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Abstract. In this paper, let R be a commutative ring and C a semidualiz-

ing module. We investigate the (weak) C-Gorenstein global dimension of R

and we get a simple formula to compute the C-Gorenstein global dimension.

Moreover, we compare it with the classical (weak) global dimension of R and

get the relations between them. At last, we compare the weak C-Gorenstein

global dimension with the C-Gorenstein global dimension and we get that they

are equal when R is Noetherian.
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1. Introduction

The notion of semidualizing module was studied more than 27 years ago under

other names by, e.g., Foxby [6] (PG-modules of rank 1), Golod [7] (suitable modules)

and Vasconcelos [12] (spherical modules), which can be viewed as a generalization

of dualizing module and free module of rank one. Relative algebra with respect to a

semidualizing module has caught many authors’ attention. Let C be a semidualiz-

ing module over commutative Noetherian ring R, Holm and Jørgensen [9, Definition

2.7] introduced the notions of C-Gorenstein projective (injective and flat) modules,

which are build from projective (injective and flat) and C-projective (injective and

flat) modules, respectively. White [14] defined the C-Gorenstein projective (injec-

tive) modules over any commutative ring. In this field, projective (injective, flat)

modules are generalized to C-projective (injective, flat) modules and Gorenstein

projective (injective, flat) modules are generalized to C-Gorenstein projective (in-

jective, flat) modules, etc., and the classical homological algebra is generalized to

the Gorenstein homological algebra induced by a semidualizing module C. For this

topic, we refer the reader to [9,11,14].
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The homological dimension which arises by resolving a given module by C-

Gorenstein projective (flat) or C-Gorenstein injective modules is known as the

C-Gorenstein projective (flat) or C-Gorenstein injective dimension of the module.

Bennis and Mahdou investigated the global Gorenstein dimension and weak global

Gorenstein dimension of an associative ring R. They showed that the supremum

of the Gorenstein projective dimensions of all the R-modules is equal to the supre-

mum of the Gorenstein injective dimensions over an associative ring R and that

the supremum of the Gorenstein flat dimensions is smaller than the common value

of the terms of this equality, cf. [2, Theorem 1.1]. It is natural to ask whether

the global Gorenstein projective dimension with respect to a semidualizing module

is equal to the global Gorenstein injective dimension of R. On the other hand,

Holm and Jørgensen [9, Theorem 2.16] studied the trivial extension of R by C,

denoted by R n C. They showed that the C-Gorenstein projective, injective and

flat R-module is in fact the Gorenstein projective, injective and flat RnC-module

over commutative Noetherian ring R, respectively. However, their conclusions only

applies to R-modules which are viewed as R n C-modules via the natural surjec-

tion (R n C → R). We are not sure whether they hold true for R n C-modules.

Hence it is not trivial to show that the global Gorenstein projective dimension with

respect to a semidualizing module C of a ring R is equal to the global Gorenstein

injective dimension of R. In this paper, we use a new technique to show the global

Gorenstein dimension induced by C is definable. Obviously, it is not a trivial ex-

tension of [2, Theorem 1.1]. Moreover, we showed the following theorems over any

commutative ring R.

Theorem. Let C-Ggldim(R) denote the Gorenstein global dimension of R induced

by C. If C-Ggldim(R) <∞, then

C-Ggldim(R)=sup{C-Gpd(R/I) | I is an ideal of R},
where C-Gpd(R/I) is the C-Gorenstein projective dimension of R/I.

Compared with the classical global dimension of R, denoted by gldim(R), we

get that C-Ggldim(R) ≤ gldim(R) in general and when gldim(R) < ∞, they are

equal.

Enochs and Jenda [4, Proposition 10.3.2] proved that every finitely presented

Gorenstein projective R-module is Gorenstein flat over a left and right coherent

ring. In this paper, we get the C-Gorenstein projective R-module is C-Gorenstein

flat R-module when C-Ggldim(R) <∞. Moreover, we have:

Theorem. Let C-wGgldim(R) denote the supremum of the C-Gorenstein flat

dimension of all R-modules. We have C-wGgldim(R) ≤ C-Ggldim(R). If R is

Noetherian, they are equal.
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If we let C = R, we get wGgldim(R) = Ggldim(R) over Noetherian ring R,

which extends [2, Corollary 1.2].

Throughout this paper, R is a commutative ring and ModR is the category of

all R-modules.

