. By [7, Proposition 1.3], these modules are indecomposable. Being 2-absorbing multiplication follows from Proposition 2.5. Now let M be an indecomposable 2-absorbing multiplication and choose any non-zero element $a \in M$. Let $h(a) = \sup\{n : a \in P^nM\}$ (so h(a) is a nonnegative integer or ∞). Also let $(0 : a) = \{r \in R : ra = 0\}$: thus (0 : a) is an ideal of the form P^m or 0. Because $(0 : a) = P^{m+1}$ implies that $p^m a \neq 0$ and $p.p^m a = 0$, we can choose a so that (0 : a) = P or 0. Let $\operatorname{abSpec}(M) = \emptyset$. Since $\operatorname{Spec}(M) \subseteq \operatorname{abSpec}(M)$, it follows from [23, Lemma 1.3, Proposition 1.4] that M is a torsion divisible R-module with PM = M and

M is not finitely generated. We may assume that (0:a) = P. By an argument like that in [8, Proposition 2.7 Case 2], $M \cong E(R/P)$. So we may assume that $abpSpec(M) \neq \emptyset$.

If h(a) = n and (0:a) = 0, (resp. h(a) = n and (0:a) = P), then by a similar argument like that in [12, Theorem 3.8 Case 2] (resp. ([12, Theorem 3.8 Case 3] and [18, Theorem 5]), we get $M \cong R$ (resp. $M \cong R/P^{n+1}$). So we may assume that $h(a) = \infty$.

If (0:a) = P, then by an argument like that in [8, Proposition 2.7 Case 2], we get $M \cong E(R/P)$; so $abSpec(M) = \emptyset$ by Proposition 2.5, contrary to assumption. So we may assume that $h(a) = \infty$ and (0:a) = 0. By an argument like that in [10, Theorem 2.12 Case 3], we get $M \cong Q(R)$.

Theorem 2.7. Let M be a 2-absorbing multiplication module over a discrete valuation domain with a maximal ideal P = Rp. Then M is of the form $M = N \oplus K$, where N is a direct sum of copies of R/P^n $(n \ge 1)$ and K is a direct sum of copies of E(R/P) and Q(R). In particular, every 2-absorbing multiplication R-module not isomorphic with R is pure-injective.

Proof. Let T denote the indecomposable summand of M. Then by Proposition 2.2 (iii), T is an indecomposable 2-absorbing multiplication module. Now the assertion follows from Theorem 2.6 and [7, Proposition 1.3].

3. The separated case

Throughout this section we shall assume unless otherwise stated, that

$$R = (R_1 \xrightarrow{v_1} \bar{R} \xleftarrow{v_2} R_2) \tag{1}$$

is the pullback of two discrete valuation domains R_1, R_2 with maximal ideals P_1, P_2 generated respectively by p_1, p_2, P denotes $P_1 \oplus P_2$ and $R_1/P_1 \cong R_2/P_2 \cong R/P \cong \overline{R}$ is a field. In particular, R is a commutative Noetherian local ring with unique maximal ideal P. The other prime ideals of R are easily seen to be P_1 (that is $P_1 \oplus 0$) and P_2 (that is $0 \oplus P_2$). Let T be an R-submodule of a separated module $S = (S_1 \xrightarrow{f_1} \overline{S} < f_2 - S_2)$, with projection maps $\pi_i : S \to S_i$. Set $T_1 = \{t_1 \in S_1 :$ $(t_1, t_2) \in T$ for some $t_2 \in S_2\}$ and $T_2 = \{t_2 \in S_2 : (t_1, t_2) \in T$ for some $t_1 \in S_1\}$. Then for each $i, i = 1, 2, T_i$ is an R_i -submodule of S_i and $T \leq T_1 \oplus T_2$. Moreover, we can define a mapping $\pi'_1 = \pi_1 | T : T \to T_1$ by sending (t_1, t_2) to t_1 ; hence $T_1 \cong T/(0 \oplus Ker(f_2) \cap T) \cong T/(T \cap P_2S) \cong (T + P_2S)/P_2S \subseteq S/P_2S$. So we may assume that T_1 is a submodule of S_1 . Similarly, we may assume that T_2 is a submodule of S_2 (note that $Ker(f_1) = P_1S_1$ and $Ker(f_2) = P_2S_2$). **Proposition 3.1.** Let $S = (S/P_2S = S_1 \xrightarrow{f_1} \overline{S} = S/PS \xleftarrow{f_2} S_2 = S/P_1S)$ be any separated module over the pullback ring as in (1).

