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Abstract. In this article, we present the classical Krull-Schmidt Theorem for

groups, its statement for modules due to Azumaya, and much more modern

variations on the theme, like the so-called weak Krull-Schmidt Theorem, which

holds for some particular classes of modules. Also, direct product of modules

is considered. We present some properties of the category of G-groups, a cat-

egory in which Remak’s results about the Krull-Schmidt Theorem for groups

can be better understood. In the last section, direct-sum decompositions and

factorisations in other algebraic structures are considered.
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1. Introduction

In this paper, we mainly present the classical Krull-Schmidt Theorem for groups

and modules and some of its weak versions. According to the classical Krull-

Schmidt Theorem for modules, any module of finite composition length decomposes

as a direct sum of indecomposable modules in an essentially unique way, that is,

unique up to isomorphism of the indecomposable summands and a permutation of

the summands. In Section 2, we present the historical background of that theorem.

Section 3 is devoted to commutative monoids, which provide the best algebraic

tool to describe finite direct-sum decompositions of modules.

The first author was partially supported by Dipartimento di Matematica “Tullio Levi-Civita” of

Università di Padova (Project BIRD163492/16 “Categorical homological methods in the study of
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survey is essentially based on an Algebra seminar that the first author gave on 9th February 2016 at

the University of Edinburgh, entitled “Krull-Schmidt-Remak theorem, direct-sum decompositions

of modules, direct-product decompositions of groups, G-groups”.
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In 1975, Warfield proved that every finitely presented module over a serial ring

is a finite direct sum of uniserial modules and posed a problem, essentially asking

whether the Krull-Schimdt Theorem holds for finite direct sums of uniserial mod-

ules. More precisely, he asked whether the direct-sum decomposition of a finitely

presented module over a serial ring into uniserial summands is unique up to isomor-

phism [37]. The negative answer to this question was given by the first author in

1996 [15]. He showed that even though the Krull-Schmidt Theorem does not hold

for serial modules, a weak version of it holds not only for serial modules, but also

for other classes of modules. Some of these classes of modules will be presented in

Section 4.

It is natural to ask what happens when one considers arbitrary direct products

of modules instead of arbitrary direct sums. In Section 5, we collect some results

about direct product of modules and uniqueness of decomposition. In that section,

we also present some properties of the category of G-groups, a framework in which

the existence of the central automorphism in the Krull-Schmidt Theorem proved

by Remak has a natural explanation.

All these results are strongly related to factorisation in a very general sense.

Thus we present some results concerning factorisation into irreducible polynomials

of non-commutative polynomials with coefficients in Z, and also factorization of

commutative polynomials with non-negative integral coefficients.

2. Historical background of the Krull-Schmidt-Remak-Azumaya

Theorem

In this survey, rings will be associative rings R with an identity, and modules

will be unital right R-modules, unless otherwise stated.

In 1879, Frobenius and Stickelberger proved that any finite abelian group is a

direct product of cyclic groups whose orders are powers of primes, and this powers

of primes are uniquely determined by the group [23]. The “classical Krull-Schmidt

Theorem for finite groups” was first stated in 1909 by Wedderburn [27], who pub-

lished the following theorem.

Theorem 2.1. (Krull-Schmidt Theorem for finite groups) If a finite group G has

two direct-product decompositions G = G1 × G2 × · · · × Gt = H1 ×H2 × · · · ×Hs

into indecomposables, then t = s and there exist an automorphism ϕ of G and a

permutation σ of {1, 2, . . . , t} such that ϕ(Gi) = Hσ(i) for all indices i = 1, 2, . . . , t.

The proof given by Wedderburn is not entirely convincing. It was Robert Erich

Remak [32] who proved in his PhD dissertation (1911) that any two direct-product
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decompositions of a finite group into indecomposable factors are not only isomor-

phic, but also centrally isomorphic. More precisely, he proved the following theo-

rem. Recall that a central automorphism of group G is an automorphism of G that

induces the identity G/ζ(G)→ G/ζ(G), where ζ(G) denotes the center of G.

Theorem 2.2. If a finite group G has two direct-product decompositions into in-

decomposables G = G1 ×G2 × · · · ×Gt = H1 ×H2 × · · · ×Hs, then t = s and there

exist a central automorphism ϕ of G and a permutation σ of {1, 2, . . . , t} such that

ϕ(Gi) = Hσ(i) for all indices i = 1, 2, . . . , t.

Otto Yulyevich Schmidt [33] then gave a simplified proof of Remak’s results.

These results were transfered to modules of finite length by Krull and Schimdt,

getting a theorem that, in modern terminology, can be stated as follows.

Theorem 2.3. (The Krull-Schmidt Theorem) Let R be a ring and M be a module

of finite length. Then there exists a decomposition

M = M1 ⊕M2 ⊕ · · ·Mr

into indecomposable submodules Mi of M . Moreover, if M = N1 ⊕ N2 ⊕ · · ·Ns
is another decomposition of M into indecomposable modules, then r = s and there

exists a permutation σ of {1, · · · , r} such that Mi
∼= Nσ(i) for every i ∈ {1, · · · , r}.

Arbitrary modules do not decompose in an “essentially unique” way in general.

Here is an example.

Example 2.4. [17] Let R be a commutative integral domain with at least two

distinct maximal ideals M and N that are not principal ideals. Then the morphism

M ⊕ N → R, defined by (x, y) → x + y, is an R-module epimorphism, which

necessarily splits because R is a projective R-module. The kernel of this morphism

is isomorphic to M ∩ N , so that there is a splitting short exact sequence 0 →
M ∩ N → M ⊕ N → R → 0. Thus M ⊕ N is isomorphic to R ⊕ (M ∩ N). But

M and N are not principal ideals, so that they are not isomorphic to R. Therefore

the two direct-sum decompositions are essentially different. Notice that R is an R-

module of Goldie dimension 1 since R is a commutative integral domain. Thus R

and its submodules M , N and M ∩N are all modules of Goldie dimension 1, which

proves that the two essentially different direct-sum decompositions are direct-sum

decompositions into indecomposables.

