
International Electronic Journal of Algebra

Volume 22 (2017) 78-96

DOI: 10.24330/ieja.325927

ON THE NON-NILPOTENT GRAPHS OF A GROUP

Deiborlang Nongsiang and Promode Kumar Saikia

Received: 10 November 2016; Revised: 17 April 2017

Communicated by Burcu Üngör

Abstract. Let G be a group and nil(G) = {x ∈ G | 〈x, y〉 is nilpotent for all

y ∈ G}. Associate a graph RG (called the non-nilpotent graph of G) with

G as follows: Take G \ nil(G) as the vertex set and two vertices are adjacent

if they generate a non-nilpotent subgroup. In this paper we study the graph

theoretical properties of RG. We conjecture that the domination number of

the non-nilpotent graph of every finite non-abelian simple group is 2. We

also conjecture that if G and H are two non-nilpotent finite groups such that

RG
∼= RH , then |G| = |H|. Among other results, we show that the non-

nilpotent graph of D10 is double-toroidal.
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1. Introduction

Let G be a group and nil(G) = {x ∈ G | 〈x, y〉 is nilpotent for all y ∈ G}. As-

sociate a simple graph RG (called the non-nilpotent graph) with G as follows: the

vertex set V (RG) is G \ nil(G) and the edge set E(RG) consists of {x, y}, where x

and y are distinct elements of G \ nil(G) such that 〈x, y〉 is not nilpotent. It is not

known whether the subset nil(G) is a subgroup of G, but in many important cases

it is a subgroup. In particular, nil(G) is equal to the hypercenter Z∗(G) of G, when-

ever G satisfies the maximal condition on its subgroups or G is a finitely generated

solvable group (see [2, Proposition 2.1]). The non-nilpotent graph may be regarded

as generalization of the non-commuting graph considered in [1,3]. Recently, in [2],

some group and graph properties of the non-nilpotent graph associated to a group

are studied.

In Section 3 of the paper, we study some properties of the non-nilpotent graph

RG of a non-weakly nilpotent group G (a group is said to be weakly nilpotent

if every two generated subgroup of G is nilpotent). We completely characterize

periodic groups with nil(G) a subgroup whose non-nilpotent graph have domination
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number 1. We see that for a finite group G, RG is a complete multi-partite graph

if and only if G is an nn-group. We also give an example of a finite group whose

non-nilpotent graph has diameter 3.

In Section 4, we study groups with isomorphic non-nilpotent graph. We show

that the non-nilpotent graph of a finite group cannot be isomorphic to the non-

nilpotent graph of an infinite one. We also concentrate on the following conjecture:

Conjecture 1.1. Let G and H be two non-nilpotent finite groups such that RG
∼=

RH . Then |G| = |H|.

The above conjecture is proved when one of the groups in the conjecture is D2n

(n not a power of 2), PSL(2, q) (q2 6≡ 1 mod 16), the group of order pq or when one

of the groups has clique number 4.

In Section 5, we study the genus of the non-nilpotent graph RG of a non-weakly

nilpotent group G. We show that the hypercenter of G is bounded by a function of

the genus of RG. We also shown that, for any finite group G, RG is not toroidal.

In Section 6, we find clique and chromatic number of some groups.

2. Some prerequisites

In this section, we recall certain group theoretic and graph theoretic terminolo-

gies along with some well-known results which are used in the forthcoming sections.

An ascending series 1 = G0CG1C . . . Gβ = G in a group G is said to be central

if GαCG and Gα+1/Gα lies in the center of G/Gα for every α < β. A group which

possesses a central ascending series is called hypercentral. If G is any group and

α an ordinal, the terms Zα(G) of the upper central series of G are defined by the

rules

Z0(G) = {1} and Zα+1(G)/Zα(G) = Z(G/Zα(G))

together with the completeness condition

Zλ(G) =
⋃
α<λ

Zα(G)

where λ is a limit ordinal. Since the cardinality of G cannot be exceeded, there

is an ordinal β such that Zβ(G) = Zβ+1(G), etc., a terminal subgroup called the

hypercenter of G and is denoted by Z∗(G).

A group G is said to be an AC-group if the centralizer CG(x) of every non-central

element x in G is an abelian subgroup of G. The AC-groups have been extensively

studied by many authors (see, for example, [1], [14], [15]).
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The vertex set and edge set of a graph Γ is denoted by V (Γ) and E(Γ), respec-

tively. A subset of the vertex set of a graph Γ is called a clique of Γ if it consists

entirely of pairwise adjacent vertices. The least upper bound of the sizes of all the

cliques of G is called the clique number of Γ, and is denoted by ω(Γ). The chromatic

number of a graph Γ, written χ(Γ), is the minimum number of colors needed to label

the vertices so that adjacent vertices receive different colors. Clearly, ω(Γ) ≤ χ(Γ).

For a graph Γ and a subset S of the vertex set V (Γ), denote by NΓ[S] the set of

vertices in Γ which are in S or adjacent to a vertex in S. If NΓ[S] = V (Γ), then S

is said to be a dominating set(of vertices of V (Γ)). The domination number of a

graph V (Γ), denoted by λ(V (Γ)), is the minimum size of a dominating set of the

vertices in V (Γ). A subset X of the vertices of Γ is called an independent set if the

induced subgraph on X has no edges. The maximum size of an independent set in

a graph Γ is called the independent number of Γ and denoted by α(Γ). If a graph Γ

is connected, then the largest distance between all pairs of the vertices of Γ is called

the diameter of Γ and it is denoted by diam(Γ). A complete multi-partite graph is

the one whose vertex set can be partitioned into m disjoint parts in such a way that

two vertices are adjacent if and only if they lie in different parts. The complete

multi-partite graph, with parts of size n1, . . . , nm, is denoted by Kn1,...,nm .

Let U be a nonempty subset of the vertex set of a graph Γ. The induced subgraph

of Γ on U is defined to be the graph Γ[U ] in which the vertex set is U and the edge

set consists precisely of those edges in Γ whose endpoints lie in U .

The vertex connectivity, κ(Γ), of a connected graph Γ is the smallest number

of vertices whose removal disconnect Γ. A subset S of the vertices of a connected

graph Γ is called a cut set, if Γ \ S is not a connected graph.