- (i) If T is a 2-absorbing submodule of S, then T₁ is a 2-absorbing submodule S₁ and T₂ is a 2-absorbing submodule S₂.
- (ii) $\operatorname{abSpec}(S) = \emptyset$ if and only if $\operatorname{abSpec}(S_i) = \emptyset$ for i = 1, 2.

Proof. (i) Let $abs_1 \in T_1$ for some $a, b \in R_1$ and $s_1 \in S_1$. If $a \notin P_1$, then $bs_1 \in T_1$ since a is invertible, and so we are done. Similarly, if $b \notin P_1$, then $as_1 \in T_1$. So we may assume that $a, b \in P_1$. Then $v_1(ab) = v_2(0) = 0$; hence $(ab, 0) \in R$. By assumption, $(s_1, s_2) \in S$ for some $s_2 \in S_2$. Since $abs_1 \in T_1 \cap P_1S$, $0 \in T_2 \cap P_2S$ and $f_1(abs_1) = f_2(0)$, we get $(abs_1, 0) = (a, 0)(b, 0)(s_1, s_2) \in T$. Now T is a 2-absorbing submodule gives $(as_1, 0) \in T$ or $(bs_1, 0) \in T$ or $(ab, 0) \in (T :_R S) = (T_1 :_{R_1} S_1) \times (T_2 :_{R_2} S_2)$ which implies that $as_1 \in T_1$ or $bs_1 \in T_1$ or $ab \in (T_1 :_{R_1} S_1)$. Thus T_1 is a 2-absorbing submodule S_1 . Similarly, T_2 is a 2-absorbing submodule S_2 .

(ii) Assume that $abSpec(S) = \emptyset$ and let π be the projection map of R onto R_1 . Suppose that $abSpec(S_1) \neq \emptyset$ and let T_1 be a 2-absorbing submodule of S_1 , so T_1 is a 2-absorbing R-submodule of $S_1 = S/(0 \oplus P_2)S$; hence $abSpec(S) \neq \emptyset$ by Lemma 2.2 (i), which is a contradiction. Similarly, $abSpec(S_2) = \emptyset$. The other implication is clear by (i).

Theorem 3.2. Let $S = (S/P_2S = S_1 \xrightarrow{f_1} \overline{S} = S/PS \xleftarrow{f_2} S_2 = S/P_1S)$ be any separated module over the pullback ring as (1). Then S is a 2-absorbing multiplication R-module if and only if each S_i is a 2-absorbing multiplication R_i -module, i = 1, 2.

Proof. By Proposition 3.1 (ii), $\operatorname{abSpec}(S) = \emptyset$ if and only if $\operatorname{abSpec}(S_i) = \emptyset$ for i = 1, 2. So we may assume that $\operatorname{abSpec}(S) \neq \emptyset$. Assume that S is a separated 2-absorbing multiplication R-module. If $\overline{S} = 0$, then by [7, Lemma 2.7], $S = S_1 \oplus S_2$; hence for each i, S_i is 2-absorbing multiplication by Proposition 2.3 (iii). So we may assume that $\overline{S} \neq 0$. Since $(0 \oplus P_2) \subseteq ((0 \oplus P_2)S : S)$, Proposition 2.3 (i) gives $S_1 \cong S/(0 \oplus P_2)S$ is a 2-absorbing multiplication $R/(0 \oplus P_2) \cong R_1$ -module. Similarly, S_2 is a 2-absorbing multiplication R_2 -module.