Let Ω be a set. Recall that an Ω-group is a pair (H,ϕ), where H is a group

and ϕ : Ω → End(H) is a mapping. Krull [25] extended the results known for
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groups to the case of abelian operator groups with the ascending and descending

chain conditions (operator groups = Ω-groups). Notice that if H is abelian, then

End(H) is a ring, so that the mapping ϕ : Ω→ End(H) extends uniquely to a ring

homomorphism Z〈Ω〉 → End(H), where Z〈Ω〉 denotes the free ring with free set Ω

of generators (=ring of non-commutative polynomials with coefficients in Z in the

set of non-commuting indeterminates Ω). Thus abelian Ω-groups are exactly left

Z〈Ω〉-modules. The theory was subsequently further deepened by Schmidt [34].

Øystein Ore (Oslo, 1899-1968) unified the proofs from various categories: groups,

abelian operator groups, rings and algebras. He showed that the theorem of Wed-

derburn holds for modular lattices with descending and ascending chain conditions.

The Krull-Schmidt Theorem was extended to the case of possibly infinite direct

sums of modules with local endomorphism rings by Azumaya [6]. Notice that any

indecomposable module of finite composition length has a local endomorphism ring

(this is the so-called Fitting Lemma) and any module with a local endomorphism

ring is necessarily indecomposable [4, p. 144].

Theorem 2.5. (Krull-Schmidt-Remak-Azumaya Theorem) Let M be a module that

is a direct sum of modules with local endomorphism rings. Then M is a direct sum

of indecomposable modules in an essentially unique way in the following sense. If

M =
⊕
i∈I

Mi =
⊕
j∈J

Nj ,

where all the submodules Mi (i ∈ I) and Nj (j ∈ J) are indecomposable, then there

exists a bijection ϕ : I → J such that Mi
∼= Nϕ(i) for every i ∈ I.

After this brief historical introduction, our aim now is to describe direct-sum

decompositions of a module MR as a finite direct sum MR = M1 ⊕ · · · ⊕Mn of

direct summands Mi. Several behaviours are possible. For instance:

• There can be uniqueness of direct-sum decomposition into indecomposables.

This is the case described, for example, for modules that are direct sums of

modules with local endomorphism rings (Krull-Schmidt-Remak-Azumaya).

• There are modules with a direct-sum decomposition into indecomposables,

such that this decomposition is not unique in the sense of the Krull-Schmidt-

Remak-Azumaya Theorem, but there are only finitely many such direct-sum

decompositions up to isomorphism. This happens, for instance, for torsion-

free abelian groups of finite rank [26].

• For some classes of modules, direct-sum decompositions into indecompos-

ables are not unique, but they enjoy some kind of regularity.
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• But, in general, there is no direct-sum decomposition into indecomposables,

and no uniqueness as in Example 2.4.

3. The reduced monoid V (C)

The best way to describe finite direct-sum decompositions of a module MR is by

making use of commutative monoids. A commutative monoid is a semigroup with a

binary operation that is associative, commutative and has an identity element. All

the monoids in this paper will be commutative and additive, that is, their operation

will be denoted as an addition +, and their identity element will be denoted by 0.

For a commutative monoid M , let U(M) denote the group of all a ∈ M with an

opposite −a in M . A commutative additive monoid M is reduced if x, t ∈ M and

x + t = 0 implies x = t = 0. That is, if U(M) = 0. For every monoid M , the

monoid Mred := M/U(M), whose elements are the cosets m+ U(M), is reduced.

We will look at classes of right R-modules as full subcategories of the category

Mod-R of all right R-modules. Let C be a category and let V (C) denote a skeleton

of C, that is, a class of representatives of the objects of C modulo isomorphism.

In order to avoid set-theoretical problems, in this survey we could consider only

skeletally small categories, that is, categories C in which the class Ob(C) contains

a set of representatives of the objects up to isomorphism. Equivalently, a category

C is skeletally small if it has a skeleton whose class of objects is a set. For every

object A in C, there is a unique object 〈A〉 in V (C) isomorphic to A. Thus there

is a mapping Ob(C) → V (C), A 7→ 〈A〉, that associates to every object A of C
the unique object 〈A〉 in V (C) isomorphic to A. Assume that a product A × B
exists in C for every pair A,B of objects of C. Define an addition + in V (C) by

A+B := 〈A×B〉 for every A,B ∈ V (C). If the category C is not skeletally small,

we have that its skeleton V (C) is a class that is not a set. This class becomes

therefore a large monoid, that is, a monoid that is not a set but a class, like in the

next lemma.

Lemma 3.1. Let C be a category with a terminal object and in which a product

A × B exists for every pair A,B of objects of C. Then V (C) is a large reduced

commutative monoid.

It is easy to prove that the Krull-Schmidt property holds in the additive category

C if and only if the monoid V (C) is a free monoid, that is, isomorphic to the direct

sum N(I) for some class I.

An element u of a commutative monoid M is called an order-unit in M if, for

every x ∈ M , there exists an integer n ≥ 0 such that x ≤ nu. Here ≤ denotes
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the algebraic preorder on the commutative monoid M , that is, the reflexive and

transitive relation ≤ on M defined, for every x, y ∈ M , by x ≤ y if there exists

z ∈ M with x + z = y. Hence u is an order-unit in M if and only if, for every

x ∈ M , there exist an integer n ≥ 0 and an element y ∈ M such that x + y = nu.

It is now easy to define the category of commutative monoids with order-unit. Its

objects are the pairs (M,u), where M is any commutative monoid and u ∈ M

is an order-unit. Its morphisms f : (M,u) → (M ′, u′) are the monoid morphisms

f : M →M ′ such that f(u) = u′.