The genus of a graph Γ, denoted by γ(Γ), is the smallest non-negative integer g

such that the graph can be embedded on the surface obtained by attaching g handles

to a sphere. Clearly, if Γ̃ is a subgraph of Γ, then γ(Γ̃) ≤ γ(Γ). Graphs having

genus zero are called planar graphs, while those having genus one are called toroidal

graphs. Graphs having genus two are called double-toroidal graphs. If n ≥ 3, then

it is well-known (see [19, Theorem 6-38]) that the genus of the complete graph Kn

is given by

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.

On the other hand, if m,n ≥ 2, then it is also well-known (see [19, Theorem 6-37])

that the genus of the complete bipartite graph Km,n is given by

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
.
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3. Some properties of non-nilpotent graphs

Let G be a group and x ∈ G. Then,

nilG(x) = {g ∈ G | 〈g, x〉 is nilpotent}.

We call nilG(x) the nilpotentizer of x in G. For a nonempty subset of G, the

nilpotentizer of S in G is defined as

nilG(S) =
⋂
x∈S

nilG(x).

We call nilG(G) the nilpotentizer of G, and it will be denoted by nil(G). Thus

nil(G) = {x ∈ G | 〈x, y〉 is nilpotent of all y ∈ G}. Following [6], a group G is call

an nn-group if nilG(x) is a nilpotent subgroup of G for all x ∈ G \ nil(G).

We begin the section with the following result which enables us, in particular, to

use Z∗(G) and nil(G) interchangeably whenever the group G satisfies the maximal

condition on its subgroups or G is a finitely generated solvable group.

Proposition 3.1. [2, Proposition 2.1] Let G be a group. Then:

(1) Z∗(G) ⊆ nil(G) ⊆ R(G), where R(G) is the set of right Engel elements of

G.

(2) If G satisfies the maximal condition on its subgroups or G is finitely gen-

erated solvable group, then Z∗(G) = nil(G) = R(G).

Before stating the propositions that follow, it might be worth observing that

G 6= nil(G) if and only if G is not weakly nilpotent.

Proposition 3.2. Let G be a non-weakly nilpotent group.

(1) If nil(G) is a subgroup and {x} is a dominating set for RG, then nil(G) =

1, x2 = 1 and nilG(x) = 〈x〉.
(2) If nil(G) is a subgroup and G is periodic, then λ(G) = 1 if and only if G

contains a normal abelian subgroup A with no element of order 2 and an

element x of order 2 such that ax = a−1 for all a ∈ A and G = A〈x〉 and

A ∩ 〈x〉 = 1.

Proof. (1) If nil(G) contains a non-trivial element z, then, since nil(G) is a sub-

group of G, we have xz 6∈ nil(G), that is xz ∈ V (RG). Clearly, xz is not adjacent

to x, a contradiction, so nil(G) = 1. Also if x2 6= 1, then x−1 is not adjacent to x.

Now since nil(G) = 1 and x is adjacent to all vertices of RG, nilG(x) = 〈x〉.
(2) Suppose that λ(RG) = 1. Thus G contains a non-identity element x such

that {x} is a dominating set for RG. By part (1) we have nilG(x) = 〈x〉 and
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x2 = 1. It follows that 〈x〉 ∩ 〈xg〉 = 1 for all g ∈ G \ 〈x〉. Now by [17, Theorem 5],

A = G \ {xg|g ∈ G} is a normal abelian subgroup of G, such that G = A〈x〉 and

obviously A∩ 〈x〉 = 1. Thus G is a solvable periodic group which implies that G is

locally finite. Let a ∈ A be a non-trivial element of A, then B = 〈a, ax〉 is a finite

abelian normal subgroup of G. Hence x induces a fixed-point-free automorphism

of order 2 in B, which implies that B is an abelian group of odd order (see, for

example, [13, Exercise 10.5.1]) and also we have bx = b−1 for all b ∈ B.

Now assume that G contains a normal abelian subgroup A and an element x

of order 2 with the properties stated in the proposition. It is easy to see that

nil(G) = 1 and the subgroup generated by any elements of G \ 〈x〉 and x is not

nilpotent, so {x} is a dominating set. �

Question 3.3. Is the hypothesis “nil(G) ≤ G” necessary in Proposition 3.2?

Remark 3.4. Let G be a group which is not weakly nilpotent. Then a subset S of

V (RG) is a dominating set if and only if nilG(S) ⊂ nil(G)∪S. To see this, suppose

S is a dominating set. If a 6∈ nil(G)∪S, then by definition of dominating set, there

exists x ∈ S, such that 〈x, a〉 is not nilpotent. Thus a 6∈ nilG(S). It follows that

nilG(S) ⊂ S ∪ nil(G).

Now assume that nilG(S) ⊂ nil(G) ∪ S. If a 6∈ nil(G) ∪ S, then by hypothesis,

a 6∈ nilG(S). Therefore, a is adjacent to at least one element of S. This completes

the proof.

Remark 3.5. If G is a non-weakly nilpotent nn-group, then for all x, y ∈ G\nil(G)

with 〈x, y〉 not nilpotent, we have {x, y} is a domination set for RG. To see this, we

need only to note that if a, b, c ∈ G\nil(G), such that 〈a, b〉 and 〈b, c〉 are nilpotent,

then 〈a, c〉 is nilpotent. Thus domination number of RG is less than or equal to 2.

Proposition 3.6. The domination number of the non-nilpotent graph of A5 is 2.

Proof. First note that A5 is an nn-group. Thus, by the above remark, domination

number of RA5 is less than or equal to 2. Since A5 is a simple group, A5 does not

contain a non-trivial proper normal subgroup. Thus Proposition 3.2 completes the

proof. �

We need the following result in the sequel.

Proposition 3.7. Let G = Sz(22m+1) be the Suzuki group over the field with 22m+1

elements, m > 0. Let q = 22m+1 and r = 2m. Then

(a) a Sylow 2-subgroup F of G is of order q2 and |{F x | x ∈ G}| = q2 + 1,
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(b) G contains a cyclic subgroup A of order q − 1 and |{Ax | x ∈ G}| =

q2(q2 + 1)/2,

(c) G contains a cyclic subgroup B of order q + 2r + 1 and |{Bx | x ∈ G}| =

q2(q2 + 1)(q − 1)/4(q + 2r + 1),

(d) G contains a cyclic subgroup C of order q − 2r + 1 and |{Cx | x ∈ G}| =

q2(q2 + 1)(q − 1)/4(q − 2r + 1).

