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Abstract. We introduce and study the concept of α-quasi short modules.

Using this concept we extend some of the basic results of α-short modules to

α-quasi short modules. We observe that if M is an α-quasi short module then

the Noetherian dimension of M is α or α+ 1 or α+ 2.
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1. Introduction

Lemonnier [18] has introduced the concept of deviation (resp., codeviation) of an

arbitrary poset, which in particular, when applied to the lattice of all submodules

of a module MR give the concept of Krull dimension, see [9], [10] and [20] (resp., the

concept of dual Krull dimension of M . The dual Krull dimension in [7,8,11,12,13,

14,15,16,17] is called Noetherian dimension and in [5] is called N-dimension. This

dimension is called Krull dimension in [21]. The name of dual Krull dimension is

also used by some authors, see [1], [2] and [3]). The Noetherian dimension of an R-

module M is denoted by n-dimM and by k-dimM we denote the Krull dimension

of M . We recall that if an R-module M has Noetherian dimension and α is an

ordinal number, then M is called α-atomic if n-dimM = α and n-dimN < α, for

all proper submodule N of M . An R-module M is called atomic if it is α-atomic for

some ordinal α (note, atomic modules are also called conotable, dual critical and

N-critical in some other articles; see for example [2], [5] and [19]). We introduced

and extensively investigated quasi-Krull dimension and quasi-Noetherian dimension

of an R-module M , see [6]. The quasi-Noetherian dimension (resp., quasi-Krull

dimension), which is denoted by qn-dimM (resp., qk-dimM) is defined to be the

codeviation (resp., deviation) of the poset of the non-finitely generated submodules

of M . We recall that an R-module M is called α-quasi-atomic, where α is an

ordinal, if qn-dimM = α and qn-dimN < α for any proper non-finitely generated

submodule N of M . M is said to be quasi-atomic if it is α-quasi-atomic for some α.
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Bilhan and Smith have introduced and extensively investigated short modules and

almost Noetherian modules, see [4]. Later Davoudian, Karamzadeh and Shirali

undertook a systematic study of the concepts of α-short modules and α-almost

Noetherian modules, see [8]. We recall that an R-module M is called an α-short

module, if for each submodule N of M , either n-dimN ≤ α or n-dim M
N ≤ α and

α is the least ordinal number with this property. We shall call an R-module M

to be α-quasi short, if for each non-finitely generated submodule N of M , either

qn-dimN ≤ α or qn-dim M
N ≤ α and α is the least ordinal number with this

property. Using this concept, we show that each α-quasi short module M has

Noetherian dimension and α ≤ n-dimM ≤ α + 2. We also recall that an R-

module M is called α-almost Noetherian, if for each proper submodule N of M ,

n-dimN < α and α is the least ordinal number with this property, see [8]. We shall

call an R-module M to be α-almost quasi Noetherian if for each proper non-finitely

generated submodule N of M , qn-dimN < α and α is the least ordinal number with

this property. In Section 2, of this paper we investigate some basic properties of α-

almost quasi Noetherian and α-quasi short modules. We show that if M is an α-

quasi short module (resp., α-almost quasi Noetherian module), then qn-dimM = α

or qn-dimM = α + 1 (resp., qn-dimM ≤ α). Thus we observe that if M is an α-

quasi short module, then M has Noetherian dimension and α ≤ n-dimM ≤ α+ 2.

In the last section we also investigate some properties of α-almost quasi Noetherian

and α-quasi short modules.

2. α-quasi short modules and α-almost quasi Noetherian modules

We recall that an R-module M is called α-almost Noetherian, if for each proper

submodule N of M , n-dimN < α and α is the least ordinal number with this

property. In the following definition we consider a related concept.

Definition 2.1. An R-module M is called α-almost quasi Noetherian if for each

proper non-finitely generated submodule N of M , qn-dimN < α and α is the least

ordinal number with this property.

It is manifest that if M is an α-almost quasi Noetherian, then each submodule

and each factor module of M is β-almost quasi Noetherian for some β ≤ α (note,

see [6, Lemmas 8, 9]).