For any ring R, let C be the class of all finitely generated projective right R-

modules. We will denote by V (R) the monoid V (C). Then V (R) is a commutative

reduced monoid with order-unit 〈RR〉.
The following theorem was first proved by Bergman for finitely generated monoids

with order-unit [7, Theorems 6.2 and 6.4]. Then it was extended by Bergman and

Dicks to arbitrary monoids with order-unit [8, p. 315]. Recall that a ring R is

hereditary if all its right ideals and all its left ideals are projective modules.

Theorem 3.2. [7,8] Let k be a field and let (M,u) be a commutative reduced monoid

with order-unit. Then there exists a hereditary k-algebra R such that (M,u) and

(V (R), 〈RR〉) are isomorphic monoids with order-unit.

Corollary 3.3. Let k be a field and let M be a commutative reduced monoid. Then

there exists a class C of finitely generated projective right modules over a hereditary

k-algebra R such that M ∼= V (C).

4. Weak Krull-Schmidt Theorem

Let R be any ring. In this section, we will see what happens for some very

special classes of right R-modules that are not direct sums of modules Mi with

local endomorphism ring End(Mi). A right R-module MR is uniserial if its lattice

of submodules is linearly ordered, that is, if for any submodules A,B of MR either

A ⊆ B or B ⊆ A, and it is serial if it is a direct sum of uniserial modules.

The endomorphism ring of a uniserial module has at most two maximal right

(left) ideals, as the following theorem shows.

Theorem 4.1. [15] Let UR be a non-zero uniserial module over a ring R, E :=

End(UR) its endomorphism ring, I := { f ∈ E | f is not injective } and K := { f ∈
E | f is not surjective }. Then I and K are two two-sided completely prime ideals

of E, and every proper right ideal of E and every proper left ideal of E is contained

either in I or in K. Moreover,



UNIQUENESS OF DECOMPOSITION, FACTORISATIONS 113

(a) either E is a local ring with maximal ideal I ∪K, or

(b) E/I and E/K are division rings, and E/J(E) ∼= E/I × E/K.

In 1975, Warfield proved that every finitely presented module over a serial ring

is a finite direct sum of uniserial modules, and asked whether the direct decom-

position of a finitely presented module into uniserial summands is unique up to

isomorphism [37]. Warfield’s question was answered completely in [15], by showing

that, although there exist serial rings for which the Krull-Schmidt Theorem does

not hold for finitely presented modules, it is possible to prove a weak form of the

Krull-Schmidt Theorem. Facchini’s weak form of the Krull-Schmidt Theorem holds

only for finite direct sums of uniserial modules, not for infinite ones. In order to

state the theorem, we need the concepts of monogeny class and epigeny class of a

module.

Two right R-modules U and V are said to have

(1) the same monogeny class, denoted [U ]m = [V ]m, if there exist a monomor-

phism U → V and a monomorphism V → U ;

(2) the same epigeny class, denoted [U ]e = [V ]e, if there exist an epimorphism

U → V and an epimorphism V → U .

The weak Krull-Schmidt Theorem for finite families of uniserial modules can be

formulated as follows:

Theorem 4.2. (Weak Krull-Schmidt Theorem [15]) Let U1, . . . , Un, V1, . . . , Vt

be n + t non-zero uniserial right modules over a ring R. Then the direct sums

U1 ⊕ · · · ⊕Un and V1 ⊕ · · · ⊕ Vt are isomorphic R-modules if and only if n = t and

there exist two permutations σ and τ of {1, 2, . . . , n} such that [Ui]m = [Vσ(i)]m and

[Ui]e = [Vτ(i)]e for every i = 1, 2, . . . , n.

Remark 4.3. In [21], Zahra Nazemian and the first author have studied the fac-

torisations A = A1 . . . An of a right ideal A of a not-necessarily commutative ring

R as a product of right ideals A1, . . . , An, with R/A ∼= R/A1 ⊕ · · · ⊕R/An canoni-

cally and the right modules R/A1, . . . , R/An uniserial. The main example of such

a factorisation is the factorization into powers of prime ideals for non-zero ideals

of a Dedekind domain R.

Theorem 4.2 must be modified if we want it to hold for infinite families of uniserial

modules [13, Theorem 4.9]. This was done by Př́ıhoda, who proved the converse

of [13, Theorem 4.7] in [29]. First recall a definition. A right R-module UR is said

to be quasismall if, for every family {Mi | i ∈ I } of R-modules such that U is
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isomorphic to a direct summand of
⊕

i∈IMi, there is a finite set I ′ ⊆ I such that

UR is isomorphic to a direct summand of
⊕

i∈I′ Mi.

Theorem 4.4. [29, Theorem 2.6] Let {Ui | i ∈ I } and {Vj | j ∈ J } be nonempty

families of non-zero uniserial modules. Let I ′ = { i ∈ I | Ui is quasismall } and

J ′ = {j ∈ J | Vj is quasismall }. Then
⊕

i∈I Ui
∼=

⊕
j∈J Vj if and only if there

exist a bijection σ : I → J and a bijection τ : I ′ → J ′ such that [Ui]m = [Vσ(i)]m for

every i ∈ I and [Ui]e = [Vτ(i)]e for every i ∈ I ′.

If a uniserial module U has local endomorphism ring, then any direct summand

of a direct sum U (I) of copies of U is a direct sum of copies of U , because any

uniserial module is σ-small (a module is σ-small if it is countable ascending union

of small submodules) and one can use [16, Theorem 2.52].

Theorem 4.5. [30, Theorem 1.1] Let U be a non-zero uniserial right module over

a ring R. Then:

(1) If gf 6= 0 for every monomorphism f : U → U and every epimorphism

g : U → U , then every direct summand of a direct sum U (I) of copies of U

is a direct sum of copies of U .

