UNITS OF THE GROUP ALGEBRA OF THE GROUP $C_n \times D_6$
OVER ANY FINITE FIELD OF CHARACTERISTIC 3

Joe Gildea and Rhian Taylor

Received: 27 October 2017; Revised: 17 January 2018; Accepted: 23 January 2018
Communicated by Burcu Üngör

Dedicated to the memory of Professor John Clark

Abstract. In this paper, we establish the structure of the unit group of the group algebra $F_3(C_n \times D_6)$ for $n \geq 1$.

Mathematics Subject Classification (2010): 20C05, 16S34

Keywords: Group ring, group algebra, unit group, dihedral group, cyclic group

1. Introduction

Let KG denote the group algebra of the group G over the field K. Let $U(KG)$ be the set of invertible elements of KG. The homomorphism $\varepsilon : KG \rightarrow K$ given by $\varepsilon \left(\sum_{g \in G} a_g g \right) = \sum_{g \in G} a_g$ is called the augmentation mapping of KG. It is a well known fact that $U(KG) \cong U(K) \times V(KG)$ where $V(KG) = \{ u \in U(KG) | \varepsilon(u) = 1 \}$.

Let G be a finite p-group and K a field of characteristic p, it is well known that $|V(KG)| = |K|^{|G|^{-1}}$. Sandling in [8], provides a basis for $V(F_pG)$ where G is an abelian p-group and F_p is the Galois field of p elements. In [10], it is shown that $Z(V_1)$ and $V_1/Z(V_1)$ are elementary abelian 3-groups where $V_1 = 1 + J(F_3D_6)$, $J(F_3D_6)$ is the Jacobson radical of F_3D_6 and $Z(V_1)$ is the center of V_1. The structure of $U(F_3D_6)$ was determined in terms of split extensions of elementary abelian groups in [4]. The structure of FA_4 and FS_4 were established in [7,9] where F is any finite field, A_4 is the alternating group of degree 4 and S_4 is the symmetric group of degree 4. Additionally, the structure of $U(F_3(C_3 \times D_6))$ and $U(F_3D_{12})$ was established in [5,6] respectively. Consult [1] for an overview of modular group algebras.
The map $*: KG \rightarrow KG$ defined by $(\sum_{g \in G} a_g) * = \sum_{g \in G} a_g g^{-1}$ is an antimorphism of KG of order 2. An element v of $V(KG)$ satisfying $v^{-1} = v^*$ is called unitary. We denote by $V_u(KG)$ the subgroup of $V(KG)$ formed by the unitary elements of KG. In [3] a basis for $V_u(KG)$ is constructed for any field of characteristic $p > 2$ and any finite abelian p-group. Additionally the order of $V_u(F_{2^k}G)$ is determined for special cases of G in [2]. Let $\hat{g} = \sum_{h \in (g)} h \in RG$. Our main results are:

Theorem 1.1.

$$\mathcal{U}(F_{3^l}(C_n \times D_6)) \cong (C_3^{3n+1} \times C_3^{2n+1}) \times \mathcal{U}(F_{3^l}(C_n \times C_2)).$$

Corollary 1.2.

$$\mathcal{U}(F_{3^l}(C_n \times D_6)) \cong \begin{cases} (C_3^{3n+1} \times C_3^{2n+1}) \times (C_3^{2} \times C_3^{3}\times \cdots \times C_3^{3m}(V) \times C_3^2) & \text{if } n \mid (3^l - 1) \\ (C_3^{3n+1} \times C_3^{2n+1}) \times (C_3^{2} \times C_3^{3}\times \cdots \times C_3^{3m+1}(V) \times C_3^2) & \text{if } n = 3^m \end{cases}$$

where $f_i(V) = t((|C_{3m}^{3^{i-1}}| - 2|C_{3m}^{3^i}| + |C_{3m}^{3^i+1}|)$.