Conversely, assume that each S_i is a 2-absorbing multiplication R_i -module and let $T = (T_1 \rightarrow \overline{T} \leftarrow T_2)$ be a 2-absorbing submodule of S. We may assume that $(T : S) \neq 0$. If $(T : S) = P_1^n \oplus P_2^m$ for some positive integers m, n, then $S_i \neq 0$ for $i = 1, 2, (T_1 : R_1 S_1) = P_1^n$, and $(T_2 : R_2 S_2) = P_2^m$ by [12, Proposition 4.2 (i)]. Now by Proposition 3.1 (i), $T_1 = P_1^n S_1 \subseteq P_1 S_1$ since S_1 is 2-absorbing multiplication. Similarly, $T_2 = P_2^m S_2 \subseteq P_2 S_2$. If $k = \min\{m, n\}$, then by an argument like that in [12, Proposition 4.5 Case 1], we get $T = P^k S$, and so S is 2-absorbing multiplication. If $(T:S) = P_1^n \oplus 0$ for some positive integer n, then T_2 is a 2-absorbing R_2 -submodule of S_2 with $(T_2:_{R_2}S_2) = 0$; so $T_2 = 0$. Similarly, $T_1 = P_1^n S_1$. It follows that $T \subseteq T_1 \oplus T_2 = (P_1^n \oplus 0)S$. For the other inclusion, assume that $t = (p_1^n, 0)(s_1, s_2) = (p_1^n s_1, 0) \in (P_1^n \oplus 0)S$. Then $t \in T$ since $p_1^n s_1 \in T_1$ and $f_1(p_1^n s_1) = 0 = f_2(0)$ (note that $\operatorname{Ker}(f_1) = P_1S_1$ and $\operatorname{Ker}(f_2) = P_2S_2$); hence $T = (P_1^n \oplus 0)S$. Similarly, if $(T:S) = 0 \oplus P_2^m$ for some positive integer m, then we get $T = (0 \oplus P_2^m)S$. Thus S is a 2-absorbing multiplication R-module.

Lemma 3.3. Let R be the pullback ring as in (1). Then, up to isomorphism, the following separated R-modules are indecomposable and 2-absorbing multiplication:

- (i) R;
- (ii) $S = (E(R_1/P_1) \rightarrow 0 \leftarrow 0), (0 \rightarrow 0 \leftarrow E(R_2/P_2)), \text{ where } E(R_i/P_i) \text{ is the } R_i \text{-injective hull of } R_i/P_i \text{ for } i = 1, 2;$
- (iii) $S = (Q(R_1) \to 0 \leftarrow 0), (0 \to 0 \leftarrow Q(R_2)),$ where $Q(R_i)$ is the field of fractions of R_i for i = 1, 2;
- (iv) $S = (R_1/P_1^n \to \overline{R} \leftarrow R_2/P_2^m)$ for all positive integers n, m.

Proof. By [7, Lemma 2.8], these modules are indecomposable. Being 2-absorbing multiplication follows from Theorem 2.6 and Theorem 3.2. \Box

For each *i*, let E_i be the R_i -injective hull of R_i/P_i , regarded as an *R*-module, so E_1, E_2 are the modules listed under (ii) in Lemma 3.3. We refer to modules of type (ii) in Lemma 3.3 as P_1 -Prüfer and P_2 -Prüfer, respectively.

Proposition 3.4. Let R be the pullback ring as in (1), and let $S \neq R$ be a separated 2-absorbing multiplication R module. Then the following hold:

- (i) S is of the form S = M ⊕ N, where M is a direct sum of copies of the modules as in (iv), N is a direct sum of copies of the modules as in (ii)-(iii) of Lemma 3.3.
- (ii) Every separated 2-absorbing multiplication R-module not isomorphic with *R* is pure-injective.