In view of [6, Lemma 10], we have the next three trivial, but useful facts.

Lemma 2.2. If M is an α-almost quasi Noetherian module, then M has quasi

Noetherian dimension and qn-dimM ≤ α. In particular, qn-dimM = α if and

only if M is α-quasi atomic.
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Lemma 2.3. If M is a module with qn-dimM = α, then either M is α-quasi

atomic, in which case it is α-almost quasi Noetherian, or it is α + 1-almost quasi

Noetherian.

Lemma 2.4. If M is an α-almost quasi Noetherian module, then either M is α-

quasi atomic or α = qn-dimM+1. In particular, if M is α-almost quasi Noetherian

module, where α is a limit ordinal, then M is α-quasi atomic.

Proposition 2.5. An R-module M has quasi-Noetherian dimension if and only if

M is α-almost quasi Noetherian for some ordinal α.

In view of Lemma 2.2 and [6, Corollary 5], we have the following result.

Corollary 2.6. If R-module M is α-almost quasi Noetherian, then M has Noe-

therian dimension and n-dimM ≤ α+ 1.

Next we give our definition of α-quasi short modules.

Definition 2.7. An R-module M is called α-quasi short, if for each non-finitely

generated submodule N of M , either qn-dimN ≤ α or qn-dim M
N ≤ α and α is the

least ordinal number with this property.

In view of [6, Corollary 3], we have the following results.

Remark 2.8. If M is an R-module with qn-dimM = α, then M is β-quasi short

for some β ≤ α.

Remark 2.9. If M is an α-quasi short module, then each submodule and each

factor module of M is β-quasi short for some β ≤ α.

We cite the following result from [6, Lemma 12].

Lemma 2.10. If M is an R-module and for each non-finitely generated submodule

N of M , either N or M
N has quasi Noetherian dimension, then so does M .

The previous result and Remark 2.8, immediately yield the next result.

Corollary 2.11. Let M be an α-quasi short module. Then M has quasi Noetherian

dimension and α ≤ qn-dimM .

The following is now immediate.

Proposition 2.12. An R-module M has quasi-Noetherian dimension if and only

if M is α-quasi short for some ordinal α.
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Proposition 2.13. If M is an α-quasi short R-module, then either qn-dimM = α

or qn-dimM = α+ 1.

Proof. Clearly in view of Corollary 2.11, we have qn-dimM ≥ α. If qn-dimM 6= α,

then qn-dimM ≥ α + 1. Now let M1 ⊆ M2 ⊆ . . . be any ascending chain of non-

finitely generated submodules of M . If there exists some k such that qn-dim M
Mk
≤

α, then qn-dim Mi+1

Mi
≤ qn-dim M

Mi
= qn-dim M/Mk

Mi/Mk
≤ qn-dim M

Mk
≤ α for each

i ≥ k, see [6, Corollary 3]. Otherwise qn-dimMi ≤ α (M is α-quasi short) for

each i, hence qn-dim Mi+1

Mi
≤ qn-dimMi+1 ≤ α for each i. Thus in any case there

exists an integer k such that for each i ≥ k, qn-dim Mi+1

Mi
≤ α. This shows that

qn-dimM ≤ α+ 1, i.e., qn-dimM = α+ 1. �

In view of the previous proposition and [6, Corollary 5] we have the following

result.

Corollary 2.14. If M is an α-quasi short R-module, then α ≤ n-dimM ≤ α+ 2.

In view of previous corollary every α-quasi short module has Krull dimension,

for by a nice result due to Lemonnier, every module has Noetherian dimension if

and only if it has Krull dimension, see [18, Corollary 6]. Thus by [20, Lemma 6.2.6],

we have the following result.

Proposition 2.15. Every α-quasi short module has finite uniform dimension.

Remark 2.16. An R-module M is −1-quasi short if and only if it is either Noe-

therian or 1-atomic.

Proposition 2.17. Let M be an R-module, with qn-dimM = α, where α is a limit

ordinal. Then M is α-quasi short.