(e) Suppose x is a non-trivial element of G. Then,

nilG(x) =



F x if x ∈ F x,

Ax if x ∈ Ax,

Bx if x ∈ Bx,

Cx if x ∈ Cx.

In particular, G is an nn-group.

Proof. Parts (a)-(d) follows from [8, Theorem 3.10 of Chapter XI]. By [8, Theorem

3.10 and 3.11 of Chapter XI],

P = {Ax \ {1}, Bx \ {1}, Cx \ {1}, F x \ {1} | x ∈ G}

is a partition for G and CG(y) ≤M ∪ {1} for all y ∈M and M ∈ P. Now let a be

a nontrivial element of G. Since P is a partition for G, a ∈ M for some M ∈ P.

Now by [2, Lemma 3.7], we have nilG(a) = M ∪ {1}. These prove (e) and thus it

follows that G is an nn-group. �

Proposition 3.8. Let G = Sz(22m+1) be the Suzuki group over the field with 22m+1

elements, m > 0. Then λ(RG) = 2.

Proof. By Proposition 3.7, we have G is an nn-group. By Remark 3.5, we have

λ(RG) ≤ 2. Since G is a simple group, G does not contain a non-trivial proper

normal subgroup. Thus Proposition 3.2 completes the proof. �

Let G be a non-abelian group. The non-commuting graph of G, denoted by Γ(G)

is the graph with G \ Z(G) as vertex set and two vertices are adjacent if they do

not commute (see [1,5]).

Proposition 3.9. Let q be a prime power number such that q2 6≡ 1 mod 16 and

G = PSL(2, q). Then λ(RG) = 2.

Proof. By [2, Lemma 3.9], we have nilG(a) = CG(a) for all non-trivial elements

a ∈ G. Thus ΓG ∼= RG. Now, [1, Proposition 2.18(1)] completes the proof. �

Now we pose the following conjecture.
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Conjecture 3.10. The domination number of the non-nilpotent graph of every

finite non-abelian simple group is 2.

Remark 3.11. The difficulty to prove the conjecture is that, if G = 〈x, y〉 is

a finite simple group, then {x, y} need not be a dominating set. For example

in the group PSL(3, 2), we have, PSL(3, 2) = 〈(3, 4)(5, 6), (1, 2, 3, 6)(4, 7)〉, but

{(3, 4)(5, 6), (1, 2, 3, 6)(4, 7)} is not a dominating set since 〈(3, 4)(5, 6), (1, 2)(3, 6)〉
and 〈(1, 2, 3, 6)(4, 7), (1, 2)(3, 6)〉 are nilpotent. Also, by [7], λ(RG) = 2 for any

simple group whose order is less than 2000.

Proposition 3.12. Let G be a finite non-nilpotent group. Then RG is a com-

plete multi-partite graph if and only if G is an nn-group. In particular, RG
∼=

K|X1|,...,|Xn|, where P = {nilG(u) \ nil(G) | u ∈ G \ nil(G)} = {X1, . . . , Xn}.

Proof. Suppose G is an nn-group. Let X ∈ P, then X = nilG(u)\nil(G) for some

u ∈ G. If x, y ∈ X, then 〈x, y〉 is nilpotent, since nilG(u) is a nilpotent subgroup.

Also, if x ∈ X and y ∈ G \nil(G) such that 〈x, y〉 is nilpotent, then, we have 〈u, y〉
is nilpotent, and so, y ∈ X. It follows that RG

∼= K|X1|,...,|Xn|.

Conversely, suppose RG is a complete multipartite graph. Let X1, X2, . . . , Xn

be the partite sets. Let x ∈ G \ nil(G), then x ∈ Xi for some i and nilG(x) \
nil(G) = Xi. Now if y, z ∈ nilG(x) \ nil(G) = Xi, then 〈y, z〉 is nilpotent and

yz ∈ nilG(y) = nilG(x). Thus nil(nilG(x)) = nilG(x) and so nilG(x) is a nilpotent

subgroup of G. Thus G is an nn-group. �

Lemma 3.13. Let G be a non-weakly nilpotent group and x, y ∈ G. Then the

following assertions hold:

(i) if 〈x, y〉 nilpotent, then 〈x, y, Z∗(G)〉 is hypercentral. In particular 〈xu, yv〉
is nilpotent for all u, v ∈ Z∗(G) and if G is a finite group, then 〈x, y, Z∗(G)〉
is nilpotent.

(ii) if 〈x, y〉 is not nilpotent, then for all u, v ∈ Z∗(G), 〈xu, yv〉 is not nilpotent.

Proof. Let K = 〈x, y, Z∗(G)〉. Then Z∗(G) ⊂ Z∗(K) and

K/Z∗(K) ∼= 〈xZ∗(K), yZ∗(K)〉,

a nilpotent group. Therefore Z∗(K) = K. It follows from [13, Theorem 12.2.3]

that K is hypercentral. By [13, Theorem 12.2.4], we have K is locally nilpotent.

Thus 〈xu, yv〉 is nilpotent for all u, v ∈ Z∗(G). If G is a finite group and since

Z∗(〈x, y, Z∗(G)〉) = nil(〈x, y, Z∗(G)〉) = 〈x, y, Z∗(G)〉, we have 〈x, y, Z∗(G)〉 is

nilpotent. Part (ii) follows directly from part (i). �
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Proposition 3.14. Let G be a non-weakly nilpotent nn-group and let S be a cut

set of RG. Then S is a union of cosets of Z∗(G). In particular if G is finite, then

κ(RG) = t|nil(G)|, where t > 1 is an integer.

Proof. Let a ∈ S. Then there exist two distinct components G1 and G2 of RG \S
and x ∈ G1 and y ∈ G2 such that a is adjacent to both x and y. By Lemma 3.13(ii),

x and y are also adjacent to az for any z ∈ Z∗(G), and so aZ∗(G) ⊂ S. Thus S is

a union of cosets of Z∗(G). Thus the first part follows.

Suppose that |S| = κ(RG). It follows from the first part that κ(RG) = t|Z∗(G)|
for some integer t ≥ 1. If t = 1, then S = bnil(G) for some element b ∈ G \ nil(G).