(2) If U is quasismall and there exist a monomorphism f : U → U and an

epimorphism g : U → U such that gf = 0, then every direct summand of

a direct sum U (I) of copies of U is isomorphic to U (J) ⊕ V (K), where J

and K are suitable sets and V is the unique uniserial module in the same

monogeny class of U that is not quasismall.

(3) If U is not quasismall, then every direct summand of a direct sum U (I) of

copies of U is a direct sum of copies of U .

Recall that a right module over a ring R is cyclically presented if it is isomor-

phic to R/aR for some element a ∈ R. For any ring R, the endomorphism ring

EndR(R/aR) of a non-zero cyclically presented module R/aR is isomorphic to

E/aR, where E := { r ∈ R | ra ∈ aR } is the idealizer of aR. The following

theorem is proved in [2, Theorem 2.1].

Theorem 4.6. Let a be a non-zero non-invertible element of an arbitrary local

ring R, let E be the idealizer of aR, and let E/aR be the endomorphism ring of

the cyclically presented right R-module R/aR. Set I := { r ∈ R | ra ∈ aJ(R) } and

K := J(R) ∩ E. Then I and K are two two-sided completely prime ideals of E

containing aR, the union (I/aR)∪ (K/aR) is the set of all non-invertible elements

of E/aR, and every proper right ideal of E/aR and every proper left ideal of E/aR
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is contained either in I/aR or in K/aR. Moreover, exactly one of the following

two conditions holds:

(a) Either I and K are comparable (that is, I ⊆ K or K ⊆ I), in which case

E/aR is a local ring, or

(b) I and K are not comparable, and in this case E/I and E/K are division

rings, J(E/aR) = (I ∩ K)/aR, and (E/aR)/J(E/aR) is canonically iso-

morphic to the direct product E/I × E/K.

For any ring R, let U(R) denote the group of all invertible elements of R. If

R/aR and R/bR are cyclically presented modules over a local ring R, we say that

R/aR and R/bR have the same lower part , and write [R/aR]l = [R/bR]l, if there

exist u, v ∈ U(R) and r, s ∈ R with au = rb and bv = sa. (It is possible to prove

that two cyclically presented modules over a local ring have the same lower part if

and only if their Auslander-Bridger transposes have the same epigeny class.)

Theorem 4.7. (Weak Krull-Schmidt Theorem for Cyclically Presented Modules)

Let a1, . . . , an, b1, . . . , bt be n + t non-invertible elements of a local ring R. Then

the direct sums R/a1R ⊕ · · · ⊕ R/anR and R/b1R ⊕ · · · ⊕ R/btR are isomorphic

right R-modules if and only if n = t and there exist two permutations σ, τ of

{1, 2, . . . , n} such that [R/aiR]l = [R/bσ(i)R]l and [R/aiR]e = [R/bτ(i)R]e for every

i = 1, 2, . . . , n.

The Weak Krull-Schmidt Theorem for cyclically presented modules has an im-

mediate consequence as far as equivalence of matrices is concerned. Recall that two

m×n matrices A and B with entries in a ring R are said to be equivalent matrices,

denoted A ∼ B, if there exist an m×m invertible matrix P and an n×n invertible

matrix Q with entries in R (that is, matrices invertible in the rings Mm(R) and

Mn(R), respectively) such that B = PAQ. We denote by diag(a1, . . . , an) the n×n
diagonal matrix whose (i, i) entry is ai and whose other entries are zero.

Remark 4.8. If R is a commutative local ring and a1, . . . , an, b1, . . . , bn are el-

ements of R, then diag(a1, . . . , an) ∼ diag(b1, . . . , bn) if and only if there ex-

ists a permutation σ of {1, 2, . . . , n} with ai and bσ(i) associates for every i =

1, 2, . . . , n. Here a, b ∈ R are associates if they generate the same principal ideal

of R. Let’s prove this. Assume R commutative and local, and diag(a1, . . . , an) ∼
diag(b1, . . . , bn). Then R/a1R ⊕ · · · ⊕ R/anR ∼= R/b1R ⊕ · · · ⊕ R/btR. Now the

endomorphism ring of R/aiR is the ring R/aiR, because R is commutative, and

therefore the endomorphism ring of each R/aiR is local, because R is local. Simi-

larly for the modules R/bjR. Hence the Krull-Schmidt-Remak-Azumaya Theorem
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implies that there exists a permutation σ of {1, 2, . . . , n} with R/aiR ∼= R/bσ(i)R

for every i = 1, 2, . . . , n. Taking the annihilators of these isomorphic cyclic mod-

ules, we find that aiR = bσ(i)R for every i = 1, 2, . . . , n. Hence ai and bσ(i) are

associates.

If the ring R is local, but not-necessarily commutative, we have the following

result.

Proposition 4.9. Let a1, . . . , an, b1, . . . , bn be elements of a local ring R. Then

diag(a1, . . . , an) ∼ diag(b1, . . . , bn) if and only if there exist two permutations σ, τ

of {1, 2, . . . , n} with

[R/aiR]l = [R/bσ(i)R]l and [R/aiR]e = [R/bτ(i)R]e

for every i = 1, 2, . . . , n.

As far as infinite direct sums are concerned, the case of cyclically presented

modules over local rings is much simpler than that of uniserial modules [3]. The

reason for this is that cyclically presented modules are finitely generated, hence

small, so the pathology of non-quasismall modules can not appear in this setting.

Thus we have seen that, similarly to the endomorphism ring of a uniserial module

over an arbitrary ring, the endomorphism ring of a cyclically presented module over

a local ring also has at most two maximal right ideals (Theorem 4.6). By this fact,

it is not surprising that there is an analogy between the behaviour of a direct sum of

uniserial modules over arbitrary rings and the behaviour of a direct sum of cyclically

presented modules over local rings. Therefore it makes sense to try to see which

further parts of the theory of uniserial modules also hold for cyclically presented

modules over local rings. Here are some very natural questions.

(1) Does the weak Krull-Schmidt Theorem hold for a direct sum of infinitely

many cyclically presented modules over local rings?

