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1. Introduction

In this paper all rings are commutative with identity and all modules unitary.
Let v1 : Ri — R and vy : Ry — R be homomorphisms of two discrete valuation
domains R; onto a common field R. Denote the pullback R = {(r1,m2) € R1® Ry :
v1(r1) = va(r2)} by (Ry SR Ry), where R = Ry/J(Ry) = Ra/J(Rz). Then
R is a ring under coordinate-wise multiplication. Denote the kernel of v;, i = 1,2,
by P;. Then Ker(R — R) = P = P, x P, R/P = R = R|/P, = Ry/P,, and
PP, = P,P; = 0 (so R is not a domain). Furthermore, for i # j, 0 - P, —
R — R; — 0 is an exact sequence of R-modules (see [20]). Modules over pullback
rings has been studied by several authors (see for example, [1,5,9,15,19,25,32]).
Notably, there is the important work of Levy [22], resulting in the classification of
all finitely generated indecomposable modules over Dedekind-like rings. Klingler
[19] extended this classification to lattices over certain non-commutative Dedekind-
like rings, and Haefner and Klingler classified lattices over certain non-commutative
pullback rings, which they called special quasi triads, see [16,17]. Common to all
these classification is the reduction to a “matrix problem” over a division ring, see [6]
and [29, Section 17.9] for a background of matrix problems and their applications.
Here we should point out that the classification of all indecomposable modules over

an arbitrary unitary ring (including finite-dimensional algebras over an algebraically
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closed field) is an impossible task. In particular, an infinite-dimensional version of
tame representation type is in fact wild representation type. For a discussion of
this kind of problems the reader is referred to the papers by Ringel [28] and Simson
[30].

The concept of 2-absorbing ideal, which is a generalization of prime ideal, was
introduced and studied by Badawi in [2]. Various generalizations of prime ideals
are also studied in [3] and [4]. Recall that a proper ideal I of a ring R is called a
2-absorbing ideal of R if whenever a,b,c € R and abc € I, then ab € I or ac € I or
be € I. Recently (see [26,33]), the concept of 2-absorbing ideal is extended to the
context of 2-absorbing submodule which is a generalization of prime submodule.
Recall from [26] that a proper R-submodule N of a module M is said to be a
2-absorbing submodule of M if whenever a,b € R, m € M and abm € N, then
am € N orbm € N or ab € (N :g M).

In the present paper we introduce a new class of R-modules, called 2-absorbing
multiplication modules, and we study it in details from the classification problem
point of view. We are mainly interested in case either R is a discrete valuation do-
main or R is a pullback of two discrete valuation domains. First, we give a complete
description of the 2-absorbing multiplication modules over a discrete valuation do-
main. Let R be a pullback of two discrete valuation domains over a common factor
field. Next, the main purpose of this paper is to give a complete description of
the indecomposable 2-absorbing multiplication R-modules with finite-dimensional
top over R/rad(R) (for any module M we define its top as M/Rad(R)M). The
classification is divided into two stages: the description of all indecomposable sep-
arated 2-absorbing multiplication R-modules and then, using this list of separated
2-absorbing multiplication modules we show that non-separated indecomposable
2-absorbing multiplication R-modules with finite-dimensional top are factor mod-
ules of finite direct sums of separated indecomposable 2-absorbing multiplication
R-modules. Then we use the classification of separated indecomposable 2-absorbing
multiplication modules from Section 3, together with results of Levy [21,22] on the
possibilities for amalgamating finitely generated separated modules, to classify the
non-separated indecomposable 2-absorbing multiplication modules M with finite-
dimensional top (see Theorem 4.5). We will see that the non-separated modules
may be represented by certain amalgamation chains of separated indecomposable
2-absorbing multiplication modules (where infinite length 2-absorbing multiplica-
tion modules can occur only at the ends) and where adjacency corresponds to