Then there exist two distinct components G1 and G2 of RG \ S and r ∈ G1 and

s ∈ G2 such that b is adjacent to both r and s. Here, 〈r, s〉 is nilpotent. Thus 〈r, rb〉
is not nilpotent. Since G is an nn-group, we have 〈s, rb〉 is not nilpotent, which is

a contradiction. This completes the proof. �

Proposition 3.15. The non-nilpotent graph of every non-nilpotent finite nn-group

is Hamiltonian.

Proof. We first note that the degree of any vertex x in the non-nilpotent graph

RG of a non-nilpotent group G is equal to |G \ nilG(x)|. Since x ∈ G \ nil(G)

and G is an nn-group, we have |G| ≥ 2|nilG(x)|. Thus, it follows that deg(x) >

(|G|− |nil(G)|)/2. Therefore by Dirac’s theorem [4, p. 54], RG is Hamiltonian. �

Remark 3.16. The group Sn, n ≥ 4 is not an nn-group. To see this, first we note

that S4 is not an nn-group, since |nilG((1, 2)(3, 4))| = 16 > |G|/2 = 12. For n ≥ 5,

Sn has a subgroup isomorphic to S4. Since the class of nn-groups are clearly closed

under taking subgroups, we have Sn is not an nn-group.

The non-nilpotent graph of S4 is Hamiltonian. To see this, we need only to note

that the following path is a Hamiltonian cycle of RS4
:

(1, 2, 3) − (1, 2)(3, 4) − (2, 3, 4) − (1, 3)(2, 4) − (2, 4, 3) − (1, 4)(2, 3) − (1, 4, 3) −
(1, 2, 4)−(1, 3, 4)−(1, 3, 2)−(1, 4, 2)−(1, 4, 2, 3)−(1, 4, 3, 2)−(1, 3, 4, 2)−(1, 3, 2, 4)−
(1, 2, 4, 3)− (1, 2, 3, 4)− (1, 4)− (1, 2)− (2, 4)− (2, 3)− (1, 3)− (3, 4)− (1, 2, 3)

Thus showing that if RG is Hamiltonian, then G need not be an nn-group.

Paul Erdös, posed the following problem in 1975 [9]: Let G be a group whose

non-commuting graph has no infinite clique. Is it true that the clique number of

Γ(G) is finite? Neumann [9] answered positively Erdös question. The dual question

of Erdös on non-nilpotent graphs may be posed as the following.

Question 3.17. Let G be a group whose non-nilpotent graph has no infinite inde-

pendent sets. Is it true that the independence number of G, α(G) is finite?
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The answer is no in general. Consider the disjoint union of cyclic groups of odd

order C := {Z/pZ | p an odd prime}. By a theorem of A. Yu. Ol’shanskii (see [10,

Theorem 35.1]), there exists an odd integer n for which this collection of groups can

be embedded into a countable 2-generated simple group G such that every proper

subgroup of G either is cyclic of order dividing n or is conjugate to a subgroup of

a group from C.

Clearly G is non-nilpotent, but every proper subgroup of G is cyclic of finite odd

prime order. Since each group from C is a subgroup of G, one sees that there is no

bound on the orders of the cyclic subgroups.

We show in the next theorem that the answer to the above question is yes in

some cases.

Theorem 3.18. Let G be a non-weakly nilpotent group whose non-nilpotent graph

has no infinite independent sets. If nil(G) is a subgroup and G is an Engel, locally

finite, locally solvable or a linear group or a 2-group, then G is a finite group. In

particular α(G) is finite.

Proof. If x ∈ G \ nil(G), then xnil(G) is an independent set of G. Thus nil(G)

is finite. Therefore, the hypothesis is equivalent to the following: Every nilpotent

subgroup of G is finite and thus every abelian subgroup of G is finite. In particular,

every cyclic subgroup of G is finite, so G is periodic. We know that an infinite

locally finite group or an infinite 2-group contains an infinite abelian subgroup (see

[13, Theorem 14.3.7]), and also every periodic locally solvable or linear group is

locally finite. Thus in these case G is finite. Now if G is Engel group, since every

abelian subgroup of G is finite, a result of Plotkin [12, Corollary, p. 55], implies

that G is a finite nilpotent group. This completes the proof. �

Proposition 3.19. Let G be an nn-group. Then for every maximal independent

set S, S ∪ nil(G) is a maximal weakly nilpotent subgroup of G.

Proof. We have S ∪ nil(G) ⊂ nilG(x) for all x ∈ S. Since S is maximal and G is

an nn-group, we have ⋂
x∈S

nilG(x) = S ∪ nil(G).

is a maximal weakly nilpotent subgroup of G. �

Remark 3.20. Consider the group

G = 〈x, y, z | x2 = y2 = z3 = (xy)4 = (xz)2 = 1, (yz)2 = (zy)2, (xy)2z(xy)2 = z−1〉.
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Then G is not an nn-group. Also I = {x, y, yxzy} is an independent set of RG

and 〈I〉 ∼= G. This shows that a subgroup generated by an independent set may not

be a nilpotent subgroup. Also there exists a maximal independent set S, such that

X ⊆ S. Since the edge set of RG is non-empty, we have S 6= G \ nil(G), showing

that S ∪ nil(G) is not a subgroup of G. So the last proposition cannot, in general,

be improved.

4. Groups with the same non-nilpotent graphs

In this section we consider the non-weakly nilpotent groups with isomorphic

non-nilpotent graphs. Note that if G and H are two groups, then RG
∼= RH if

and only if there exists a bijective map φ : V (RG) −→ V (RH) such that for every

two distinct elements x, y ∈ V (RG), we have 〈x, y〉 is not nilpotent if and only if

〈φ(x), φ(y)〉 is not nilpotent.

We begin the section with the following theorem.

Theorem 4.1. Let G and H be two groups such that RG
∼= RH . If G is finite

non-nilpotent group, then H is also a finite non-nilpotent group. Moreover |nil(H)|
divides

gcd(|G| − |nil(G)|, |G| − |nilG(x)|, |nilG(x)| − |nil(G)| : x ∈ G \ nil(G)).