(2) Is every direct summand of a direct sum of cyclically presented modules

over a local ring a direct sum of cyclically presented modules?

(3) Is every direct summand of a direct sum of finitely many cyclically presented

modules over a local ring a direct sum of cyclically presented modules?

The answer to the first question was given in [3, Theorem 3.1]. The answer to

the second question is negative. To this end, there is an example given by Puninski

in [31, Proposition 8.1]. For the third question, there exist countably generated

indecomposable relatively divisible projective modules over local rings that are

not direct sums of cyclically presented modules, and relatively divisible projective



UNIQUENESS OF DECOMPOSITION, FACTORISATIONS 117

modules over local rings that are not direct sums of indecomposable modules. But,

according to [36, Corollary 2], every relatively divisible projective module over a

commutative local ring is a direct sum of cyclically presented modules.

Let us pass to consider another class of modules. For a right module AR over a

ring R, let E(AR) denote the injective envelope of AR. We say that two modules

AR and BR have the same upper part, and write [AR]u = [BR]u, if there exist a

homomorphism ϕ : E(AR) → E(BR) and a homomorphism ψ : E(BR) → E(AR)

such that ϕ−1(BR) = AR and ψ−1(AR) = BR.

Now we need a very standard technique of homological algebra that allows to

extend a morphism between two modules to their injective resolutions. Let us

present it. Assume that E0, E1, E
′
0, E

′
1 are indecomposable injective right modules

over a ring R, and that ϕ : E0 → E1, ϕ
′ : E′0 → E′1 are two right R-module mor-

phisms. A morphism f : kerϕ→ kerϕ′ extends to a morphism f0 : E0 → E′0. Now

f0 induces a morphism f̃0 : E0/ kerϕ → E′0/ kerϕ′, which extends to a morphism

f1 : E1 → E′1. Thus we get a commutative diagram with exact rows

0 // kerϕ //

f

��

E0

ϕ ////

f0

��

E1

f1

��
0 // kerϕ′ // E′0

ϕ′
// E′1.

(1)

The morphisms f0 and f1 are not uniquely determined by f .

Theorem 4.10. Let E0 and E1 be indecomposable injective right modules over

a ring R, and let ϕ : E0 → E1 be a non-zero non-injective morphism. Let S :=

EndR(kerϕ) denote the endomorphism ring of kerϕ. Set I := { f ∈ S | the endo-

morphism f of kerϕ is not a monomorphism } and K := { f ∈ S | the endomor-

phism f1 of E1 is not a monomorphism } = { f ∈ S | kerϕ ⊂ f−1
0 (kerϕ) }. Then I

and K are two two-sided completely prime ideals of S, and every proper right ideal

of S and every proper left ideal of S is contained either in I or in K. Moreover,

exactly one of the following two conditions holds:

(a) Either I and K are comparable (that is, I ⊆ K or K ⊆ I), in which case

S is a local ring with maximal ideal I ∪K, or

(b) I and K are not comparable, and in this case S/I and S/K are division

rings and S/J(S) ∼= S/I × S/K.

The endomorphism ring of the kernel of a morphism between indecomposable

injective modules has the same structure as the endomorphism ring of a uniserial
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module or a cyclically presented module over a local ring. More precisely, the endo-

morphism ring of the kernel of a morphism between two indecomposable injective

modules is either local or has two maximal ideals, the kernel is determined up to

isomorphism by its monogeny class and its upper part, and a weak form of the

Krull-Schmidt Theorem also holds for direct sums of these kernels, as the following

theorem shows.

Theorem 4.11. (Weak Krull-Schmidt Theorem for kernels of morphisms between

indecomposable injective modules, [19, Theorem 2.7] and [14]) Let ϕi : Ei,0 →
Ei,1 (i = 1, 2, . . . , n) and ϕ′j : E′j,0 → E′j,1 (j = 1, 2, . . . , t) be n + t non-injective

morphisms between indecomposable injective right modules Ei,0, Ei,1, E
′
j,0, E

′
j,1 over

an arbitrary ring R. Then the direct sums ⊕ni=0 kerϕi and ⊕tj=0 kerϕ′j are iso-

morphic R-modules if and only if n = t and there exist two permutations σ, τ of

{1, 2, . . . , n} such that [kerϕi]m = [kerϕ′σ(i)]m and [kerϕi]u = [kerϕ′τ(i)]u for every

i = 1, 2, . . . , n.

There are also some other classes of modules that satisfy the Weak Krull-Schmidt

Theorem. One is the class of couniformly presented modules [20]. It generalizes the

class of cyclically presented modules over a local ring. An R-module M is said to

be couniform if it has dual Goldie dimension 1, that is, it is nonzero and the sum

of any two proper submodules of MR is a proper submodule of MR. An R-module

M is couniformly presented if it is non-zero and there exists an exact sequence

0→ CR → PR →MR → 0 (2)

with both CR and PR couniform and PR projective. Under these hypotheses, the

exact sequence (2) is called a couniform presentation of the couniformly presented

module MR.

Theorem 4.12. (Weak Krull-Schmidt Theorem for couniformly presented mod-

ules [20]) Let M1, . . . , Mn, N1, . . . , Nt be n + t couniformly presented right R-

modules. Then the direct sums M1 ⊕ · · · ⊕ Mn and N1 ⊕ · · · ⊕ Nt are isomor-

phic R-modules if and only if n = t and there exist two permutations σ and τ of

{1, 2, . . . , n} such that [Mi]l = [Nσ(i)]l and [Mi]e = [Nτ(i)]e for every i = 1, 2, . . . , n.

A similar behaviour, as far as direct-sum decompositions are concerned, takes

place for the short exact sequences

0→ AR → BR → CR → 0, (3)

with AR and CR uniserial modules. The endomorphism ring of such a sequence in

the category of all short exact sequences has at most four maximal ideals, and
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the isomorphism types of these sequences (3) are described by four invariants

[B]m,l, [B]e,l, [B]m,u, [B]e,u [10,11].