amalgamation in the socles of these separated 2-absorbing multiplication modules.
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For the sake of completeness, we state some definitions and notations used
throughout. Let R be the pullback ring as mentioned in the beginning of in-
troduction. An R-module S is defined to be separated if there exist R;-modules
Siy @ = 1,2, such that S is a submodule of S; & Sy (the latter is made into an
R-module by setting (r1,72)(s1,82) = (r181,7282)). Equivalently, S is separated
if it is a pullback of an R;-module and an Rs-module and then, using the same
notation for pullbacks of modules as for rings, S = (S/P.S — S/PS < S/P,S)
[20, Corollary 3.3] and S C (S/PyS) & (S/P1S). Also S is separated if and only if
P,SN PyS =0 [20, Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of a sep-
arated R-module, indeed every R-module has a “minimal” such representation: a
separated representation of an R-module M is an epimorphism ¢ = (S ENy NV )
of R-modules where S is separated and, if ¢ admits a factorization ¢ : S i) S — M
with S’ separated, then f is one-to-one. The module K = Ker(¢) is then an R-
module, since R = R/P and PK = 0 [20, Proposition 2.3]. An exact sequence
0 K — S — M — 0 of R-modules with S separated and K an R-module is a
separated representation of M if and only if P;.S N K = 0 for each ¢ and K C PS
[20, Proposition 2.3]. Every module M has a separated representation, which is
unique up to isomorphism [20, Theorem 2.8]. Moreover, R-homomorphisms lift
to a separated representation, preserving epimorphisms and monomorphisms [20,
Theorem 2.6].

Definition 1.1. (a) If Ris aring and N is a submodule of an R-module M, the ideal
{r e R:rM C N} is denoted by (N : M). Then (0 : M) is the annihilator of M. A
proper submodule N of a module M over a ring R is said to be a prime submodule
if whenever rm € N, for some r € R, m € M, then m € N or r € (N : M), so
(N : M) = P is a prime ideal of R, and N is said to be a P-prime submodule. The
set of all prime submodules in an R-module M is denoted by Spec(M) [23,24].

(b) An R-module M is defined to be a multiplication module if for each submodule
N of M, N = IM, for some ideal I of R. In this case we can take I = (N :gp M)
[14].

(¢) A proper submodule N of a module M is said to be semiprime if whenever
r*m € N for some m € M, r € R, and positive integer k, then rm € N. The
set of all semiprime submodules in an R-module M is denoted by seSpec(M). An
R-module M is defined to be a semiprime multiplication module if seSpec(M) = )

or for every semiprime submodule N of M, N = IM, for some ideal I of R [12].
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(d) A proper submodule N of a module M is said to be a 2-absorbing submodule
if whenever a,b € R, m € M and abm € N, then am € N or bm € N or ab € (N :p
M) [26,33]. The set of all 2-absorbing submodules in an R-module M is denoted
by abSpec(M).

(e) A submodule N of an R-module M is called a pure submodule if any finite
system of equations over N which is solvable in M is also solvable in N. A sub-
module N of an R-module M is called relatively divisible (or an RD-submodule) in
M if rN=NnrM for all » € R [27,31].

(f) A module M is pure-injective if it has the injective property relative to all

pure exact sequences [27,31].

Remark 1.2. (i) Let R be a Dedekind domain, M an R-module and N a submodule
of M. Then N is pure in M if and only if IN = N NIM for each ideal I of R.
Moreover, N is pure in M if and only if N is an RD-submodule of M [27,31].

(ii) Let N be an R-submodule of M. It is clear that N is an RD-submodule of
M if and only if for allm € M and r € R, rm € N implies that rm = rn for some
n € N. Furthermore, if M is torsion-free, then N is an RD-submodule if and only
if for all m € M and for all non-zero r € R, rm € N implies that m € N. In this

case, N is an RD-submodule if and only if N is a prime submodule.

2. Basic properties of 2-absorbing multiplication modules

In this section, we give a complete description of the 2-absorbing multiplication
modules over a discrete valuation domain. Our starting point is the following

definition.

Definition 2.1. Let R be a commutative ring. An R-module M is defined to
be a 2-absorbing multiplication module if abSpec(M) = @ or for every 2-absorbing
submodule N of M, N = IM, for some ideal I of R.