2. The structure of $\mathcal{U}(F_{3^l}(C_n \times D_6))$

Let $G = C_n \times D_6 = \langle x, y, z \mid x^3 = y^2 = z^n = 1, xy = x^{-1}, xz = zx, yz = zy \rangle$ where $n \geq 1$. The natural group homomorphism $G \rightarrow G/\langle x \rangle$ extends linearly to the algebra homomorphism $\theta : F_{3^l}(C_n \times D_6) \rightarrow F_{3^l}(C_n \times C_2)$ where

$$\sum_{i=1}^{3} x^{i-1}(\alpha_i + \alpha_{i+3}z + \cdots + \alpha_{i+3n}z^{n-1} + \alpha_{i+3n+3}y + \alpha_{i+3n+6}yz + \cdots + \alpha_{i+6n}yz^{n-1}) \mapsto$$

$$\sum_{i=1}^{3} (\alpha_i + \alpha_{i+3}b + \cdots + \alpha_{i+3n}b^{n-1} + \alpha_{i+3n+3}a + \alpha_{i+3n+6}ab + \cdots + \alpha_{i+6n}ab^{n-1})$$

and $C_n \times C_2 = \langle a, b \mid a^2 = b^n = 1, ab = ba \rangle$. If we restrict θ to $\mathcal{U}(F_{3^l}(C_n \times D_6))$, we can construct the group epimorphism $\theta' : \mathcal{U}(F_{3^l}(C_n \times D_6)) \rightarrow \mathcal{U}(F_{3^l}(C_n \times C_2))$. Consider the group homomorphism $\psi : \mathcal{U}(F_{3^l}(C_n \times C_2)) \rightarrow \mathcal{U}(F_{3^l}(C_n \times C_2))$ by

$$\gamma_1 + \gamma_2 + \cdots + \gamma_n b^{n-1} + \delta_1 a + \delta_2 ab + \cdots + \delta_n ab^{n-1} \mapsto$$

$$\gamma_1 + \gamma_2 z + \cdots + \gamma_n z^{n-1} + \delta_1 y + \delta_2 yz + \cdots + \delta_n yz^{n-1}$$

where $\gamma_i, \delta_j \in F_{3^l}$. Clearly $\theta' \circ \psi$ is the identity map of $\mathcal{U}(F_{3^l}(C_n \times C_2))$. Therefore $\mathcal{U}(F_{3^l}(C_n \times D_6))$ is a split extension of $\mathcal{U}(F_{3^l}(C_n \times C_2))$ by $ker(\theta')$ and $\mathcal{U}(F_{3^l}(C_n \times D_6)) \cong H \times \mathcal{U}(F_{3^l}(C_n \times C_2))$ where $H \cong ker(\theta')$. Now, $\theta : F_{3^l}(C_n \times D_6) \rightarrow F_{3^l}(C_n \times D_6)/(\langle x \rangle) \cong F_{3^l}(C_n \times D_6)/J(\langle x \rangle)$ where $J(\langle x \rangle)$ is the ideal of $F_{3^l}(C_n \times D_6)$ generated by all $x - 1$ where $x \in \langle x \rangle$. Additionally, $\theta' : \mathcal{U}(F_{3^l}(C_n \times D_6)) \rightarrow$
\[\mathcal{U}(\mathbb{F}_3((C_n \times D_6)/(x))) \cong \mathcal{U}(\mathbb{F}_3(C_n \times D_6))/1 + \mathcal{J}(\langle x \rangle). \]

As the characteristic of \(\mathbb{F}_3 \) is 3 and \(x \) is of order 3, \(\mathcal{J}(\langle x \rangle) \) is nilpotent of index 3. Therefore \(H \) has exponent 3.

Lemma 2.1. \(C_H(x) \cong C_3^{3nt} \) where \(C_H(x) = \{ h \in H \mid xh = hx \} \).

Proof. Let \(h = 1 + \sum_{j=1}^{n} \mathcal{A}_j + \sum_{k=1}^{n} \mathcal{B}_k y \in H \) where

\[
\mathcal{A}_j = \sum_{i=1}^{2} \alpha_{i+2(j-1)z}z^{-1}(x^i - 1) \quad \text{and} \quad \mathcal{B}_k = \sum_{i=1}^{2} \alpha_{i+2(k+n-1)x}x^{k-1}(x^i - 1)
\]

and \(\alpha_j \in \mathbb{F}_3 \). Now

\[
xh - hx = x \left(1 + \sum_{j=1}^{n} \mathcal{A}_j + \sum_{k=1}^{n} \mathcal{B}_k y \right) - \left(1 + \sum_{j=1}^{n} \mathcal{A}_j + \sum_{k=1}^{n} \mathcal{B}_k y \right) x
\]

\[
= x \left(\sum_{k=1}^{n} \mathcal{B}_k y \right) - \left(\sum_{k=1}^{n} \mathcal{B}_k y \right) x.
\]