Proof. We know that M is β-quasi short for some β ≤ α. If β < α, then by

Proposition 2.13, qn-dimM ≤ β + 1 < α, which is a contradiction. Thus M is

α-quasi short. �

Proposition 2.18. Let M be an R-module and qn-dimM = α = β + 1. Then M

is either α-quasi short or it is β-quasi short.

Proof. We know that M is γ-quasi short for some γ ≤ α. If γ < β, then by

Proposition 2.13, we have qn-dimM ≤ γ + 1 < β + 1, which is impossible. Hence

we are done. �

Proposition 2.19. Let M be an α-quasi atomic R-module, where α = β + 1, then

M is a β-quasi short module.



ON α-QUASI SHORT MODULES 95

Proof. Let N be a non-finitely generated submodule of M , therefore qn-dimN <

α. This shows that for some β′ ≤ β, M is β′-quasi short. If β′ < β, then β′+1 ≤ β <
α. But qn-dimM ≤ β′ + 1 ≤ β < α, by Proposition 2.13, which is a contradiction.

Thus β′ = β and we are done. �

The following remark, which is a trivial consequence of the previous fact, shows

that the converse of Proposition 2.17, is not true in general.

Remark 2.20. Let M be an α + 1-quasi atomic R-module, where α is a limit

ordinal. Then M is an α-quasi short module but qn-dimM 6= α.

Proposition 2.21. Let M be an R-module such that qn-dimM = α+ 1. Then M

is either α-quasi short R-module or there exists a non-finitely generated submodule

N of M such that qn-dimN = qn-dim M
N = α+ 1.

Proof. We know that M is α-quasi short or an α + 1-quasi short R-module, by

Proposition 2.18. Let us assume that M is not α-quasi short R-module, hence there

exists a non-finitely generated submodule N of M such that qn-dimN ≥ α+ 1 and

qn-dim M
N ≥ α+ 1. This shows that qn-dimN = α+ 1 and qn-dim M

N = α+ 1 and

we are through. �

Proposition 2.22. Let M be a non-zero α-quasi short R-module. Then either M is

β-almost quasi Noetherian for some ordinal β ≤ α+ 1 or there exists a non-finitely

generated submodule N of M with qn-dim M
N ≤ α.

Proof. Suppose that M is not β-almost quasi Noetherian for any β ≤ α+ 1. This

means that there must exist a non-finitely generated submodule N of M such that

qn-dimN � α. Inasmuch as M is α-quasi short, we infer that qn-dim M
N ≤ α and

we are done. �

Let us cite the next result which is in [15, Theorem 2.9], see also [11, Theorem

3.2].

Theorem 2.23. For a commutative ring R the following statements are equivalent.

(1) Every R-module with finite Noetherian dimension is Noetherian.

(2) Every Artinian R-module is Noetherian.

(3) Every R-module with Noetherian dimension is both Artinian and Noether-

ian.

In view [8, Proposition 2.21], Corollary 2.14 and Corollary 2.6, we have the

following result.
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Proposition 2.24. The following statements are equivalent for a commutative ring

R.

(1) Every Artinian R-module is Noetherian.

(2) Every m-short module is both Artinian and Noetherian for all integers m ≥
−1.

(3) Every α-short module M is both Artinian and Noetherian for all ordinal α.

(4) Every m-almost Noetherian module is both Artinian and Noetherian for all

integers m ≥ −1.

(5) Every α-almost Noetherian module is both Artinian and Noetherian for all

integers m ≥ −1.

(6) Every m-quasi short module is both Artinian and Noetherian for all integers

m ≥ −1.

(7) Every α-quasi short module M is both Artinian and Noetherian for all

ordinal α.

(8) Every m-almost quasi Noetherian module is both Artinian and Noetherian

for all integers m ≥ −1.

(9) Every α-almost quasi Noetherian module M is both Artinian and Noether-

ian for all ordinal α.

(10) No homomorphic image of R can be isomorphic to a dense subring of a

complete local domain of Krull dimension 1.