2. Preliminaries

In this section, we recall a number of definitions, notions and results which will be

used throughout the paper. For the definitions of Gorenstein projective (injective,

flat) modules we refer the readers to see [2,8].

Definition 2.1. [8, Page 171] Let X be a subcategory of R-modules and M an

R-module.

(1) A left X -resolution of M is an exact sequence X = · · · → X1 → X0 →
M → 0 with each Xi ∈X .

(2) A right X -resolution of M is an exact sequence X = 0 → M → X0 →
X1 → · · · with each Xi ∈X .

The X -projective dimension of M is the quantity

X -pd(M) = inf{sup{n ≥ 0 | Xn 6= 0} | X is a left X -resolution of M}.

The X -injective dimension of M , denoted by X -id(M) is defined dually.

Particularly, pd(M), id(M), and fd(M) is, respectively, the classical projec-

tive, injective, and flat dimension of R-module M . And we use Gpd(M), Gid(M),

and Gfd(M) to denote, respectively, the Gorenstein projective, injective, and flat

dimension of M .

Definition 2.2. [14, 1.8] An R-module C is called semidualizing if

(1) C admits a degreewise finitely generated projective resolution;

(2) the natural homothety map R −→ HomR(C,C) is an isomorphism;

(3) Ext≥1R (C,C) = 0.

Let C be a semidualizing R-module. The class of C-projective (flat) R-modules,

denoted by FC (PC) and C-injective R-modules, denoted by IC , consists of modules

which have the form C ⊗R F , F is projective (flat) R-modules and HomR(C, I), I

is injective R-module, cf. [10, Definition 5.1].

By C-flat (projective, injective) R-modules, Holm and Jørgensen defined the C-

Gorenstein flat, projective and injective modules in commutative ring R, which are

clearly the generalization of Gorenstein flat, projective and injective modules.
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Note that White [14] extended the definition of C-Gorenstein projective modules

to the non-Noetherian ring, where she called GC-projective modules, we refer the

reader to [9,14].

Definition 2.3. [9, Definition 2.7] Let C be a semidualizing R-module. An R-

module M is called C-Gorenstein injective if:

(1) Exti≥1R (HomR(C, I),M) = 0 for all injective R-modules I.

(2) There exist injective R-modules I0, I1, · · · together with an exact sequence:

· · · → HomR(C, I1)→ HomR(C, I0)→M → 0.

such that it stays exact when we apply the functor HomR(HomR(C, J),−)

for any injective R-module J .

M is called C-Gorenstein projective if:

(1) Exti≥1R (M,C ⊗R Q) = 0 for all projective R-modules Q.

(2) There exist projective R-modules Q0, Q1, · · · together with an exact se-

quence:

0→M → C ⊗R Q0 → C ⊗R Q1 → · · · .
such that it stays exact when we apply the functor HomR(−, C ⊗R Q) for

any projective R-module Q.

M is called C-Gorenstein flat if:

(1) TorRi≥1(HomR(C, I),M) = 0 for all injective R-modules I.

(2) There exist flat R-modules F 0, F 1, · · · together with an exact sequence:

0→M → C ⊗R F 0 → C ⊗R F 1 → · · · ,
such that it stays exact when we apply the functor HomR(C, I) ⊗R − for

any injective R-module I.

Remark 2.4. By [9, Example 2.8], projective modules are C-Gorenstein projective,

injective modules are C-Gorenstein injective and flat modules are C-Gorenstein flat

over commutative Noetherian ring R. However, the condition of R being Noetherian

is not needed, which can be easily seen from the proof process in [9]. Hence every

R-module M admits C-Gorenstein projective (injective and flat) resolution and the

C-Gorenstein projective (injective, flat) dimension of the R-module M is definable

over any commutative ring R.

By [9, Definition 9], let C-Gpd(M), C-Gid(M) and C-Gfd(M), denote the C-

Gorenstein projective, injective and flat dimension of M , respectively.

At last, we recall the definition of trivial extension:

Definition 2.5. Let R be a ring and C a semidualizing module. The direct sum

R⊕ C can be equipped with the product:
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(r, c) · (r′, c′) = (rr′, rc′ + r′c).

This turns R ⊕ C into a ring which is called the trivial extension of R by C and

denoted by Rn C.