One can easily show that if M is a 2-absorbing multiplication module, then
N = (N :g M)M for every 2-absorbing submodule N of M. We need the following
lemma proved in [33, Lemma 2.4] and [26, Lemmas 2.1, 2.2, and Theorem 2.3],

respectively.

Lemma 2.2. (i) Let K C N be submodules of an R-module M. Then N is a
2-absorbing submodule of M if and only if N/K is a 2-absorbing submodule
of M/K.
(ii) Let I be an ideal of R and N be a 2-absorbing submodule of M. If a € R,
m € M and Iam C N, thenam € N or Im C N or Ia C (N : M).
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(iii) Let I,J be ideals of R and N be a 2-absorbing submodule of M. If m € M
and IJm C N, then Im € N or Jm C N orIJ C (N : M).

(iv) Let N be a proper submodule of M. Then N is a 2-absorbing submodule of
M if and only if IJK C N for some ideals I,J of R and a submodule K
of M implies that IK C N or JK CN or IJ C (N : M).

Proposition 2.3. Let M be a 2-absorbing multiplication module over a commuta-
tive ring R. Then the following hold:

(i) IfI is an ideal of R and N a non-zero R-submodule of M with I C (N : M),
then M/N is a 2-absorbing multiplication R/I-module.
(ii) If N is a submodule of M, then M/N is a 2-absorbing multiplication R-
module.
(iil) Every direct summand of M is a 2-absorbing multiplication submodule.
(iv) IfI is an ideal of R with I C (0 : M), then M is a 2-absorbing multiplication
R-module if and only if M is 2-absorbing multiplication as an R/I-module.

Proof. (i) Let K/N be a 2-absorbing submodule of M/N. Then by Lemma 2.1
(i), K is a 2-absorbing submodule of M, so K = (K : M)M, where I C (N : M) C
(K : M) =J. An inspection will show that K/N = (J/I)(M/N).

(ii) Take I =0 in (i). (iii) Follows from (ii).

(iv) It is easy to see that N is a 2-absorbing R-submodule of M if and only if
N is a 2-absorbing R/I-submodule of M. Now the assertion follows the fact that
(N:r M) = (N :g/; M). O

Remark 2.4. (i) Let R and R’ be any commutative rings, g : R — R’ a surjective
homomorphism and M an R'-module. It is clear that if N is a 2-absorbing R-
submodule of M, then N is a 2-absorbing R'-submodule of M. Suppose that M is
a 2-absorbing multiplication R'-module and let N be a 2-absorbing R-submodule of
M. Then N = JM for some ideal J of R'. It follows that I = g=1(J) is an ideal
of R with g(I) = J. Then IM = g(I)M = JM = N. Thus M is a 2-absorbing
multiplication R-module.

(i) Let M be a 2-absorbing multiplication module over an integral domain R
(which is not a field), and let T (M) be the torsion submodule of M with T(M) # M.
Then T(M) is a prime (so 2-absorbing) submodule M such that (T'(M) : M) =0
(see [24, Lemma 3.8]); hence T(M) = 0. Thus M is either torsion or torsion-free.

(iii) Let R = M = 7 be the ring of integers. If N = 47, then N is a 2-
absorbing submodule of M, but it is not semiprime. So a 2-absorbing does not need

to be semiprime. If K = 30Z, then an inspection will show that K is a semiprime
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submodule of M that it is not 2-absorbing. Hence a semiprime does not need to be 2-
absorbing. So the class of semiprime multiplication and 2-absorbing multiplication

modules are different concepts.

Proposition 2.5. Let R be a discrete valuation domain with unique mazimal ideal
P = Rp. Then R, E = E(R/P), the injective hull of R/P, Q(R), the field of
fractions of R, and R/P™ (n > 1) are 2-absorbing multiplication modules.

Proof. By [8, Lemma 2.6], every non-zero proper submodule L of E is of the form
L=A,=0: P")(n>1), L=A, =Ra, and PA,; = A,. However no 4,
is a 2-absorbing submodule of E, for if n is a positive integer then P3A4,,,3 = A,
but PA, 3= A,40 € Ay, PPAy i3 =A,41 € A, and PPE = E ¢ A, (see Lemma
2.1). Now we conclude that abSpec(E) = (). Thus E is a 2-absorbing multiplication
module.