We conclude this section by describing one of the general patterns that allow

to treat all the previous examples at the same time. Let C be a full subcategory

of the category Mod-R for some ring R and assume that every object of C is an

indecomposable right R-module. Define a completely prime ideal P of C as an

assignment of a subgroup P(A,B) of the additive abelian group HomR(A,B) to

every pair (A,B) of objects of C, with the following two properties: (1) for every

A,B,C ∈ Ob(C), every f : A→ B and every g : B → C, one has that gf ∈ P(A,C)

if and only if either f ∈ P(A,B) or g ∈ P(B,C); (2) P(A,A) is a proper subgroup

of HomR(A,A) for every object A ∈ Ob(C). Let P be a completely prime ideal

of C. If A,B are objects of C, we say that A and B have the same P class, and

write [A]P = [B]P , if P(A,B) 6= HomR(A,B) and P(B,A) 6= HomR(B,A).

Theorem 4.13. [22] Let C be a full subcategory of Mod-R and P,Q be two com-

pletely prime ideals of C. Assume that all objects of C are indecomposable right

R-modules and that, for every A ∈ Ob(C), f : A → A is an automorphism of A if

and only if f /∈ P(A,A)∪Q(A,A). Then, for every A1, . . . , An, B1, . . . , Bt ∈ Ob(C),
the modules A1 ⊕ · · · ⊕ An and B1 ⊕ · · · ⊕ Bt are isomorphic if and only if n = t

and there exist two permutations σ, τ of {1, 2, . . . , n} such that [Ai]P = [Bσ(i)]P

and [Ai]Q = [Bτ(i)]Q for all i = 1, . . . , n.

A further remark: for the classes C of modules described so far, the fact that the

weak form of the Krull-Schmidt Theorem holds can be described by saying that the

corresponding monoid V (C) is a subdirect product of two free monoids.

5. Direct products of modules whose endomorphism rings have at most

two maximal ideals

In the previous section, we have seen that the Weak Krull-Schmidt Theorem

holds not only for uniserial modules, but also for cyclically presented modules over

a local ring R, for kernels of morphisms between indecomposable injective modules,

for couniformly presented modules, and more generally, for a number of classes of

modules with at most two maximal right ideals. In this section, we will see that

a similar result can hold not only for direct sums, but also for direct products of

modules.

In order to present the main result in the most general setting, that of modules

whose endomorphism rings have at most two maximal right ideals, we begin from

the Weak Krull-Schimidt Theorem for direct products of uniserial modules.
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Theorem 5.1. [1] Let {Ui | i ∈ I } and {Vj | j ∈ J } be two families of uniserial

modules over an arbitrary ring R. Assume that there exist two bijections σ, τ : I → J

such that [Ui]m = [Vσ(i)]m and [Ui]e = [Vτ(i)]e for every i ∈ I. Then
∏
i∈I Ui

∼=∏
j∈J Vj.

A full subcategory C of Mod-R is said to satisfy Condition (DSP) (direct sum-

mand property) if whenever A, B, C, D are right R-modules with A⊕B ∼= C ⊕D
and A, B, C ∈ Ob(C), then also D ∈ Ob(C).

Theorem 5.2. [1] Let C be a full subcategory of Mod-R in which all objects are

indecomposable right R-modules and let P,Q be two completely prime ideals of C
with the property that, for every A ∈ Ob(C), f : A → A is an automorphism if

and only if f /∈ P(A,A) ∪ Q(A,A). Assume that C satisfies Condition (DSP). Let

{Ai | i ∈ I } and {Bj | j ∈ J } be two families of objects of C. Suppose that there

exist two bijections σ, τ : I → J such that [Ai]P = [Bσ(i)]P and [Ai]Q = [Bτ(i)]Q for

every i ∈ I. Then the R-modules
∏
i∈I Ai and

∏
j∈J Bj are isomorphic.

6. The category of G-groups

We can also find the same behaviour in other algebraic structures, not only in

modules. We can find it, for instance, in groups, Lie algebras, G-groups, and so on.

We begin with G-groups. The category of G-groups shows a behaviour that is a

very pleasant combination of the behaviour of groups and that of left modules over

a ring.

Let G be a group. A (left) G-group is a pair (H,ϕ), where H is a group and

ϕ : G→ Aut(H) is a group homomorphism. Equivalently, a G-group is a group H

endowed with a mapping · : G×H → H, (g, h) 7→ gh, called left scalar multiplica-

tion, such that

(a) g(hh′) = (gh)(gh′)

(b) (gg′)h = g(g′h)

(c) 1Gh = h

for every g, g′ ∈ G and every h, h′ ∈ H.

The notion of a G-group is classical. Sometimes G is called an operator group

on H [35, Definition 8.1].

As an example of a G-group, let αg : G → G, αg : h 7→ ghg−1, be the inner

automorphism of G determined by g, for every g ∈ G. Then there is a canonical

group morphism α : G → Aut(G), g 7→ αg, which makes G a G-group. It is called

the regular G-group, exactly how the left R-module RR is called the regular left

R-module.
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The category G-Grp of G-groups has as objects all pairs (H,ϕ), where H is

any group and ϕ : G→ Aut(H) is a group homomorphism. The morphisms in the

category G-Grp are the group morphisms f : H → H ′ such that f(gh) = gf(h) for

every g ∈ G, h ∈ H. The category G-Grp is a semiabelian category, in which the

abelian objects are the objects (H,ϕ) with H an abelian group. We will see at the

end of this section that the category G-Grp provides the proper setting to study

direct product decompositions of a group G as a direct product of finitely many

indecomposable groups.