Proof. (i) Let T denote an indecomposable summand of S. Then we can write $T = (T_1 \rightarrow \overline{T} \leftarrow T_2)$, and T is a 2-absorbing multiplication R-module by Proposition 2.2 (iii). First suppose that $\overline{T} = 0$. Then by [7, Lemma 2.7 (i)], $T = T_1$ or T_2 and so T is an indecomposable 2-absorbing multiplication R_i -module for some i and, since T = PT, is type (ii) or (iii) in the list Lemma 3.3. So we may assume that $\overline{T} \neq 0$.

By Theorem 2.6 and Theorem 3.2, T_i is an indecomposable 2-absorbing multiplication R_i -module, for each i = 1, 2. Hence, by the structure of 2-absorbing multiplication modules over a discrete valuation domain (see Theorem 2.7), we must have $T_i = E(R_i/P_i)$ or $Q(R_i)$ or R_i/P_i^n $(n \ge 1)$. Since $T \ne PT$ it follows that for each $i = 1, 2, T_i$ is torsion and it is not divisible R_i -module. Then there are positive integers m, n and k such that $P_1^m T_1 = 0, P_2^k T_2 = 0$ and $P^n T = 0$. For $t \in T$, let o(t) denote the least positive integer m such that $P^m t = 0$. Now choose $t \in T_1 \cup T_2$ with $\bar{t} \ne 0$ and such that o(t) is maximal (given that $\bar{t} \ne 0$). There exists a $t = (t_1, t_2)$ such that $o(t) = n, o(t_1) = m$ and $o(t_2) = k$. Then for each i = 1, 2, $R_i t_i$ is pure in T_i (see [7, Theorem 2.9]). Thus, $R_1 t_1 \cong R_1/(0 : t_1) \cong R_1/P_1^m$ is a direct summand of T_1 since $R_1 t_1$ is pure-injective; hence $T_1 = R_1 t_1$ since T_1 is indecomposable. Similarly, $T_2 = R_2 t_2 \cong R_2/P_2^k$. Let \bar{M} be the \bar{R} -subspace of \bar{T} generated by \bar{t} . Then $\bar{M} \cong \bar{R}$. Let $M = (R_1 t_1 \to \bar{M} \leftarrow R_2 t_2)$. Then T = M, and T satisfies the case (iv) (see [7, Theorem 2.9]).

(ii) Apply (i) and [7, Theorem 2.9].

Theorem 3.5. Let $S \neq R$ be an indecomposable separated 2-absorbing multiplication module over the pullback ring as in (1). Then S is isomorphic to one of the modules listed in Lemma 3.3.

Proof. Apply Proposition 3.4 and Lemma 3.3.

4. The nonseparated case

We continue to use the notation already established, so R is the pullback ring as in (1). In this section we find the indecomposable non-separated 2-absorbing multiplication modules with finite-dimensional top. It turns out that each can be obtained by amalgamating finitely many separated indecomposable 2-absorbing multiplication modules.

Proposition 4.1. Let R be a pullback ring as in (1).

- (i) E(R/P) is a non-separated 2-absorbing multiplication R-module.
- (ii) If $0 \to K \to S \to M \to 0$ is a separated representation of an *R*-module *M*, then $\operatorname{abSpec}_R(S) = \emptyset$ if and only if $\operatorname{abSpec}_R(M) = \emptyset$.

Proof. (i) It is enough to show that $abpSpec(E(R/P)) = \emptyset$. Assume that L is any submodule of E(R/P) described in [13, Proposition 3.1 (iii)]. However no L, say $E_1 + A_n$, is a 2-absorbing submodule of E(R/P), for if n is any positive integer, then $P^3(E_1 + A_{n+3}) = E_1 + A_n$, but $P(E_1 + A_{n+3}) = E_1 + A_n$

and $P^{3}E(R/P) = E(R/P) \nsubseteq E_{1} + A_{n}$ (see Lemma 2.2). Therefore, E(R/P) is a non-separated 2-absorbing multiplication *R*-module (see [7, p. 4053]).