Finally we conclude this section by providing some examples of α-almost quasi

Noetherian (resp., α-quasi short) modules, where α is any ordinal. First, we recall

that given any ordinal α there exists an Artinian module M such that n-dimM = α,

see [15, Example 1]. If α is a limit ordinal number then by [6, Corollary 5], we infer

that qn-dimM = α. Consequently, we may take M to be an Artinian module with

n-dimM = α, where α is a limit ordinal number. Hence qn-dimM = α and for

any ordinal β ≤ α, we take N to be its β-quasi atomic submodule, see [6, Lemma

15], then by Lemma 2.3, N is β-almost quasi Noetherian. We recall that the only

α-almost quasi Noetherian modules, where α is a limit ordinal are α-quasi atomic

module, see Lemma 2.4. Therefore to see an example of α-almost quasi Noetherian

module which is not α-quasi atomic, the ordinal α must be a non-limit ordinal.

Thus we may take M to be a non-quasi atomic module with qn-dimM = β, where

α = β + 1, hence its follows trivially that M is an α-almost quasi Noetherian. As

for examples of α-quasi short modules, one can similarly use the facts that there

are Artinian modules with Noetherian dimension equals to α, see [15]. In view of

[6, Corollary 5], we infer that qn-dimM = α, where α is a limit ordinal number.
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By [6, Lemma 15], for each β ≤ α there are β-quasi atomic submodules of M and

then apply Propositions 2.17, 2.18, 2.19, to give various examples of α-quasi short

modules (for example, by Proposition 2.19, α + 1-quasi atomic module is α-quasi

short).

3. Properties of α-quasi short modules and α-almost quasi Noetherian

modules

In this section some properties of α-quasi short modules over an arbitrary ring

R are investigated.

First, in view of Corollaries 2.14, 2.6, and [16, Corollary 1.8] we have the following

result.

Proposition 3.1. If M is an α-quasi short module (resp., α-almost quasi Noe-

therian module), where α is a countable ordinal, then every submodule of M is

countably generated.

Remark 3.2. Let M be an R-module and N be a submodule of M such that

qn-dimN = α and qn-dim M
N = β. If sup{qn-dimN, qn-dim M

N } = γ, then γ ≤
qn-dimM ≤ γ + 1.

Proof. We know that n-dimN = α or n-dimN = α + 1 and n-dim M
N = β or

n-dim M
N = β+1, see [6, Corollary 5]. Therefore n-dimM = sup{n-dimN,n-dim M

N } ≤
γ + 1. But by [6, Remark 2], we get qn-dimM ≤ n-dimM ≤ γ + 1. In view of [6,

Corollary 3], we get γ ≤ qn-dimM . This implies that γ ≤ qn-dimM ≤ γ + 1 and

we are done. �

In the following two propositions we investigate the connection between α-short

modules and α-quasi short modules.

Proposition 3.3. Let M be an α-short R-module. Then M is a β-quasi short

module such that α ∈ {β, β + 1, β + 2}.

Proof. Let N be any non-finitely generated submodule of M , then qn-dimN ≤
n-dimN ≤ α or qn-dim M

N ≤ n-dim M
N ≤ α, see [6, Remark 2]. This implies that

M is β-quasi short for some β ≤ α. If M is β-quasi short, then qn-dimM = β or

qn-dimM = β + 1. Hence β ≤ n-dimM ≤ β + 2, see [6, Corollary 5]. In other

hand by [8, Proposition 1.12], we get α ≤ n-dimM ≤ α + 1. Therefore β = α or

α = β + 1 or α = β + 2 (note, we always have β ≤ α) and we are done. �

Proposition 3.4. Let M be a β-quasi short R-module. Then M is an α-short

R-module and α ∈ {β, β + 1, β + 2}.
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Proof. By Proposition 2.13, qn-dimM = β or qn-dimM = β + 1. This implies

that M has Noetherian dimension and β ≤ n-dimM ≤ β + 2, see [6, Corollary 5].

Thus M is α-short for some ordinal number α, see [8, Remark 1.2.]. By Proposition

3.3, we get α ∈ {β, β + 1, β + 2} and we are done. �

In view of Propositions 3.3 and 3.4 we have the following result.