Remark 6.1. Instead of considering left G-groups, one can study right G-groups. A

right G-group is defined as a pair (H,ϕ′), where H is a group and ϕ′ : G→ Aut(H)

is a group antihomomorphism. Equivalently, a right G-group is a group H endowed

with a mapping · : H ×G→ H, (h, g) 7→ hg, called right scalar multiplication, such

that (a) becomes (hh′)g = (hg)(h′g), and so on. We can thus construct the category

of Grp-G of all right G-groups. But if Gop denotes the opposite group of the group

G, that is, the set G with multiplication (x, y) 7→ yx, then G is isomorphic to Gop via

the isomorphism G→ Gop, g 7→ g−1. Now it is easily seen that the category G-Grp

of left G-groups is isomorphic to the category Grp-Gop of right Gop-groups, and that

Grp-G is isomorphic to Gop-Grp. But from the group isomorphism G→ Gop, we

also have that the categories G-Grp and Grp-G are isomorphic. So there is no need

to introduce both left G-groups and right G-groups, because they form isomorphic

categories, and therefore corresponding objects in this category isomorphism are

indistinguishable from an algebraic point of view.

Notice the strict analogy between the categories R-Mod and G-Grp. Objects of

R-Mod are all pairs (H,ϕ), where H is any abelian group and ϕ : R→ End(H) is a

ring homomorphism. As we have already said, the regular G-group (G,α) plays, in

the category G-Grp, a role pretty much similar to the role of the regular module

RR in the category R-Mod.

The automorphisms in G-Grp of the regular object G are exactly the central

automorphisms of G, that is, the automorphisms of G that belong to the kernel of

the canonical mapping Aut(G)→ Aut(G/ζ(G)). Thus the automorphisms of G in

G-Grp are exactly the automorphisms of the group G of the form 1 + ϕ for some

endomorphism ϕ of G with ϕ(G) ⊆ ζ(G). Here the sum of two endomorphisms

ϕ,ψ of a group G is defined by (ϕ + ψ)(g) = ϕ(g)ψ(g). The sum ϕ + ψ is an

endomorphism of G only when [ϕ(G), ψ(G)] = 1. It is easy to see that if ϕ is a group

endomorphism of G with ϕ(G) ⊆ ζ(G), then 1 +ϕ is an automorphism of G if and

only if the restriction of 1+ϕ to ζ(G) is an automorphism of the abelian group ζ(G).
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The central automorphism ϕ in the statement of Theorem 2.2, whose existence was

proved by Remak, corresponds exactly to the fact that Remark, in the study of

direct-product decompositions of a group G, was studying the decompositions of

the regular object G in the category G-Grp and not the decompositions of the

group G in the category Grp. Of course, he didn’t know what a category is.

An interesting role in this setting is played by the full subcategory CG of G-

Grp consisting of all the objects (H,ϕ) of G-Grp for which the image of the

group homomorphism ϕ : G → Aut(H) contains the group Inn(H) of all inner

automorphisms of H [18].

Another setting in which the Weak Krull-Schmidt Theorem holds in Group The-

ory is in the study of abelian normal subgroups of a group G [5]. If G is an ar-

bitrary group and H is an abelian normal subgroup of G, then the conjugation

α : G → Aut(G) induces an action α : G → Aut(H) because H is normal in G.

If Z[G] is the group algebra of G with integer coefficients, then the conjugation

α : G→ Aut(H) extends to a ring morphism Z[G]→ End(H), so that H turns out

to be a left module over the ring Z[G]. Hence Theorem 4.2 can be applied to this

left module whenever H is a direct sum of uniserial left Z[G]-modules.

7. Factorisation

Everything we’ve seen until now corresponds, in a broad sense, to study factori-

sations of elements in suitable monoids, for instance in the commutative monoid

V (R). Let’s see how what we have learned about direct-sum decompositions (direct-

product decompositions) also holds for factorisations in other classes of monoids.

For instance, it can be applied to factorisations of elements in a commutative do-

main R, because clearly factorisations of elements in an integral domain R are

exactly factorisations in the multiplicative monoid of R. We all know that a unique

factorisation domain (UFD) is a commutative integral domain R such that:

(i) R is atomic, that is, every element a ∈ R, a 6= 0 and a non-invertible, is a

product of finitely many irreducible elements of R.

(ii) If p1, . . . , pn, q1, . . . , qm are irreducible elements of R and p1 . . . pn = q1 . . . qm,

then n = m and there exists a permutation σ of {1, 2, . . . , n} such that pi and qσ(i)

are associates for every i = 1, 2, . . . , n.

Thus an integral domain R is a unique factorisation domain if and only if the

multiplicative monoid R \ {0} is isomorphic to the direct product of the abelian

group U(R) and a free commutative monoid F .
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Notice that, according to a very nice result by J. Coykendall and W. W. Smith

[12]:

Theorem 7.1. A commutative integral domain R is a UFD if and only if

(i) R is atomic.

(ii) If n ≥ 2 and p1, . . . , pn, q1, . . . , qn are irreducible elements of R and p1 . . . pn =

q1 . . . qn, then there exists a permutation σ of {1, 2, . . . , n} such that pi and qσ(i)

are associates for every i = 1, 2, . . . , n.

In an integral domain R, every prime element is irreducible. If R is a UFD,

the converse holds. More precisely, an integral domain R is a UFD if and only if

every irreducible is prime and R satisfies the ascending chain condition on principal

ideals, if and only if R is atomic and every irreducible is prime.

Proposition 7.2. The following conditions are equivalent for two prime elements

a, b of a commutative integral domain R:

(i) a = bu for some invertible element u ∈ R.

(ii) aR = bR.

(iii) R/aR ∼= R/bR.

(iv) [R/aR]m = [R/bR]m.

(v) [R/aR]e = [R/bR]e.

(vi) [R/aR]l = [R/bR]l.

Let’s pass to consider, now, factorisation of polynomials into irreducible polyno-

mials.