Proof. Since RG
∼= RH , we have |H \ nil(H)| = |G \ nil(G)| and |H \ nil(H)| is

finite. If h ∈ H \ nil(H), then {hx|x ∈ H} ⊂ H \ nil(H), since nil(H) is closed

under conjugation. Thus every element in H \ nil(H) has finitely many conjugates

in H. It follows that K = CH(H \ nil(H)) has finite index in H. Now, RH has

no isolated vertex. Thus there exist two adjacent vertices u and v in RH . Now

if s ∈ K, then s ∈ CH(u, v). It follows that 〈su, v〉 is not nilpotent. Therefore

Ku ⊂ H \ nil(H) and so K is finite. Hence H is a finite non-nilpotent group.

Now since H is finite, it follows that nil(H) is a subgroup of H and so |nil(H)|
divides |H|−|nil(H)|. Since |H|−|nil(H)| = |G|−|nil(G)|, we have |nil(H)| divides

|G| − |nil(G)|. Let x ∈ H \ nil(H) and y ∈ nilH(x). Then, by Lemma 3.13, 〈x, yz〉
is nilpotent for all z ∈ nil(H). Thus nilH(x) = nil(H)∪ y1nil(H)∪ · · · ∪ ynnil(H),

for some yi ∈ H. Therefore |nil(H)| divides |nilH(x)| and so |nil(H)| divides

|H| − |nilH(x)|. Now since RG
∼= RH , {deg(v) | v ∈ V (RG)} = {deg(v) | v ∈

V (RH)}. But deg(v) = |G| − |nilG(v)| for any v ∈ V (RG) and deg(v) = |H| −
|nilH(v)| for any v ∈ V (RH). It follows that |nil(H)| divides |G| − |nilG(x)| for

any x ∈ G \ nil(G). Since |nil(H)| divides |G| − |nil(G)| and |G| − |nilG(x)|, it
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divides |G| − |nil(G)| − (|G| − |nilG(x)|) = |nilG(x)| − |nil(G)|. This completes the

proof. �

Proposition 4.2. Let G be a non-weakly nilpotent group such that RG is finite.

Then G is a finite group.

Proof. It follows directly from the first paragraph of the proof of the above theo-

rem. �

Proposition 4.3. Let G a finite non-nilpotent group and H be a group. Suppose

ω(RG) = 4 and RG
∼= RH , then |G| = |H|.

Proof. Since RG
∼= RH , by Theorem 4.1, we have H is a finite group. Since

ω(RG) = 4, we have ω(RH) = 4 and by [2, Theorem 4.7], we have G
Z∗(G)

∼=
S3
∼= H

Z∗(H) . Now, G
Z∗(G) = 〈x̄, ȳ | x̄2 = ȳ3 = 1, x̄ȳx̄ = ȳ−1〉, where x̄ =

xZ∗(G), ȳ = yZ∗(G), for some x, y ∈ G. Then G = xZ∗(G) ∪ yZ∗(G) ∪ y2Z∗(G) ∪
xyZ∗(G) ∪ xy2Z∗(G) ∪ Z∗(G). Thus RG

∼= K|Z∗(G)|,|Z∗(G)|,|Z∗(G)|,2|Z∗(G)|. Simi-

larly we can show that RH
∼= K|Z∗(H)|,|Z∗(H)|,|Z∗(H)|,2|Z∗(H)|. Since RG

∼= RH , we

have |Z∗(G)| = |Z∗(H)|. Also |G|− |Z∗(G)| = |H|− |Z∗(H)| and so |G| = |H|. �

Proposition 4.4. Let n > 2 be an integer and not a power of 2 and G = D2n. If

RG
∼= RH , for some group H, then |G| = |H| and H contains a nilpotent subgroup

of index 2.

Proof. It is enough to show that |Z∗(G)| = |Z∗(H)|. Let n = 2tm, where m is

odd. We have, |nil(G)| = 2t and there exist x, y ∈ G such that |nilG(x)| = 2tm and

|nilG(y)| = 2t+1. Thus 2t+1 − 2t = |nilH(u)| − |nil(H)| for some u ∈ H \ nil(H).

Thus we find that |nil(H)| divides 2t and so |nil(H)| = 2l for some l ≤ t. Now,

|H| = 2t+1m − 2t + 2l and 2t+1m − 2tm = 2t+1m − 2t + 2l − |nilH(v)| for some

v ∈ H \ nil(H). Therefore |nilH(v)| = m2t − 2t + 2l. Since G is an nn-group,

by Proposition 3.12, we have H is also an nn-group and so m2t − 2t + 2l divides

2t+1m−2t+2l. It follows that 2l(2t−l(m−1)+1) divides 2t+1m−2t+2l−2(m2t−
2t + 2l) = 2t − 2l. If l 6= t, then 2tm − 2t + 2l - 2t − 2l, which is a contradiction.

Thus l = t and so |G| = |H|.
Now since G has a cyclic subgroup A of order 2m (which is a maximal abelian

subgroup), RG
∼= RH and |G| = |H|, Proposition 3.19 implies that B = ϕ(A \

nil(G)) ∪ nil(H) is a nilpotent subgroup of order 2m in H, where ϕ is a graph

isomorphism from RG to RH . Clearly B is of index 2 in H, as required. �

Lemma 4.5. Let G be a centerless AC-group. Then the non-commuting graph and

the non-nilpotent graph of G are isomorphic.
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Proof. Since Z(G) = nil(G) = 1, we have G \ Z(G) = V (Γ(G)) = V (RG) =

G \ nil(G). By [2, Lemma 3.6], we have, for x, y ∈ G, 〈x, y〉 is not-nilpotent if and

only if x and y do not commute. Thus the result follows. �

Proposition 4.6. Let q be a prime power number such that q2 6≡ 1 mod 16 and

G = PSL(2, q). If RG
∼= RH , then |G| = |H|. Moreover, if q = 2k, k ≥ 1 and H

is an AC-group, then G ∼= H.

Proof. Note that |nil(G)| = 1, so it is enough to show that |nil(H)| = 1. By [2,

Lemma 3.9], we have nilG(a) = CG(a) for all non-trivial elements a ∈ G. By [1,

Lemma 3.22], there exist two non-trivial element x, y ∈ G such that |nilG(x)| −
|nilG(y)| = 1. By Theorem 4.1, H is a finite group and |nil(H)| divides 1. Thus

|G| = |H|.
If k = 1, then G ∼= S3. Since |G| = |H|, we have G ∼= H. So assume that

k > 1, then by [1, Proposition 3.21], G is a centerless AC-group and so H is also a

centerless AC-group. Since RG
∼= RH and both the group are centerless AC-group,

we have, by Lemma 4.5, Γ(G) ∼= Γ(H). Thus the result follows from [16]. This

completes the proof. �

Proposition 4.7. Let G be a non-nilpotent group of order pq, where p and q are

primes with q > p. If RG
∼= RH for some group H, then |G| = |H|. In particular

G ∼= H.