Now,

\[
x \mathcal{B}_k y - \mathcal{B}_k y x = z^{k-1}[(\alpha_{2k+2n-1}(x^2 - x) + \alpha_{2k+2n}(1 - x)) - (\alpha_{2k+2n-1}(1 - x^2) + \alpha_{2k+2n}(x - x^2))]y
\]

\[
= 3 \hat{x} z^{k-1}(\alpha_{2k+2n} - \alpha_{2k+2n-1}).
\]

Therefore, every element of \(C_H(x) \) takes the form

\[
1 + \sum_{j=1}^{n} \mathcal{A}_j + \sum_{i=1}^{n} \alpha_{i+2n} \hat{x} y z^{l-1}
\]

where \(\mathcal{A}_j = \sum_{i=1}^{2} \alpha_{i+2(j-1)z}z^{-1}(x^i - 1) \) and \(\alpha_i \in \mathbb{F}_3 \). Clearly \((\hat{x})^2 = 3 \hat{x} = 0 \) and \(\hat{x} \mathcal{A}_j = \mathcal{A}_j \hat{x} \). Therefore \(C_H(x) \) is an abelian group of order \(3^{2nt} \cdot 3^{nt} = 3^{3nt} \). \(\square \)

Next, consider a subset \(S \) of \(H \) where the elements of \(S \) take the form:

\[
1 + \sum_{j=1}^{n} \mathcal{R}_j
\]

where \(\mathcal{R}_j = \sum_{i=1}^{2} i r_j x^i (1 + y) z^{j-1} \) and \(r_i \in \mathbb{F}_3 \).

Lemma 2.2. \(S \cong C_3^{nt} \).
Proof. Let $s_1 = 1 + \sum_{j=1}^{n} \mathcal{R}_j \in S$ and $s_2 = 1 + \sum_{j=1}^{n} \mathcal{X}_j \in S$ where

$$\mathcal{R}_j = \sum_{i=1}^{2} ir_j x^i(1 + y)z^{j-1}, \quad \mathcal{X}_j = \sum_{i=1}^{2} it_j x^i(1 + y)z^{j-1}$$

and $r_i, t_j \in \mathbb{F}_3$. Now

$$s_1 s_2 = \left(1 + \sum_{j=1}^{n} \mathcal{R}_j \right) \left(1 + \sum_{j=1}^{n} \mathcal{X}_j \right)$$

and

$$\mathcal{R}_j \mathcal{X}_k = \left(\sum_{i=1}^{2} ir_j x^i(1 + y)z^{j-1} \right) \left(\sum_{i=1}^{2} it_k x^i(1 + y)z^{k-1} \right)$$

$= (r_j x + r_j xy + 2r_j x^2 + 2r_j x^2 y)(t_k x + t_k xy + 2t_k x^2 + 2t_k x^2 y)z^{j+k-2}$

$= \sum_{i=1}^{3} (12 - 3i)r_j t_k x^{i-1}(1 + y)z^{j+k-2}$

$= 0.$

Clearly $s_1 s_2 \in S$ and S is abelian, therefore $S \cong C_3^{nt}$. \square

Theorem 2.3.

$$\mathcal{U}(\mathbb{F}_3(C_n \times D_6)) \cong (C_3^{nt} \times C_3^{nt}) \times \mathcal{U}(\mathbb{F}_3(C_n \times C_2)).$$

Proof. Let $c = 1 + \sum_{j=1}^{n} \mathfrak{A}_j + \sum_{l=1}^{n} \alpha_{l+2n} \hat{x}yz^{l-1} \in C_H(x)$ and $s = 1 + \sum_{j=1}^{n} \mathcal{R}_j \in S$

where $\mathfrak{A}_j = \sum_{i=1}^{2} \alpha_{i+2(j-1)} z^{j-1}(x^i - 1)$, $\mathcal{R}_j = \sum_{i=1}^{2} ir_j x^i(1 + y)z^{j-1}$ and $\alpha_i, r_j \in \mathbb{F}_3$.