Clearly, 0 is a 2-absorbing submodule of Q(R). To show that 0 is the only 2-
absorbing submodule of Q(R), we assume the contrary and let N be a non-zero
2-absorbing submodule of Q(R). Since N is a non-zero submodule, there exists a/b,
where a,b € R, so that a/b € N. Clearly, 1/b ¢ N (otherwise, b/b =1/1 € N which
is a contradiction). Now we have a?(1/ab) = a/b € N, but a(1/ab) = 1/b ¢ N and
a’Q(R) ¢ N. This contradicts the fact that N is a 2-absorbing submodule. Thus
seSpec(Q(R)) = {(0)} and hence Q(R) is 2-absorbing multiplication. Finally, in

the cases of R and R/P" these follows because they are multiplication modules. O

Theorem 2.6. Let R be a discrete valuation domain with a unique mazximal ideal
P = Rp. Then the class of indecomposable 2-absorbing multiplication modules over
R, up to isomorphism, consists of the following:
(i) R
(ii) R/
(i) E(R/P), the injective hull of R/P;
) Q(R), the field of fractions of R.

)

P", n > 1, the indecomposable torsion modules;

(iv
Proof. By [7, Proposition 1.3], these modules are indecomposable. Being 2-absorbing
multiplication follows from Proposition 2.5. Now let M be an indecomposable 2-
absorbing multiplication and choose any non-zero element a € M. Let h(a) =
sup{n : a € P"M?} (so h(a) is a nonnegative integer or co). Also let (0:a) = {r €
R :ra=0}: thus (0: a) is an ideal of the form P™ or 0. Because (0 : a) = P™*!
implies that p™a # 0 and p.p™a = 0, we can choose a so that (0 : a) = P or 0.
Let abSpec(M) = . Since Spec(M) C abSpec(M), it follows from [23, Lemma
1.3, Proposition 1.4] that M is a torsion divisible R-module with PM = M and
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M is not finitely generated. We may assume that (0 : a) = P. By an argument
like that in [8, Proposition 2.7 Case 2 |, M = E(R/P). So we may assume that
abpSpec(M) # 0.

If h(a) =n and (0: a) =0, (resp. h(a) =n and (0: a) = P), then by a similar
argument like that in [12, Theorem 3.8 Case 2] (resp. ([12, Theorem 3.8 Case 3]
and [18, Theorem 5]), we get M = R (resp. M = R/P"!). So we may assume
that h(a) = occ.

If (0: a) = P, then by an argument like that in [8, Proposition 2.7 Case 2|, we
get M = FE(R/P); so abSpec(M) = () by Proposition 2.5, contrary to assumption.
So we may assume that h(a) = co and (0 : @) = 0. By an argument like that in [10,
Theorem 2.12 Case 3], we get M = Q(R). O

Theorem 2.7. Let M be a 2-absorbing multiplication module over a discrete val-
uation domain with a mazimal ideal P = Rp. Then M is of the form M = N ® K,
where N is a direct sum of copies of R/P™ (n > 1) and K is a direct sum of copies
of E(R/P) and Q(R). In particular, every 2-absorbing multiplication R-module not

isomorphic with R is pure-injective.

Proof. Let T denote the indecomposable summand of M. Then by Proposition 2.2
(iii), T is an indecomposable 2-absorbing multiplication module. Now the assertion