Proof. The group G is an nn-group with |Z∗(G)| = 1 and there exists x ∈ G,

such that |nilG(x)| = q. Thus |Z∗(H)| divides q − 1. Suppose |Z∗(H)| = l. Then

|G| − |Z∗(G)| = |H| − |Z∗(H)| and thus |H| = pq − 1 + l. Now, since RG
∼= RH ,

there exists u ∈ H, such that pq − q = pq − 1 + l − |nilH(u)|. Since nilH(u) is a

subgroup of H, we have |nilH(u)| = l+ q − 1 divides pq − 1 + l and thus it divides

pq − q. Since q is a prime, we have, either q | l + q − 1 or q - l + q − 1. Since

l + q − 1 > p − 1, we have q | l + q − 1 and thus q | l − 1. Since l | q − 1, we have

l = 1. Thus |G| = |H|. Since there is only one non-nilpotent group of order pq, up

to isomorphism, we have G ∼= H. �

Proposition 4.8. Let G be a centerless non-nilpotent group of order pqr, where

p, q and r are primes, with p < q < r. Suppose there exists x ∈ G \ {1}, such that

|nilG(x)| = qr. If RG
∼= RH for some group H, then |G| = |H|.

Proof. Let x ∈ G \ {1}. Then |CG(x)| = p̄ or p̄q̄, where p̄, q̄ ∈ {p, q, r}. If

|CG(x)| = p̄, then CG(x) is abelian. So suppose |CG(x)| = p̄q̄. Then |Z(CG(x))| = p̄

or q̄ or p̄q̄. Thus CG(x)/Z(CG(x)) is cyclic and so CG(x) is abelian. Thus the group
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G is a centerless AC-group and thus by [2, Lemma 3.6], G is an nn-group. It follows

from Proposition 3.12 that H is an nn-group. Given that there exists x ∈ G, such

that |nilG(x)| = qr. Now |Z∗(H)| divides pqr − 1. Suppose |Z∗(H)| = l. Then

|G| − |Z∗(G)| = |H| − |Z∗(H)| and thus |H| = pqr − 1 + l. Now, since RG
∼= RH ,

there exists u ∈ H, such that pqr− qr = pqr− 1 + l− |nilH(u)|. Since nilH(u) is a

subgroup of H, we have |nilH(u)| = l+ qr − 1 divides pqr − qr . Since q and r are

primes and qr+ l− 1 > (p− 1)q, (p− 1)r, we have, q | l+ qr− 1 and r | l+ qr− 1.

Thus qr | l − 1. But l | qr − 1. Thus l = 1 and |G| = |H|. �

Remark 4.9. The non-nilpotent graph of the following groups,

G = 〈x, y, x | x3 = y7 = z13 = e, zy = yz, x−1yx = y2, x−1zx = y3〉,

H = 〈x, y, x | x3 = y7 = z13 = e, zy = yz, x−1yx = y4, x−1zx = y3〉,

are isomorphic to a complete 92-partite graph, with 91 partite set of size 2 and

one partite set of size 90. Also {|nilG(x)| | x ∈ G \ nil(G)} = {|nilH(x)| | x ∈
H \ nil(H)} = {3, 7 · 13}. But G � H. So the last proposition cannot be improved.

Remark 4.10. Suppose that G and H are two non-abelian groups. If RG
∼= RH ,

then RG×A ∼= RH×B, for any two weakly nilpotent groups A and B with the same

order. To see this, suppose ϕ : RG → RH be a graph isomorphism and ψ : A→ B

be a bijective map. Then it is easy to see that φ : (g, a) 7→ (ϕ(g), ψ(a)) is a graph

isomorphism between RG×A and RH×B.

We call a non-weakly nilpotent group G an Fn-group if for every two elements

x, y ∈ G \ nil(G), such that nilG(x) 6= nilG(y), we have nilG(x) 6⊂ nilG(y) and

nilG(y) 6⊂ nilG(x).

Proposition 4.11. Let G be a non-weakly nilpotent Fn-group. If H is a group

such that RG
∼= RH , then H is also a non-weakly nilpotent Fn-group.

Proof. Let x, y ∈ H \ nil(H) and nilH(x) ⊆ nilH(y), then ψ(nilH(x) \ nil(H)) ⊆
ψ(nilH(y) \ nil(H)), where ψ : V (RH) → V (RG) is a graph isomorphism. Thus,

since G is an Fn-group, we have nilG(ψ(x)) \ nil(G) = nilG(ψ(y)) \ nil(G). It

follows that nilH(x) \ nil(H) = nilH(y) \ nil(H) and so nilH(x) = nilH(y). Thus

H is an Fn-group. �

5. Genus of non-nilpotent graph

In this section, we study the genus of the non-nilpotent graph RG for a non-

weakly nilpotent group G.
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Lemma 5.1. Let G be a finite non-nilpotent group of genus γ. Then |Z∗(G)| ≤
√
γ + 1.

Proof. Assume Z = Z∗(G). Since G is a finite non-weakly nilpotent group, by

[2, Theorem 4.2], we have ω(RG) ≥ 4. So there exist u, v, w, x ∈ G \ Z, such that

they are adjacent to each other. Then, by Lemma 3.13, RG[uZ ∪ vZ ∪ wZ ∪ xZ]

is isomorphic to K|Z|,|Z|,|Z|,|Z|. If |Z| 6= 3, then by [19, Theorem 6-42], we have

γ(K|Z|,|Z|,|Z|,|Z|) = (|Z| − 1)2 ≤ γ. Thus |Z| ≤ √γ + 1. Also if |Z∗(G)| = 3, then

K6,6 is a subgraph of K3,3,3,3. Thus γ(K6,6) = 4 ≤ γ and so |Z∗(G)| ≤ √γ + 1.