There are canonical ring homomorphisms, R � Rn C, which enable us to view

R-modules as Rn C-modules, and vice versa.

3. Gorenstein global dimensions induced by C

In this section, we investigate the (weak) C-Gorenstein global dimension of R.

Firstly, we prove an important lemma, which makes [9, Theorem 2.16(1),(2)] hold

true over any commutative ring, not necessarily Noetherian ring. Hence we can

show our main theorems over any commutative ring.

Lemma 3.1. Let R be any commutative ring. For any R-module M and integer

n, we have:

(1) ExtnRnC(HomR(R n C,E),M) ∼= ExtnR(HomR(C,E),M), where E is any

injective R-module;

(2) ExtnRnC(M, (RnC)⊗R Q) ∼= ExtnR(M,C ⊗R Q), where Q is any projective

R-module.

Proof. We only prove (1) and the proof of (2) is similar.

By Definition 2.5, there exists an R-module isomorphism R n C ∼= R ⊕ C. So

HomR(R n C,C) ∼= R n C by Definition 2.2. Moreover, C is a finitely presented

R-module, so RnC is also a finitely presented R-module. By [4, Theorem 3.2.11],

HomR(Rn C,E) ∼= HomR(HomR(Rn C,C), E) ∼= (Rn C)⊗R HomR(C,E).

Consider the projective resolution of the R-module HomR(C,E),

P = · · · → P1 → P0 → HomR(C,E)→ 0.

By [10, Corollary 6.1], HomR(C,E) ∈ AC(R). So TorRi≥1(RnC,HomR(C,E)) = 0.

Thus we get another exact sequence after applying the functor (RnC)⊗R − to P:

· · · → (Rn C)⊗R P1 → (Rn C)⊗R P0 → (Rn C)⊗R HomR(C,E)→ 0.

By [9, Lemma 1.5], (R n C) ⊗R Pi is a projective R n C-module for any i ≥

0. So the above exact sequence is a projective resolution of the R n C-module
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(Rn C)⊗R HomR(C,E). Hence we have that:

ExtnRnC(HomR(Rn C,E),M)

∼=ExtnRnC((Rn C)⊗R HomR(C,E),M)

=H−nHomRnC((Rn C)⊗R P,M)

∼=H−nHomR(P,M)

=ExtnR(HomR(C,E),M),

where the second isomorphism is a Hom-tensor adjointness. �

Remark 3.2. By Lemma 3.1, we know [9, Proposition 2.13 and Theorem 2.16(1),

(2)] hold true over any commutative ring R, which can be easily seen from the proof

process in [9].

Now, we show the C-Gorenstein global dimension of R is definable. And we use

a different method from [2].

Lemma 3.3. Let E be any injective and Q any projective R-module. Then we have

(1) idRnC((Rn C)⊗R Q) ≤ idR(C ⊗R Q);

(2) pdRnC(HomR(Rn C,E)) ≤ pdR(HomR(C,E)).

Proof. (1) Let I = 0 → C ⊗R Q → E0 → E1 → · · · be an injective resolution

of the R-module C ⊗R Q. By [10, Corollary 6.1], C ⊗R Q ∈ BC(R). We can get

Ext≥1R (R n C,C ⊗R Q) = 0 by Definition 2.5 and [10, Definition 4.1]. Hence the

sequence HomR(Rn C, I), i.e.,

0→ HomR(Rn C,C ⊗R Q)→ HomR(Rn C,E0)→ HomR(Rn C,E1)→ · · ·
is exact. By [9, Lemma 1.4], HomR(R n C,Ei) is an injective R n C-module for

each i ≥ 0. So HomR(R n C, I) is an injective resolution of the R n C-module

HomR(RnC,C⊗RQ). Since C is finitely presented and HomR(RnC,C) ∼= RnC,

we have HomR(R n C,C ⊗R Q) ∼= HomR(R n C,C)⊗R Q ∼= (R n C)⊗R Q by [4,

Theorem 3.2.14]. So

idRnC((Rn C)⊗R Q) = idRnC(HomR(Rn C,C ⊗R Q)) ≤ idR(C ⊗R Q).