(ii) Assume that $\operatorname{abSpec}_R(S) = \emptyset$ and let $\operatorname{abSpec}_R(M) \neq \emptyset$. Then there exists a submodule T/K of $M \cong S/K$ such that $T/K \in \operatorname{abSpec}_R(M)$; so $T \in \operatorname{abSpec}_R(S)$ by Lemma 2.2 (i) which is a contradiction. Therefore $\operatorname{abSpec}_R(M) = \emptyset$. For the other implication, suppose that $\operatorname{abSpec}_R(M) = \emptyset$, and let $\operatorname{abSpec}_R(S) \neq \emptyset$. So S has a 2-absorbing submodule T with $K \subseteq T$ by [11, Proposition 4.3 (ii)]; hence T/K is a 2-absorbing submodule of M by Lemma 2.2 (i) which is a contradiction. Thus $\operatorname{abSpec}_R(S) = \emptyset$.

Theorem 4.2. Let R be a pullback ring as in (1) and let M be any non-separated R-module. Let $0 \to K \to S \to M \to 0$ be a separated representation of M. Then S is 2-absorbing multiplication if and only if M is 2-absorbing multiplication.

Proof. By Proposition 4.1 (ii), we may assume that $abSpec(S) \neq \emptyset$. Suppose that M is a 2-absorbing multiplication R-module and let U be a non-zero 2-absorbing submodule of S. Then by [11, Proposition 4.3], $K \subseteq U$, and so U/K is a 2-absorbing submodule of $S \cong M/K$ by Lemma 2.2 (i). By an argument like that in [12, Theorem 5.3], we get S is 2-absorbing multiplication. Conversely, assume that S is a 2-absorbing multiplication R-module. Then $S \cong M/K$ is 2-absorbing multiplication by Proposition 2.3 (ii), as required.

Proposition 4.3. Let R be a pullback ring as in (1) and let M be an indecomposable 2-absorbing multiplication non-separated R-module with finite-dimensional top over \overline{R} . Let $0 \to K \to S \to M \to 0$ be a separated representation of M. Then the following hold:

- (i) S is pure-injective.
- (ii) R do not occur among the direct summands of S.

Proof. (i) Since $S/PS \cong M/PM$ by [7, Proposition 2.6 (i)], we get S has finitedimensional top. Now the assertion follows from Theorem 4.2 and Proposition 3.4. (ii) follows from [12, Lemma 5.5].

Let R be a pullback ring as in (1) and let M be an indecomposable 2-absorbing multiplication non-separated R-module with finite-dimensional top over \overline{R} . Consider the separated representation $0 \to K \to S \to M \to 0$. By Proposition 4.3, S is pure-injective. So in the proofs of [7, Lemma 3.1, Propositions 3.2 and 3.4] (here the pure-injectivity of M implies the pure-injectivity of S by [7, Proposition 2.6 (ii)] we can replace the statement "M is an indecomposable pure-injective non-separated *R*-module" by "*M* is an indecomposable 2-absorbing multiplication non-separated R-module": because the main key in those results are the pure-injectivity of *S*, the indecomposability and the non-separability of *M*. So we have the following result:

Corollary 4.4. Let R be a pullback ring as in (1) and let M be an indecomposable 2-absorbing multiplication non-separated R-module with M/PM finite-dimensional over \overline{R} , and let $0 \to K \to S \to M \to 0$ be a separated representation of M. Then the following hold:

- (i) the quotient fields Q(R₁) and Q(R₂) of R₁ and R₂ do not occur among the direct summands of S.
- (ii) S is a direct sum of finitely many indecomposable 2-absorbing multiplication modules.
- (iii) At most two copies of modules of infinite length can occur among the indecomposable summands of S.