This completes the proof. �

Remark 5.2. It is easy to see that RD12
∼= RQ12

∼= K4,2,2,2 = H. Since K4,6

is a subgraph of H and also H is a subgraph of K10, we have 2 ≤ γ(RD12
) =

γ(RQ12) ≤ 4. Now, A4 is a centerless AC-group and thus by Lemma 4.5, we have

Γ(A4) ∼= RA4
. Thus, since A4 has five distinct centralizers of size 4, 3, 3, 3, 3, we

have RA4
∼= K3,2,2,2,2. It is easy to see that RA4

has 48 edges and 11 vertices.

Thus by [19, Corollary 6-14], we have γ(RA4
) ≥ 48

6 −
11
2 + 1 = 3.5. Also RA4

is a

subgraph of K11 and so 4 ≤ γ(RA4) ≤ 5.

Proposition 5.3. Let G be a finite non-nilpotent group. Then RG is not toroidal.

Proof. Suppose RG is toroidal. By Lemma 5.1, we have |Z∗(G)| ≤ 2. We will show

that Z∗(G) = 1. Suppose for a contradiction that |Z∗(G)| = 2. Let H be a clique of

RG and z ∈ Z∗(G) \ {e}. Now, by Lemma 3.13, the induced subgraph RG[zV (H)]

is a clique of RG, where V (H) is the vertex set of H. Then H and RG[zV (H)]

are two distinct cliques of RG. Now the subgraph K = H ∪ RG[zV (H)] has two

components. Since K is a subgraph of RG, we have 1 = γ(RG) ≥ γ(K) = γ(H) +

γ(RG[zV (H)]) = 2γ(K|V (H)|). It follows that |V (H)| ≤ 4 and so ω(RG) ≤ 4. By [2,

Theorem 4.2] we have ω(RG) = 4 and by [2, Theorem 4.7] we have G/Z∗(G) ∼= S3.

Thus |G| = 12 and G ∼= Q12 or D12. Now by Remark 5.2, we get a contradiction.

Thus Z∗(G) = 1.

Next we will show that for all g ∈ G, order of g is either 1 or 2 or 3. Suppose

for a contradiction that there exists g ∈ G, such that ◦(g) ≥ 5. Then there exist

x, y ∈ G, such that 〈g2, x〉 and 〈g, y〉 are not nilpotent. If ◦(g) = 6, then let

H = {g, g2, g4, g5} and L = xH ∪{x}; otherwise H = {g, gi1 , gi2 , gi3}, where ij > 1

and gcd(◦(g), ij) = 1 and L = yH ∪ {y}. Then the induced subgraph RG[H ∪ L]

is isomorphic to K4,5, which is a contradiction. Suppose there exist g, h ∈ G, such

that ◦(g) = ◦(h) = 4 and g 6= h, h−1. Then there exist x, y ∈ G, such that 〈g2, x〉
and 〈h2, y〉 are not nilpotent. Let H = {g, g2, g3} and L = {h, h2, h3}. Then the
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induced subgraph RG[H ∪ xH] and RG[L ∪ yL] are disjoint and are isomorphic to

K3,3, which is a contradiction. Thus G has no element of order 4, since Z(G) = 1.

Thus for all g ∈ G, order of g is either 1 or 2 or 3.

Let H and K be the union of all the 2−elements and 3−elements of G, respec-

tively. Let x ∈ H and y ∈ K. Then,

〈x, y〉 ∼=

S3 if ◦(xy) = 2,

Q12 if ◦(xy) = 3.

Thus 〈x, y〉 is not nilpotent and so K|H|,|K| is a subgraph of RG[H ∪K].

Let G2 and G3 be a Sylow 2-subgroup and a Sylow 3-subgroup of G, respectively.

Note that not both G2 and G3 are normal, otherwise the group is abelian. Suppose

G2 is normal in G. Then G3 is not normal in G. Suppose |G2| = 2. Then yxy−1 = x

for x ∈ G2\{1} and so G2 ≤ Z(G) = {1}, a contradiction. So |G2| ≥ 4 and |H| ≥ 3.

So the number of Sylow 3-subgroup of G is at least 4. Thus |K| ≥ 8 and K3,8 is a

subgraph of RG. But γ(K3,8) > 1, a contradiction. Thus G2 is not normal in G.

Suppose for a contradiction that |G2| ≥ 8. Let P1, P2 and P3 be three distinct

Sylow 2−subgroups of G. Let U = (P1∩P2)∪(P2∩P3)∪(P1∩P3) and Q1 = P1\U ,

Q2 = P2 \ U and Q3 = P3 \ U . Now for any x, y ∈ (P1 ∪ P2 ∪ P3) \ {1}, we have

◦(xy) = 2 or 3. If ◦(xy) = 2, then x and y commute and if ◦(xy) = 3, then 〈x, y〉 ∼=
S3. Thus nilPi

(x) = CPi
(x). Now, for x ∈ Qi and i 6= j, if CPj

(x) = Pj , then

〈x, Pj〉 is a 2-group and |Pj | < |〈x, Pj〉|, which is absurd. Therefore CPj
(x) 6= Pj .

Thus deg(x) ≥ |Pr \nilPr (x)|+ |Ps \nilPs(x)| ≥ 4+4 = 8, where r, s ∈ {1, 2, 3}\{i}
and r 6= s. Now, consider the subgraph S = RG[(P1 ∪ P2 ∪ P3) \ U ]. Then each

vertex of S has degree at least 8 and S has genus at most 1. Now by [20, Proposition

2.1], we get a contradiction.

Since G2 is not normal in G, the number of Sylow 2-subgrops is at least 3. It

follows that |H| ≥ 3 and since RG is toroidal, we have γ(K|3|,|K|) ≤ 1. Therefore

|K| = 2 and |G3| = 3. Therefore |G2| ≤ 12. The only centerless group of order less

than or equal to 12 are S3, D10 and A4 and by Remark 5.2 and Proposition 5.6,

A4 and D10 are not toroidal. On the other hand, by [2, Theorem 6.1], the group

S3 is planar. This completes the proof. �

We need the following result in the sequel.

Proposition 5.4. Let G be a group whose non-commuting graph of G is of genus

γ, where γ is a non-negative integer. Then G is a finite group and |G| and |Z(G)|
satisfy the inequality, (|G| − 12)(|G| − |Z(G)|) ≤ 24γ − 24. Thus the number of

groups up to isomorphism whose non-commuting graph is of genus γ is finite.
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Figure 1. Embedding of the non-commuting graph Γ(D10) on a

double torus.