follows from Theorem 2.6 and [7, Proposition 1.3]. O

3. The separated case
Throughout this section we shall assume unless otherwise stated, that
R=(R; % R <% Ry) (1)

is the pullback of two discrete valuation domains Ry, Ry with maximal ideals Py, Py
generated respectively by p1, p2, P denotes Py®P, and Ry /Py = Ry /P, ¥ R/P = R
is a field. In particular, R is a commutative Noetherian local ring with unique
maximal ideal P. The other prime ideals of R are easily seen to be P; (that is
P, ®0) and P, (that is 0 @ P,). Let T be an R-submodule of a separated module
S = (S ELNY PR Sa), with projection maps m; : S = S;. Set Th = {t; € S1 :
(t1,t2) € T for some to € So} and To = {ta € Sy : (t1,t2) € T for some t; € Si}.
Then for each i, i = 1,2, T; is an R;-submodule of S; and T' < T} & T». Moreover,
we can define a mapping 7] = m|T : T — Ty by sending (¢1,t3) to t1; hence
T 2T/(0® Ker(fo) NT) ZT/(TNP,S) = (T+ P,S)/P,S C S/P,S. So we
may assume that T3 is a submodule of S;. Similarly, we may assume that 75 is a
submodule of Sy (note that Ker(f;) = P;S1 and Ker(fa) = P»2.52).
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Proposition 3.1. Let S = (S/P.S = S, 1 § = §/PS <2 S, = S/P,S) be any
separated module over the pullback ring as in (1).
(i) If T is a 2-absorbing submodule of S, then Ty is a 2-absorbing submodule

S1 and Ty is a 2-absorbing submodule Ss.
(ii) abSpec(S) = 0 if and only if abSpec(S;) =0 fori=1,2.

Proof. (i) Let abs; € T for some a,b € Ry and 51 € S1. If a ¢ Py, then bsy € T}
since a is invertible, and so we are done. Similarly, if b ¢ P;, then as; € Ty. So
we may assume that a,b € P;. Then v(ab) = v2(0) = 0; hence (ab,0) € R. By
assumption, (s1,s2) € S for some so € Sy. Since abs; € T1NP1S, 0 € ToNPyS and
fi(abs1) = f2(0), we get (abs1,0) = (a,0)(b,0)(s1,52) € T. Now T is a 2-absorbing
submodule gives (as1,0) € T or (bs1,0) € T or (ab,0) € (T :g 5) = (11 g,
S1) X (Ty :g, S2) which implies that as; € T} or bsy € Ty or ab € (Ty :g, S1). Thus
T is a 2-absorbing submodule S;. Similarly, T3 is a 2-absorbing submodule Ss.
(ii) Assume that abSpec(S) = () and let 7 be the projection map of R onto Rj.
Suppose that abSpec(S7) # (0 and let T} be a 2-absorbing submodule of S7, so T} is
a 2-absorbing R-submodule of S; = S/(0 & P,)S; hence abSpec(S) # 0 by Lemma
2.2 (i), which is a contradiction. Similarly, abSpec(S3) = (). The other implication
is clear by (i). O

Theorem 3.2. Let S = (S/P,S = S1 % § = S/PS <2 S, = S/P.S) be any
separated module over the pullback ring as (1). Then S is a 2-absorbing multipli-
cation R-module if and only if each S; is a 2-absorbing multiplication R;-module,
i=1,2.

Proof. By Proposition 3.1 (ii), abSpec(S) = 0 if and only if abSpec(S;) = @ for
i =1,2. So we may assume that abSpec(S) # (). Assume that S is a separated 2-
absorbing multiplication R-module. If S = 0, then by [7, Lemma 2.7], S = S; @ S;
hence for each i, S; is 2-absorbing multiplication by Proposition 2.3 (iii). So we
may assume that S # 0. Since (0 ® Py) C ((0 ® P»)S : S), Proposition 2.3 (i)
gives S1 = S/(0 ® P,)S is a 2-absorbing multiplication R/(0 & P2) = Rj-module.
Similarly, S5 is a 2-absorbing multiplication Ro-module.