(2) Let P be a projective resolution of the R-module HomR(C,E). Following

from the proof of Lemma 3.1, (R n C) ⊗R P is a projective resolution of R n C-

module HomR(Rn C,E). So pdRnC(HomR(Rn C,E)) ≤ pdR(HomR(C,E)). �

Lemma 3.4. Let E be an injective and Q a projective R-module. For any non-

negative integer n, we have

(1) if C-Gpd(E) ≤ n, then PC-pd(E) = C-Gpd(E);

(2) if C-Gid(Q) ≤ n, then IC-id(Q) = C-Gid(Q).
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Proof. We only prove (1) and the proof of (2) is similar.

Clearly, C-Gpd(E) ≤ PC-pd(E). We only need to show the inverse equal-

ity. Since C-Gpd(E) ≤ n, there exists an exact sequence by [14, Theorem 3.6]:

0 → K → G → E → 0, where PC-pd(K) ≤ C-Gpd(E)-1 and G is C-Gorenstein

projective. Note that C-Gorenstein projective dimensions are called GC-projective

dimension, denoted by GC-pdRM in [14]. By the definition of C-Gorenstein pro-

jective module, we have the following push-out diagram

0

��

0

��
0 // K // G //

��

E //

��

0

0 // K // C ⊗R P

��

// H
y

//

��

0

G1

��

G1

��
0 0.

We deduce PC-pd(H) ≤ C-Gpd(E) by the middle row in the push-out diagram.

Since E is injective, the exact sequence 0 → E → H → G1 → 0 splits. So E is a

direct summand of H and thus PC-pd(E) ≤ C-Gpd(E). Hence the equality in (1)

follows. �

Proposition 3.5. For a non-negative integer n, if sup{C-Gpd(M) |M ∈ModR} ≤
n (or sup{C-Gid(M) |M ∈ModR} ≤ n), then for every projective Rn C-module

P and injective Rn C-module I, the following hold true.

(1) idRnC(P ) ≤ n;

(2) pdRnC(I) ≤ n.

Proof. By [9, Lemmas 1.4 and 1.5], we can easily know that any injective RnC-

module I is a summand in a module HomR(RnC,E) for some injective R-module

E and any projective R n C-module P is a summand in a module (R n C) ⊗R Q

for some projective R-module Q over any ring R. So we only need to show

idRnC((Rn C)⊗R Q) ≤ n and pdRnC(HomR(Rn C,E)) ≤ n.

Firstly, we assume that sup{C-Gpd(M) |M ∈ModR} ≤ n.

(1) Let Q be any projective R-module. Then ExtiR(M,C ⊗R Q) = 0 for any

R-module M and any i > n by [14, Proposition 2.12]. Thus idR(C ⊗R Q) ≤ n. By

Lemma 3.3(1), idRnC((Rn C)⊗R Q) ≤ n.
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(2) By Lemma 3.4(1), PC-pd(E) = C-Gpd(E) for any injective R-module E.

So PC-pd(E) ≤ n by the assumption. By [10, Theorem 5.1], it is easy to show

pd(HomR(C,E)) ≤ n. So pdRnC(HomR(Rn C,E)) ≤ n by Lemma 3.3(2).

Now, we assume that sup{C-Gid(M) |M ∈ModR} ≤ n.

(1) By Lemma 3.4(2), IC-id(Q) = C-Gid(Q) ≤ n for any projective R-module

Q. So idR(C ⊗R Q) ≤ n by [10, Theorem 5.1]. Hence idRnC((R n C) ⊗R Q) ≤ n

by Lemma 3.3(1).

(2) Let M be any R-module, then ExtiR(HomR(C,E),M) = 0 for all i > n and

all injective R-module E by [9, Definition 2.7]. So pd(HomR(C,E)) ≤ n. Hence

pdRnC(HomR(Rn C,E)) ≤ n by Lemma 3.3(2). �

Lemma 3.6. Let n be a non-negative integer such that id(P ) ≤ n and pd(E) ≤ n,

where P is any projective R-module and E is any injective R-module. Then the

following hold for any R-module M :

(1) If GpdR(M) <∞, then GidR(M) ≤ n;

(2) If GidR(M) <∞, then GpdR(M) ≤ n.

Proof. It follows from [3, Theorem 4.1]. �

The following result was also proved in [15, Theorem 4.4]. However, we use a

different method to prove it.

Proposition 3.7. Let R be any commutative ring and C a semidualizing R-module.

Then

sup{C-Gid(M) |M ∈ModR} = sup{C-Gpd(M) |M ∈ModR}.