Proof. Let C be a clique of Γ(G). Let H be a finite subset of C. Thus H is of

genus at most γ. If γ = 0, then |H| ≤ 4. Therefore by [18, Proposition 6.3.25,],

we have |H| = ω(H) ≤ χ(H) ≤
⌊

7+
√

1+48γ
2

⌋
= h. Therefore every clique of Γ(G)

contain at most h elements and thus G/Z(G) is a finite group, by main result of

[11]. Next we show that Z(G) is finite. Let Z ⊂ Z(G), such that |Z| < ∞. Since

G is a non-abelian group, there exist x, y ∈ G, such that xy 6= yx. Consider the

induce subgraph T by the set Zx ∪ Zy. Thus T is of genus at most γ. Now for

any z1, z2 ∈ Z, we have z1x does not commute with z2y. Thus T ∼= K|Z|,|Z| and

γ(T ) =
⌈

(|Z|−2)(|Z|−2)
4

⌉
≤ γ. Thus Z(G) is finite and therefore G is a finite group.

Let n = |V (Γ(G))|. Now by [20, Proposition 2.1], we have δ(Γ(G)) ≤ 6+ 12γ−12
n .

So there exists x ∈ G, such that deg(x) ≤ 6+ 12γ−12
n . We have deg(x) = |G\CG(x)|.

Thus |G| ≤ 6 + 12γ−12
n + |CG(x)|. Note that n = |G|− |Z(G)| and |CG(x)| ≤ |G|/2.

Therefore |G| ≤ 6+ 12γ−12
|G|−|Z(G)| +

|G|
2 and so (|G|−12)(|G|− |Z(G)|) ≤ 24γ−24. �

We need the following result in the sequel.

Proposition 5.5. Let G be a non-abelian group and Γ(G) is double-toroidal. Then

G is isomorphic to D10, Dic12 or D12. Moreover, the non-commuting graph of D10

is double-toroidal.
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Proof. Suppose that Γ(G) is double-toroidal. Putting γ = 2 in the inequality

of Proposition 5.4, we get |G| ≤ 14. Now by [1, Proposition 2.3], we have non-

abelian group of order less than or equal to 8 are planar. Thus |G| = 10, 12 or

14. Now groups of order 10, 12 or 14 are D10, Dic12, A4, D12 and D14. Suppose

Γ(G) ∼= A4. Then n = |V (Γ(G))| = 11. Now by [20, Proposition 2.1], we have

δ(Γ(G)) ≤ 6 + 12γ−12
n ≤ 7. But for all v ∈ V (Γ(G)), we have deg(v) ≥ 8, which is

a contradiction. Thus A4 is not double-toroidal. Suppose Γ(G) ∼= D14. Then n =

|V (Γ(G))| = 13. Now by [20, Proposition 2.1], we have δ(Γ(G)) ≤ 6 + 12γ−12
n ≤ 6.

But for all v ∈ V (Γ(G)), we have deg(v) ≥ 7, which is a contradiction. Thus D14

is not double-toroidal.

The non-commuting graph D10 is isomorphic to K4,1,1,1,1,1. Let the partite sets

of K4,1,1,1,1,1 be {a, b, c, d}, {p}, {q}, {r} and {s}. Then, the graph K4,1,1,1,1,1 can

be embedded on a double torus as shown in figure 1. Thus, D10 is double-toroidal.

This completes the proof. �

Proposition 5.6. Let G be a centerless AC-group which is not weakly nilpotent.

Then RG is double-toroidal if and only if G ∼= D10.

Proof. It follows from Lemma 4.5 and Proposition 5.5. �

6. Clique number and chromatic number of some group

Proposition 6.1. Let G be a finite non-nilpotent nn-group. Then χ(RG) is equal to

the minimum number of nilpotent subgroups of G whose union is G. Also ω(RG) ≤
χ(RG) ≤ |G : nil(G)|.

Proof. Let k be the minimum number of nilpotent subgroups of G whose union is

G and suppose G is covered by nilpotent subgroups N1, . . . , Nk. Then the vertices

of RG in Ni are independent. It follows that χ(RG) ≤ k. Now assume that χ =

χ(RG). Thus there exist χ maximal independent subsets M1, . . . ,Mχ of vertices of

RG whose union is G \ nil(G). It follows from Proposition 3.19 that the subgroup

generated by 〈Mj , nil(G)〉 is a nilpotent subgroup of G, for each j. Clearly G is

covered by these χ nilpotent subgroups, so χ ≥ k.

It is clear that for any graph Γ, χ(Γ) ≥ ω(Γ). If |G : nil(G)| = m then G =
m
∪
i=1
ainil(G) for some a1, . . . , am ∈ G. By Lemma 3.13(i), Zi := 〈ai, nil(G)〉 is

nilpotent for each i and so G is covered by m nilpotent subgroups Z1, ..., Zm. So

the first part, implies that χ(RG) ≤ |G : nil(G)|. This completes the proof. �

Proposition 6.2. Let G be a non-nilpotent finite nn-group. Then ω(RG) = χ(RG).
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Proof. Assume ω = ω(RG) and χ = χ(RG). Let x1, . . . , xω be a maximal clique

in RG. Thus each xi is an element of G \ nil(G) and so nilG(xi) is nilpotent. It is

easy to see that G =
ω
∪
i=1
nilG(xi). Now Proposition 6.1 implies that ω = χ. �

Proposition 6.3. Let q be a prime power number such that q2 6≡ 1 mod 16. Then

ω(RPSL(2,q)) =



q2 + q + 1 if q > 5,

21 if q = 4 or 5,

5 if q = 3,

4 if q = 2.

Proof. Let G = PSL(2, q), then Z(G) = 1. By [2, Lemma 3.9], we have nilG(a) =

CG(a), for all non-trivial elements a ∈ G. Thus it follows that ΓG ∼= RG. Thus the

proof follows from [1, Lemma 4.4]. �

Proposition 6.4. Let G = Sz(22m+1) be the Suzuki group over the field with 22m+1

elements, m > 0. Let q = 22m+1. Then ω(RG) = χ(RG) = q4 + q2 + 1.

Proof. The result follows from Proposition 3.7 and Proposition 6.2. �
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