The case of commutative polynomials in commuting indeterminates is well

known: the ring Z[x1, . . . , xn] of all polynomials whose coefficients are in the ring

of integers Z and with x1, . . . , xn commuting indeterminates is a UFD.

Let’s see how the situation changes when we pass to the ring Z〈x1, . . . , xn〉, the

free ring on n objects. The elements of Z〈x1, . . . , xn〉 are non-commutative poly-

nomials with coefficients in Z and with x1, . . . , xn non-commuting indeterminates.

The ring Z〈x1, . . . , xn〉 is atomic, in the sense that polynomials do factorise as a

product of irreducible polynomials. The invertible elements in Z〈x1, . . . , xn〉 are

only 1 and −1. But the factorisation x(yx − 2) = (xy − 2)x in the ring Z〈x, y〉
shows that a polynomial in Z〈x1, . . . , xn〉 does not necessarily factorise as a prod-

uct of irreducible polynomials in a unique way up to the sign of the irreducible

factors. Nevertheless the following theorem holds:

Theorem 7.3. (Brungs’ Theorem [9]) Every polynomial in R := Z〈x1, . . . , xn〉
factorises as a product of irreducible polynomials. Moreover, if p1, . . . , pn, q1, . . . , qm
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are irreducible polynomials in R and p1 . . . pn = q1 . . . qm, then n = m and there

exists a permutation σ of {1, 2, . . . , n} such that [R/piR]m = [R/qσ(i)R]m.

For instance, consider the factorisation x(yx − 2) = (xy − 2)x in the ring

R = Z〈x, y〉. We have that [R/(xy − 2)R]m = [R/(yx− 2)R]m, because left multi-

plications

λy : R/(xy − 2)R→ R/(yx− 2)R and λx : R/(yx− 2)R→ R/(xy − 2)R

are right R-module monomorphisms.

Let’s pass to consider another interesting type of polynomials, those in the mul-

tiplicative monoid N0[x], consisting of all polynomials in Z[x] whose integer coeffi-

cients are all ≥ 0.

The multiplicative monoid N0[x] is not a ring, it is a commutative semiring. The

multiplicative monoid N0[x] \ {0} is atomic, in the sense that all its elements are

finite products of atoms, that is, polynomials irreducible in N0[x]\{0}. The unique

invertible element in N0[x] is 1. The next example shows that a polynomial in N0[x]

does not necessarily factorise as a product of irreducible polynomials in a unique

way up to the order of the factors:

Example 7.4. From the theory of cyclotomic polynomials, we know that the fac-

torisation of xn − 1 in the UFD Q[x] is xn − 1 =
∏
d|n Φd(x), where Φd(x) is the

d-th cyclotomic polynomial. Here

Φ1(x) = x − 1, Φ2(x) = x + 1, Φ3(x) = x2 + x + 1, Φ4(x) = x2 + 1, Φ5(x) =

x4 + x3 + x2 + x+ 1, Φ6(x) = x2− x+ 1. Thus x6− 1 = Φ1(x)Φ2(x)Φ3(x)Φ6(x) =

(x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1), so we have the factorisation

x5 + x4 + x3 + x2 + x+ 1 = (x+ 1)(x2 + x+ 1)(x2 − x+ 1) (4)

into irreducibles in Q[x]. Multiplying the first factor and the last one in the fac-

torisation (4), we get that (x+ 1)(x2−x+ 1) = x3 + 1 ∈ N0[x] and, multiplying the

last two factors, we get that (x2 + x+ 1)(x2 − x+ 1) = x4 + x2 + 1 ∈ N0[x]. Thus

we get two essentially different factorisations

(x3 + 1)(x2 + x+ 1) = (x+ 1)(x4 + x2 + 1) (5)

of x5 + x4 + x3 + x2 + x+ 1 into irreducibles of N0[x].

Thus factorisations into irreducibles in N0[x] are not unique (but every polyno-

mial in N0[x] has only finitely many distinct factorisations into irreducibles).



UNIQUENESS OF DECOMPOSITION, FACTORISATIONS 125

Example 7.4 can be applied to show that Krull-Schmidt fails in other categories.

For instance, consider the category of finite partially ordered sets. This category

has coproducts (disjoint unions), products (direct products with the component-

wise order) and a terminal object 1 (the partially ordered set with one element),

which is the identity with respect to product. Let L = {0, 1} denote the partially

ordered set with two elements 0 < 1. Then, for every n ≥ 0, the direct product Ln

is a connected partially ordered set with 2n elements, and its automorphism group

is the symmetric group Sn. If we compute the identity (5), which is an identity in

the semiring N0[x], replacing x with L (and the natural number 1 with the partially

ordered set 1), we get two essentially different direct-product decompositions of the

partially ordered set 1∪̇L∪̇L2∪̇L3∪̇L4∪̇L5 into indecomposable partially ordered

sets, that is, we get that

(L3∪̇1)× (L2∪̇L∪̇1) ∼= (L∪̇1)× (L4∪̇L2∪̇1).

This example, due to Nakayama and Hashimoto [24,28], shows that Krull-Schmidt

fails in the category of finite partially ordered sets.

The possibility of applying the identity (4) in N0[x] to get an isomorphism in the

category of finite partially ordered sets is due to the fact that distributivity holds

for partially ordered sets: X × (Y ∪̇Z) ∼= (X × Y )∪̇(X × Z). More generally, recall

that a category C with finite products (−)× (−) and coproducts (−) + (−) is called

(finitary) distributive if, for any objects X,Y, Z of C, the canonical morphism

X × Y +X × Z → X × (Y + Z)

is an isomorphism. It is now easily seen that Nakayama and Hashimoto’s technique

can be applied to any distributive category.
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[18] A. Facchini and M. Altun-Özarslan, The Krull-Schmidt-Remak-Azumaya The-

orem for G-groups, to appear in the proceedings of the Conference “Noncom-

mutative rings and their applications, V”, Lens 12-15 June 2017, Contemp.

Math., 2018.
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