Proof. We only show the inequality

sup{C-Gid(M) |M ∈ModR} ≤ sup{C-Gpd(M) |M ∈ModR}
and the proof of the reverse inequality is similar.

Suppose that sup{C-Gpd(M) | M ∈ ModR} ≤ n for some non-negative integer

n. Then for every projective R n C-module P and injective R n C-module I, we

have that idRnC(P ) ≤ n and pdRnC(I) ≤ n by Proposition 3.5. Moreover, let

M be any R-module, then C-Gpd(M) ≤ n. Thus GpdRnC(M) ≤ n < ∞ by [9,

Theorem 2.16(1)] and Remark 3.2. So GidRnC(M) ≤ n by Lemma 3.6. By [9,

Theorem 2.16(2)] and Remark 3.2, C-Gid(M) ≤ n. Hence sup{C-Gid(M) | M ∈
ModR} ≤ n and the inequality holds true. �

We call the common value in Proposition 3.7 C-Gorenstein global dimension of

the ring R and denote it by C-Ggldim(R). It is easy to see that C-Gorenstein

global dimension extends Gorenstein global dimension and global dimension of R.
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In the classical homological algebra, the global dimension of a ring R, denoted

by gldim(R), can be computed via the following formula:

gldim(R) = sup{pd(R/I) | I is an ideal of R}.
We will show the C-Gorenstein global dimension of R can also be computed via a

similar formula.

Lemma 3.8. Let R be a commutative ring with C-Ggldim(R) < ∞. Denoted by

ProjR the class of projective R-modules, we have

C-Ggldim(R) =sup{idR(C ⊗R Q) | Q ∈ ProjR}.

Proof. Assume that sup{idR(C ⊗R Q) | Q ∈ ProjR} = n for some non-negative

integer n, then idR(C ⊗Q) ≤ n for any projective R-module Q. For any R-module

M and i > n, we have ExtiR(M,C ⊗R Q) = 0. Also C-GpdRM < ∞ by the

assumption, thus C-GpdRM ≤ n by [14, Proposition 2.12]. By Proposition 3.7, we

get C-Ggldim(R) =sup{C-GpdRM | M ∈ModR} ≤ n.

On the other hand, assume that C-Ggldim(R) = n and Q is any projective

R-module. Then ExtiR(M,C ⊗R Q) = 0 for any R-module M and i > n by [14,

Proposition 2.12] and Proposition 3.7. Hence idR(C ⊗R Q) ≤ n. So

sup{idR(C ⊗R Q) | Q ∈ ProjR} ≤ C-Ggldim(R). �

Theorem 3.9. If C-Ggldim(R) <∞, then

C-Ggldim(R)=sup{C-Gpd(R/I) | I is an ideal of R}.

Proof. It is clear that sup{C-Gpd(R/I) | I is an ideal of R} ≤ C-Ggldim(R).

Let sup{C-Gpd(R/I) | I is an ideal of R} = n < ∞. By [14, Proposition 2.12],

Extn+1
R (R/I,C⊗RQ) = 0 for every R-ideal I and projective R-module Q. Consider

the injective resolution of C ⊗R Q,

0→ C ⊗R Q→ E0 → · · · → En−1 → T
′ → 0.

Applying HomR(R/I,−), we get that Ext1R(R/I, T
′
) ∼= Extn+1

R (R/I,C⊗RQ) = 0.

By [13, Theorem 9.11], T
′

is injective. So idR(C ⊗R Q) ≤ n. By Lemma 3.8, C-

Ggldim(R) ≤ n. Therefore, C-Ggldim(R) = sup{C-Gpd(R/I) | I is an ideal of R}.
�

Remark 3.10. By Remark 2.4, C-Ggldim(R) ≤ gldim(R). On the other hand,

it is easy to show sup{PC-pd(M) |M ∈ ModR} = sup{pd(N) |N ∈ ModR} =

gldimR. So if gldim(R) < ∞, then PC-pd(M) < ∞ for any R-module M .

Hence PC-pd(M) = C-Gpd(M) by [14, Proposition 2.16]. So if gldim(R) < ∞,

then sup{PC-pd(M) |M ∈ ModR} = sup{C-Gpd(M) |M ∈ ModR}, i.e., C-

Ggldim(R) = gldim(R).
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Now, we consider the the weak C-Gorenstein global dimension and denote it by

C-wGgldim(R),

C-wGgldim(R) = sup{C-GfdR(M) |M ∈ModR}.
Obviously, it is a generalization of weak Gorenstein global dimension and weak

global dimension of R. By Remark 2.4, any flat R-module is C-Gorenstein flat. So

C-wGgldim(R) ≤ wgldim(R), where wgldim(R) denotes the supremum of the flat

dimensions of all the R-modules.