Corollary 3.5. Let M be an R-module and α be a limit ordinal number. Then M

is α-short if and only if it is α-quasi short.

We note that the Z-module Z⊕ Zp∞ is 0-quasi short.

Proposition 3.6. Let N be a submodule of an R-module M such that N is α-quasi

short and M
N is β-quasi short. Let µ = sup{α, β}, then M is γ-quasi short such

that µ ≤ γ ≤ µ+ 2.

Proof. Since N is α-quasi short, thus by Proposition 2.13, qn-dimN = α or

qn-dimN = α+1. Similarly since M
N is β-quasi short, qn-dim M

N = β or qn-dim M
N =

β + 1. Let λ = sup{qn-dimN, qn-dim M
N }, then µ ≤ λ ≤ µ+ 1. In view of Remark

3.2, we infer that M has quasi Noetherian dimension and λ ≤ qn-dimM ≤ λ + 1.

Therefore µ ≤ qn-dimM ≤ µ+2. But by Remark 2.12, M is γ-quasi short for some

ordinal number γ and by Proposition 2.13, γ ≤ qn-dimM ≤ γ+1. This shows that

µ ≤ γ ≤ µ+ 2, (note, we always have µ ≤ γ). �

Using Lemma 2.2, we give the next immediate result which is the counterpart of

the previous proposition for α-almost quasi Noetherian modules.

Proposition 3.7. Let N be a submodule of an R-module M such that N is α-

almost quasi Noetherian and M
N is β-almost quasi Noetherian. Let µ = sup{α, β},

then M is γ-almost quasi Noetherian such that µ ≤ γ ≤ µ+ 2.

Corollary 3.8. Let R be a ring. If M1 is an α1-quasi short (resp., α1-almost

quasi Noetherian) R-module and M2 is an α2-quasi short (resp., α2-almost quasi

Noetherian) R-module and let α = sup{α1, α2}. Then M1 ⊕M2 is µ-quasi short

(resp., µ-almost quasi Noetherian) for some ordinal number µ such that α ≤ µ ≤
α+ 2.

Example 3.9. If M1 = M2 = Z, then M1 and M2 are −1-quasi short (resp.,

−1-almost quasi Noetherian) Z-modules such that M1 ⊕M2 is also −1-quasi short

(resp., −1-almost quasi Noetherian). Now let M1 = M2 = Zp∞ . In this case

the Z-module Zp∞ is −1-quasi short (resp., −1-almost quasi Noetherian), but the

Z-module Zp∞ ⊕ Zp∞ is 0-quasi short (resp., 0-almost quasi Noetherian).
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Proposition 3.10. Let R be a ring and M be a nonzero α-quasi short module,

which is not a quasi atomic module, then M contains a non-finitely generated sub-

module L such that qn-dim M
L ≤ α.

Proof. Since M is not quasi atomic, we infer that there exists a non-finitely

generated submodule L ( M , such that qn-dimL = qn-dimM . We know that

qn-dimM = α or qn-dimM = α+1, by Proposition 2.13. If qn-dimM = α it is clear

that qn-dim M
L ≤ α. Hence we may suppose that qn-dimL = qn-dimM = α+ 1. If

qn-dim M
L = α+ 1, then M is γ-quasi short module for some γ ≥ α+ 1, which is a

contradiction. Consequently, qn-dim M
L ≤ α and we are done. �

The following example gives a module satisfying the condition of Proposition

3.10.

Example 3.11. Let M = Zp∞⊕Zp∞⊕Zp∞ and L = Zp∞⊕Zp∞ . By the comment

which follows [6, Remark 2], we infer that qn-dimLZ = 1. Therefore qn-dimMZ =

1, see [6, Lemma 8]. Thus M is not quasi atomic. But M
L ' Zp∞ , thus qn-dim M

L =

0, see [6, Remark 1]. Clearly M is a 0-quasi short module.