Recall that every indecomposable *R*-module of finite length is 2-absorbing multiplication since it is a quotient of a 2-absorbing multiplication *R*-module (see Proposition 2.2 (ii)). So by Corollary 4.4 (iii), the infinite length non-separated indecomposable 2-absorbing multiplication modules are obtained in just the same way as the deleted cycle type indecomposable ones are, except that at least one of the two "end" modules must be a separated indecomposable 2-absorbing multiplication of infinite length (that is, P_1 -Prüfer and P_2 -Prüfer). Note that one can not have, for instance, a P_1 -Prüfer module at each end (consider the alternation of primes P_1, P_2 along the amalgamation chain). So, apart form any finite length modules: we have amalgamations involving two Prüfer modules as well as modules of finite length (the injective hull E(R/P) is the simplest module of this type), a P₁-Prüfer module and a P_2 -Prüfer module. If the P_1 -Prüfer and the P_2 -Prüfer are direct summands of S then we will describe these modules as **doubly infinite**. Those where S has just one infinite length summand we will call singly infinite (the reader is referred to [7] for more details). It remains to show that the modules obtained by these amalgamations are, indeed, indecomposable 2-absorbing multiplication modules.

Theorem 4.5. Let $R = (R_1 \rightarrow \overline{R} \leftarrow R_2)$ be the pullback of two discrete valuation domains R_1, R_2 with common factor field \overline{R} . Then the class of indecomposable nonseparated 2-absorbing multiplication modules with finite-dimensional top consists of the following:

 (i) The indecomposable modules of finite length (apart from R/P which is separated);

- (ii) The doubly infinite 2-absorbing multiplication modules;
- (iii) The singly infinite 2-absorbing multiplication modules (except the two pr
 üfer modules (ii) in Lemma 3.3).

Proof. We know already that every indecomposable 2-absorbing multiplication non-separated module has one of these forms so it remains to show that the modules obtained by these amalgamation are, indeed, indecomposable 2-absorbing multiplication modules. Let M be an indecomposable non-separated 2-absorbing multiplication R-module with finite-dimensional top and let $0 \to K \xrightarrow{i} S \xrightarrow{\varphi} M \to 0$ be a separated representation of M.

(i) Every indecomposable *R*-module of finite length is 2-absorbing multiplication since it is a quotient of a 2-absorbing multiplication *R*-module (see Proposition 2.3 (ii)). The indecomposability follows from [21, 1.9].

(ii) and (iii) (involving one or two Prüfer modules) M is 2-absorbing multiplication since they are a quotient of a 2-absorbing multiplication R-module (also see Proposition 4.1 (i)). Finally, the indecomposability follows from [7, Theorem 3.5].

Remark 4.6. (i) Let R be the pullback ring as described in Theorem 4.5. Then by [7, Theorem 3.5] and Theorem 4.5, every indecomposable 2-absorbing multiplication R-module with finite-dimensional top is pure-injective.

(ii) For a given field k, the infinite-dimensional k-algebra $k[x, y : xy = 0]_{(x,y)}$ is the pullback $(k[x]_{(x)} \to k \leftarrow k[y]_{(y)})$ of two discrete valuation domains $k[x]_{(x)}, k[y]_{(y)}$ (see [1, Section 6]). This paper includes the classification of those indecomposable 2-absorbing multiplication modules over k-algebra $k[x, y : xy = 0]_{(x,y)}$ which have finite-dimensional top.

Acknowledgment. The authors would like to thank the referee for careful reading.

References

- D. M. Arnold and R. C. Laubenbacher, *Finitely generated modules over pull-back rings*, J. Algebra, 184(1) (1996), 304-332.
- [2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429.
- [3] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51(4) (2014), 1163-1173.
- [4] A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc., 52(1) (2015), 97-111.