Conversely, assume that each S; is a 2-absorbing multiplication R;-module and
let T = (It — T + Ty) be a 2-absorbing submodule of S. We may assume
that (T": S) # 0. If (T : S) = P ® PJ* for some positive integers m,n, then
S; #0 for i =1,2, (Ty :g, S1) = P, and (T :g, S2) = PJ* by [12, Proposition
4.2 (i)]. Now by Proposition 3.1 (i), 71 = P*S; C Py S since S; is 2-absorbing
multiplication. Similarly, To = P3*Sy C P»S;. If K = min{m,n}, then by an
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argument like that in [12, Proposition 4.5 Case 1], we get T = P*S, and so S is
2-absorbing multiplication. If (T': S) = P* @ 0 for some positive integer n, then
T5 is a 2-absorbing Ro-submodule of So with (7% :g, S2) = 0; so To = 0. Similarly,
T, = P{*S;. Tt follows that T C Ty & To = (P © 0)S. For the other inclusion,
assume that t = (p7,0)(s1, s2) = (p}'s1,0) € (P*@®0)S. Then ¢t € T since pl's; € Th
and f1(pys1) = 0 = f2(0) (note that Ker(f1) = P1S1 and Ker(f2) = P2S3); hence
T = (P& 0)S. Similarly, if (T': S) = 06 P3" for some positive integer m, then
we get T = (0@ PJ*)S. Thus S is a 2-absorbing multiplication R-module. O

Lemma 3.3. Let R be the pullback ring as in (1). Then, up to isomorphism, the
following separated R-modules are indecomposable and 2-absorbing multiplication:
(i) R;
(i) S = (E(R1/P1) = 0+ 0), (0 = 0 + E(R2/P)), where E(R;/P;) is the
R;-injective hull of R;/P; fori=1,2;
(iii) S = (Q(R1) — 0 < 0), (0 = 0 < Q(R2)), where Q(R;) is the field of
fractions of R; fori=1,2;
(iv) S = (R1/P! — R < Ry/P*) for all positive integers n,m.

Proof. By [7, Lemma 2.8], these modules are indecomposable. Being 2-absorbing

multiplication follows from Theorem 2.6 and Theorem 3.2. (]

For each i, let E; be the R;-injective hull of R;/P;, regarded as an R-module,
so E1, E5 are the modules listed under (ii) in Lemma 3.3. We refer to modules of

type (i) in Lemma 3.3 as P;-Priifer and P,-Priifer, respectively.

Proposition 3.4. Let R be the pullback ring as in (1), and let S # R be a separated
2-absorbing multiplication R module. Then the following hold:
(i) S is of the form S = M @& N, where M is a direct sum of copies of the
modules as in (i), N is a direct sum of copies of the modules as in (ii)-
(i) of Lemma 3.5.
(ii) Ewery separated 2-absorbing multiplication R-module not isomorphic with

R is pure-injective.

Proof. (i) Let T' denote an indecomposable summand of S. Then we can write T' =
(I — T < T3), and T is a 2-absorbing multiplication R-module by Proposition
2.2 (iii). First suppose that T = 0. Then by [7, Lemma 2.7 (i)], T = T} or T and
so T is an indecomposable 2-absorbing multiplication R;-module for some i and,
since T' = PT, is type (ii) or (iii) in the list Lemma 3.3. So we may assume that
T #0.
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By Theorem 2.6 and Theorem 3.2, T; is an indecomposable 2-absorbing mul-
tiplication R;-module, for each ¢ = 1,2. Hence, by the structure of 2-absorbing
multiplication modules over a discrete valuation domain (see Theorem 2.7), we
must have T; = E(R;/P;) or Q(R;) or R;/P (n > 1). Since T # PT it follows
that for each i = 1,2, T; is torsion and it is not divisible R;-module. Then there
are positive integers m,n and k such that P/*T} = 0, P¥T, = 0 and P"T = 0. For
t €T, let o(t) denote the least positive integer m such that P™t = 0. Now choose
t € T1UT, with £ # 0 and such that o(t) is maximal (given that ¢ # 0). There exists
a t = (t1,ta) such that o(t) = n, o(t;) = m and o(t2) = k. Then for each i = 1,2,
R;t; is pure in T; (see [7, Theorem 2.9]). Thus, Rit1 = Ry/(0 : t1) = Ry/P™ is
a direct summand of T; since R;t; is pure-injective; hence Ty = Rity since 17 is
indecomposable. Similarly, To = Rats = Rs /sz Let M be the R-subspace of T'
generated by £. Then M = R. Let M = (Ryt; — M < Rats). Then T = M, and
T satisfies the case (iv) (see [7, Theorem 2.9]).