Enochs and Jenda [4] proved that every finitely presented Gorenstein projective

R-module is Gorenstein flat over a left and right coherent ring. The following

proposition indicates the C-Gorenstein projective R-module is C-Gorenstein flat

when C-Ggldim(R) <∞.

Proposition 3.11. Let R be any ring with C-Ggldim(R) < ∞, then any C-

Gorenstein projective R-module is C-Gorenstein flat.

Proof. Assume that C-Ggldim(R) ≤ n for some non-negative integer n. Then

C-Gid(N) ≤ n for every R-module N . Hence Exti>n
R (HomR(C,E), N) = 0 for any

injective R-module E. So pd(HomR(C,E)) ≤ n and fd(HomR(C,E)) ≤ n. Denote

the character module of HomR(C,E) by HomR(C,E)+, then id(HomR(C,E)+) ≤
n by [4, Theorem 3.2.9]. So Ext≥1R (C,HomR(C,E)+) = 0 by [10, Corollaries

6.1 and 6.2]. And Ext≥1R (C ⊗ P,HomR(C,E)+) = 0 by [13, Page 258, 9.20].

Let M be a C-Gorenstein projective R-module, then there exists an exact se-

quence P =: 0 → M → C ⊗ P 0 f0

→ C ⊗ P 1 f1

→ · · · with P i projective mod-

ules. Applying Hom(−,Hom(C,E)+) to P, by the dimension shifting argument,

we get Exti(M,Hom(C,E)+) ∼= Extn+i(kerfn,Hom(C,E)+) for all i ≥ 1. Since

id(HomR(C,E)+) ≤ n, Ext≥1(M,Hom(C,E)+) = 0. By [4, Theorem 3.2.1],

TorR≥1(M,Hom(C,E)) = 0. From this, it is easy to see Hom(P,Hom(C,E)+) is

exact. And the Hom-tensor adjointness

HomZ(Hom(C,E)⊗ P,Q/Z) ∼= Hom(P,Hom(C,E)+)

implies that Hom(C,E)⊗R P is exact. Hence M is C-Gorenstein flat by Definition

2.3. �

To end this manuscript, we compare the C-Ggldim(R) and C-wGgldim(R) over

any ring R.

Theorem 3.12. We always have C-wGgldim(R) ≤ C-Ggldim(R). If R is Noe-

therian with C-Ggldim(R) <∞, then C-wGgldim(R) = C-Ggldim(R).

Proof. By Proposition 3.11, C-wGgldim(R) ≤ C-Ggldim(R).

When R is Noetherian, we will show that C-Ggldim(R) ≤ C-wGgldim(R). In

fact, suppose that C-wGgldim(R) = n for some non-negative integer n, then for
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every finitely generated R-module M , C-Gfd(M) ≤ n. Consider the projective

resolution of M : 0 → Gn → Pn−1 → · · · → P1 → P0 → M → 0, with Pi

finitely generated projective for 0 ≤ i ≤ n − 1. Then Gn is C-Gorenstein flat.

Since R is Noetherian and M is finitely generated, so Gn is finitely presented. By

Definition 2.5, as R n C-module, Gn is finitely generated. Since R is Noetherian,

R n C is Noetherian by [5, Page 87]. So Gn is a finitely presented Gorenstein

flat RnC-module by [9, Theorem 2.16(3)] and thus Gn is a Gorenstein projective

R n C-module by [1, Proposition 1.3]. Hence Gn is a C-Gorenstein projective R-

module also by [9, Theorem 2.16(2)]. We get C-Gpd(M) ≤ n. Particularly,

C-Gpd(R/I) ≤ n for any R-ideal I. So C-Ggldim(R) ≤ n by Theorem 3.9. Hence

C-Ggldim(R) ≤ C-wGgldim(R) and so C-wGgldim(R) = C-Ggldim(R). �

Remark 3.13. If C = R in the above theorem, then wGgldim(R) = Ggldim(R)

over Noetherian ring R, which extends [2, Corollary 1.2].
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