Theorem 3.12. Let α be an ordinal number and M be an R-module. If every

proper non-finitely generated submodule of M is γ-quasi short for some ordinal

number γ ≤ α. Then qn-dimM ≤ α + 2, in particular, M is µ-short for some

ordinal µ ≤ α+ 2.

Proof. Let N ( M be any non-finitely generated submodule. Since N is γ-quasi

short for some ordinal number γ ≤ α, we infer that qn-dimN ≤ γ + 1 ≤ α+ 1, by

Proposition 2.13. This immediately implies that qn-dimM ≤ α+ 2, see [6, Lemma

10]. The final part is now evident. �

The next result is the dual of Theorem 3.12.

Theorem 3.13. Let M be a nonzero R-module and α be an ordinal number. Let

for each proper non-finitely generated submodule N of M , M
N be γ-quasi short for

some ordinal number γ ≤ α. Then qn-dimM ≤ α+ 2, in particular, M is µ-short

for some ordinal µ ≤ α+ 2.

Proof. Let N be any proper non-finitely generated submodule of M , then M
N is

γ-quasi short for some ordinal number γ ≤ α. In view of Proposition 2.13, we

infer that qn-dim M
N ≤ γ + 1 ≤ α + 1. Therefore qn-dimM ≤ sup{qn-dim M

N :

N is nonfinitely generated submodule of M}+ 1 ≤ α+ 2, see [6, Lemma 11]. The

final part is now evident. �
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The next immediate result is the counterparts of Theorems 3.12, 3.13, for α-

almost quasi Noetherian modules.

Proposition 3.14. Let M be an R-module and α be an ordinal number. If each

proper non-finitely generated submodule N of M (resp., for each proper non-finitely

generated submodule N of M , M
N ) is γ-almost quasi Noetherian with γ ≤ α, then

qn-dimM ≤ α+ 1 and M is an µ-almost quasi Noetherian module with µ ≤ α+ 2

(resp., qn-dimM ≤ α + 1 and M is an µ-almost quasi Noetherian module with

µ ≤ α+ 2).

The following result is evident. We give the proof for the sake of completeness.

Proposition 3.15. If M has finite Goldie dimension, then

qn-dimM ≤ sup{qn-dim
M

E
+ 1 : E ⊂e M and E is non-finitely generated}

if either side exists.

Proof. Let α = sup{qn-dim M
E : E is essential and non-finitely generated}, then

it sufficient to show that qn-dimM exists and qn-dimM ≤ α. Now let N1 ⊂
N2 ⊂ · · · ⊂ Ni ⊂ . . . be an infinite ascending chain of non-finitely generated

submodule of M , then by our assumption there exists some integer k such that Ni

is essential in Ni+1 for all i ≥ k (note, M has finite Goldie dimension). This means

that there exists a submodule P of M such that Ni ⊕ P is essential in M for all

i ≥ k. It is clear that for each i, Ni ⊕ P is a non-finitely generated submodule of

M (note, if Ni ⊕ P is finitely generated, then Ni is finitely generated which is a

contradiction). But Ni+1

Ni
' Ni+1⊕P

Ni⊕P for all i ≥ k. In view of [6, Lemma 8], we infer

that qn-dim Ni+1

Ni
= qn-dim Ni+1⊕P

Ni⊕P ≤ qn-dim M
Ni⊕P < α for each i ≥ k and hence

qn-dimM ≤ α. �

Proposition 3.16. Let R be a semiprime ring. If the right R-module R is α-quasi

short, then qn-dimR = α or qn-dim R
E ≤ α for each non-finitely generated essential

right ideal E of R.

Proof. Suppose that there exists an essential non-finitely generated right ideal E′

of R such that qn-dim R
E′ � α. Since R is α-quasi short, we infer that qn-dimE′ ≤ α.

In view of Corollary 2.14, R has Noetherian dimension. ThereforeR is a right Goldie

ring, see [10, Corollary 3.4]. Hence there exists a regular element c in E′, which

implies that qn-dimR = qn-dim cR ≤ qn-dimE′R ≤ α. Consequently, we must have

qn-dimR = α, by Proposition 2.13. �
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