- [5] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28.
- [6] Ju. A. Drozd, Matrix problems and categories of matrices, In: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 28 (1972), 144-153 (in Russian).
- [7] S. Ebrahimi Atani, On pure-injective modules over pullback rings, Comm. Algebra, 28(9) (2000), 4037-4069.
- [8] S. Ebrahimi Atani, On secondary modules over Dedekind domains, Southeast Asian Bull. Math, 25(1) (2001), 1-6.
- [9] S. Ebrahimi Atani, On secondary modules over pullback rings, Comm. Algebra, 30(6) (2002), 2675-2685.
- [10] S. Ebrahimi Atani, Indecomposable weak multiplication modules over Dedekind domains, Demonstratio Math., 41(1) (2008), 33-43.
- [11] R. Ebrahimi Atani and S. Ebrahimi Atani, Comultiplication modules over a pullback of Dedekind domains, Czechoslovak Math. J., 59 (2009), 1103-1114.
- [12] R. Ebrahimi Atani and S. Ebrahimi Atani, On semiprime multiplication modules over pullback rings, Comm. Algebra, 41(2) (2013), 776-791.
- [13] S. Ebrahimi Atani and F. Farzalipour, Weak multiplication modules over a pullback of Dedekind domains, Colloq. Math., 114(1) (2009), 99-112.
- [14] Z. A. El-Bast and P. F. Smith, *Multiplication modules*, Comm. Algebra, 16(4) (1988), 755-779.
- [15] A. Facchini and P. Vamos, *Injective modules over pullbacks*, J. London Math. Soc., 31 (1985), 425-438.
- [16] J. Haefner and L. Klingler, Special quasi-triads and integral group rings of finite representation type I, J. Algebra, 158(2) (1993), 279-322.
- [17] J. Haefner and L. Klingler, Special quasi-triads and integral group rings of finite representation type II, J. Algebra, 158(2) (1993), 323-374.
- [18] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math., Soc., 72 (1952), 327-340.
- [19] L. Klingler, Integral representations of groups of square-free order, J. Algebra, 129(1) (1990), 26-74.
- [20] L. S. Levy, Modules over pullbacks and subdirect sums, J. Algebra, 71(1) (1981), 50-61.
- [21] L. S. Levy, Mixed modules over ZG, G cyclic of prime order, and over related Dedekind pullbacks, J. Algebra, 71(1) (1981), 62-114.
- [22] L. S. Levy, Modules over Dedekind-like rings, J. Algebra, 93(1) (1985), 1-116.

- [23] R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25(1) (1997), 79-103.
- [24] M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30(10) (2002), 5037-5064.
- [25] L. A. Nazarova and A. V. Roiter, Finitely generated modules over a dyad of two local Dedekind rings, and finite groups which possess an abelian normal divisor of index p, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 65-89.
- [26] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq., 19 (2012), 913-920.
- [27] M. Prest, Model Theory and Modules, London Mathematical Society Lecture Note Series, 130, Cambridge University Press, Cambridge, 1988.
- [28] C. M. Ringel, Tame algebras are wild, Algebra Colloq., 6(4) (1999), 473-480.
- [29] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, 4, Gordon and Breach Science Publishers, Switzerland-Australia, 1992.
- [30] D. Simson, On Corner type Endo-wild algebras, J. Pure Appl. Algebra, 202 (2005), 118-132.
- [31] R. B. Warfield, Jr., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), 699-719.
- [32] A. N. Wiseman, Projective modules over pullback rings, Math. Proc. Cambridge Philos. Soc., 97(3) (1985), 399-406.
- [33] A. Yousefian Darani and F. Soheilnia, 2-Absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(3) (2011), 577-584.

S. Ebrahimi Atani (Corresponding Author) and M. Sedghi Shanbeh Bazari
Faculty of Mathematical Sciences
Guilan University
P. O. Box 1914, Rasht, Iran
e-mails: ebrahimi@guilan.ac.ir (S. Ebrahimi Atani)

ms.maryamsedghi55@gmail.com (M. Sedghi Shanbeh Bazari)