(ii) Apply (i) and [7, Theorem 2.9]. O

Theorem 3.5. Let S # R be an indecomposable separated 2-absorbing multiplica-
tion module over the pullback ring as in (1). Then S is isomorphic to one of the

modules listed in Lemma 3.3.

Proof. Apply Proposition 3.4 and Lemma 3.3. (I

4. The nonseparated case

We continue to use the notation already established, so R is the pullback ring
as in (1). In this section we find the indecomposable non-separated 2-absorbing
multiplication modules with finite-dimensional top. It turns out that each can
be obtained by amalgamating finitely many separated indecomposable 2-absorbing

multiplication modules.

Proposition 4.1. Let R be a pullback ring as in (1).

(i) E(R/P) is a non-separated 2-absorbing multiplication R-module.
(ii) If0 - K — S — M — 0 is a separated representation of an R-module M,
then abSpecy(S) = 0 if and only if abSpecy (M) = 0.

Proof. (i) It is enough to show that abpSpec(E(R/P)) = 0. Assume that L is any
submodule of E(R/P) described in [13, Proposition 3.1 (iii)]. However no L, say
E; + A, is a 2-absorbing submodule of E(R/P), for if n is any positive integer,
then P3(Ey + Any3) = E1 + Ay, but P(Ey + Ayys) = Br + Ange € E1 + A,
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and PP*E(R/P) = E(R/P) ¢ Ey + A, (see Lemma 2.2). Therefore, E(R/P) is a
non-separated 2-absorbing multiplication R-module (see [7, p. 4053]).

(i) Assume that abSpecy(S) = 0 and let abSpecy (M) # (. Then there exists a
submodule T'/K of M = S/K such that T/K € abSpecg(M); so T € abSpecg(S)
by Lemma 2.2 (i) which is a contradiction. Therefore abSpecy (M) = @. For the
other implication, suppose that abSpecy (M) = ), and let abSpecy(S) # 0. So S
has a 2-absorbing submodule T with K C T by [11, Proposition 4.3 (ii)]; hence
T/K is a 2-absorbing submodule of M by Lemma 2.2 (i) which is a contradiction.
Thus abSpecy(S) = 0. O

Theorem 4.2. Let R be a pullback ring as in (1) and let M be any non-separated
R-module. Let 0 - K — S — M — 0 be a separated representation of M. Then S

is 2-absorbing multiplication if and only if M is 2-absorbing multiplication.

Proof. By Proposition 4.1 (ii), we may assume that abSpec(S) # 0. Suppose that
M is a 2-absorbing multiplication R-module and let U be a non-zero 2-absorbing
submodule of S. Then by [11, Proposition 4.3], K C U, and so U/K is a 2-
absorbing submodule of S & M /K by Lemma 2.2 (i). By an argument like that
in [12, Theorem 5.3], we get S is 2-absorbing multiplication. Conversely, assume
that S is a 2-absorbing multiplication R-module. Then S = M /K is 2-absorbing
multiplication by Proposition 2.3 (ii), as required. O

Proposition 4.3. Let R be a pullback ring as in (1) and let M be an indecomposable
2-absorbing multiplication non-separated R-module with finite-dimensional top over
R. Let 0 = K — S — M — 0 be a separated representation of M. Then the
following hold:

(i) S is pure-injective.

(ii) R do mot occur among the direct summands of S.

Proof. (i) Since S/PS = M/PM by [7, Proposition 2.6 (i)], we get S has finite-
dimensional top. Now the assertion follows from Theorem 4.2 and Proposition 3.4.
(ii) follows from [12, Lemma 5.5]. O

Let R be a pullback ring as in (1) and let M be an indecomposable 2-absorbing
multiplication non-separated R-module with finite-dimensional top over R. Con-
sider the separated representation 0 — K — S — M — 0. By Proposition 4.3, S is
pure-injective. So in the proofs of [7, Lemma 3.1, Propositions 3.2 and 3.4] (here the
pure-injectivity of M implies the pure-injectivity of S by [7, Proposition 2.6 (ii)] we

can replace the statement “M is an indecomposable pure-injective non-separated
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R-module” by “M is an indecomposable 2-absorbing multiplication non-separated
R-module”: because the main key in those results are the pure-injectivity of S, the

indecomposability and the non-separability of M. So we have the following result:

Corollary 4.4. Let R be a pullback ring as in (1) and let M be an indecomposable
2-absorbing multiplication non-separated R-module with M /PM finite-dimensional
over R, and let 0 = K — S — M — 0 be a separated representation of M. Then
the following hold:

(i) the quotient fields Q(R1) and Q(R2) of Ry and Ry do not occur among the
direct summands of S.
(ii) S is a direct sum of finitely many indecomposable 2-absorbing multiplication
modules.
(iii) At most two copies of modules of infinite length can occur among the inde-

composable summands of S.

Recall that every indecomposable R-module of finite length is 2-absorbing multi-
plication since it is a quotient of a 2-absorbing multiplication R-module (see Propo-
sition 2.2 (ii)). So by Corollary 4.4 (iii), the infinite length non-separated indecom-
posable 2-absorbing multiplication modules are obtained in just the same way as
the deleted cycle type indecomposable ones are, except that at least one of the two
”end” modules must be a separated indecomposable 2-absorbing multiplication of
infinite length (that is, P;-Priifer and P»-Priifer). Note that one can not have, for
instance, a P;-Priifer module at each end (consider the alternation of primes P, Py
along the amalgamation chain). So, apart form any finite length modules: we have
amalgamations involving two Priifer modules as well as modules of finite length (the
injective hull E(R/P) is the simplest module of this type), a P;-Priifer module and
a Py-Priifer module. If the P;-Priifer and the P»-Priifer are direct summands of S
then we will describe these modules as doubly infinite. Those where S has just
one infinite length summand we will call singly infinite (the reader is referred
to [7] for more details). It remains to show that the modules obtained by these

amalgamations are, indeed, indecomposable 2-absorbing multiplication modules.

Theorem 4.5. Let R = (R — R + R3) be the pullback of two discrete valuation
domains Ry, Ry with common factor field R. Then the class of indecomposable non-
separated 2-absorbing multiplication modules with finite-dimensional top consists of
the following:
(i) The indecomposable modules of finite length (apart from R/P which is sep-
arated);
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(ii) The doubly infinite 2-absorbing multiplication modules;
(iii) The singly infinite 2-absorbing multiplication modules (except the two prifer

modules (ii) in Lemma 3.3).

Proof. We know already that every indecomposable 2-absorbing multiplication
non-separated module has one of these forms so it remains to show that the modules
obtained by these amalgamation are, indeed, indecomposable 2-absorbing multipli-
cation modules. Let M be an indecomposable non-separated 2-absorbing multipli-
cation R-module with finite-dimensional top and let 0 — K 58 £ M — 0 be
a separated representation of M.

(i) Every indecomposable R-module of finite length is 2-absorbing multiplication
since it is a quotient of a 2-absorbing multiplication R-module (see Proposition 2.3
(ii)). The indecomposability follows from [21, 1.9].

(ii) and (iii) (involving one or two Priifer modules) M is 2-absorbing multipli-
cation since they are a quotient of a 2-absorbing multiplication R-module (also
see Proposition 4.1 (i)). Finally, the indecomposability follows from [7, Theorem
3.5]. O

Remark 4.6. (i) Let R be the pullback ring as described in Theorem 4.5. Then by
[7, Theorem 3.5] and Theorem 4.5, every indecomposable 2-absorbing multiplication
R-module with finite-dimensional top is pure-injective.

(ii) For a given field k, the infinite-dimensional k-algebra k[z,y : vy = 0] (4., 45
the pullback (k[x](z) — k < k[yl(y)) of two discrete valuation domains k[x](z), k[y](y)
(see [1, Section 6]). This paper includes the classification of those indecomposable
2-absorbing multiplication modules over k-algebra klx,y : vy = 0]y, which have

finite-dimensional top.
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