Now

$$c^s = s^2 cs$$

$$= \left(1 + \sum_{j=1}^{n} \mathcal{R}_j \right) \left(1 + \sum_{j=1}^{n} \mathfrak{A}_j + \sum_{l=1}^{n} \alpha_{l+2n} \hat{x}yz^{l-1} \right) \left(1 + \sum_{j=1}^{n} \mathcal{R}_j \right)$$

$$= \left(1 + \sum_{j=1}^{n} \mathcal{R}_j \right) \left(1 + \sum_{j=1}^{n} \mathfrak{A}_j + \sum_{l=1}^{n} \alpha_{l+2n} \hat{x}yz^{l-1} \right) \left(1 + \sum_{j=1}^{n} \mathcal{R}_j \right).$$
Additionally, \(R_j^2 = 0 \) and \(xR_j = 3xR_j(1+y)z^{j-1} = 0 = R_jx \), therefore

\[
e^a = 1 + \sum_{j=1}^{n} R_j + \sum_{l=1}^{n} \alpha_{l+2n} \hat{x} y z^{l-1} + 2 \left(\sum_{j=1}^{n} R_j \right) \left(\sum_{j=1}^{n} \hat{A}_j \right) + \left(\sum_{j=1}^{n} \hat{A}_j \right) \left(\sum_{j=1}^{n} R_j \right).
\]

Now, \(R_j \hat{A}_k = r_j(\alpha_{2k} - \alpha_{2k-1}) \hat{x}(1-y)z^{j+k-2}, \hat{A}_k R_j = r_j(\alpha_{2k} - \alpha_{2k-1}) \hat{x}(1+y)z^{j+k-2} \) and

\[
2R_j \hat{A}_k + \hat{A}_k R_j = r_j(\alpha_{2k} - \alpha_{2k-1}) \hat{x}[2(1-y) + (1+y)]z^{j+k-2}
\]

\[
= r_j(\alpha_{2k-1} - \alpha_{2k}) \hat{x} y z^{j+k-2}.
\]

Additionally, \(R_j \hat{A}_k R_j = 0 \) since \(\hat{x} R_j = 0 \). Therefore \(e^a \in C_H(x) \) and consequently \(C_H(x) \) is a normal subgroup of \(H \). Note that \(|H| = 3^{4nt} \) and that \(C_H(x) \cap S = \{1\} \).

By the Second Isomorphism Theorem, \(H = C_H(x).S \). Thus, \(H \cong C_H(x) \times S \cong C_{3^{nt}} \times C_{3^t} \).

\[\square\]

Corollary 2.4.

\[
U(H^{3t} (C_n \times D_6)) \cong \begin{cases} (C_{3^t} \cong C_{3^t}) \times C_{3^t} \times \cdots \times C_{3^t} & \text{if } n|(3^t - 1) \\ (C_{3^t} \cong C_{3^t}) \times C_{3^t} \times \cdots \times C_{3^t} \times C_{3^t} \times C_{3^t-1} & \text{if } n = 3^m \end{cases}
\]

where \(f_i(V) = t((C_{3^m}^{3^{i-1}}) - 2|C_{3^m}^{3^i}| + |C_{3^m}^{3^{i+1}}|) \).

Proof. It is well known that \(F_{3^t}(C_2 \times C_n) \cong (F_{3^t}C_2)C_n \cong (F_{3^t} \oplus F_{3^t})C_n \cong F_{3^t}C_n \oplus F_{3^t}C_n \). It is well known that if \(n|(3^t - 1) \), then \(F_{3^t}C_n \cong \oplus_{i=1}^{n-1} F_{3^t} \). Therefore

\[
U(F_{3^t}(C_2 \times C_n)) \cong C_{3^t-1} \text{ when } n|(3^t - 1).
\]

When \(n = 3^m \), the number of cyclic groups \(f_i(V) \) of order \(3^i \) in the direct product of \(V(F_{3^t}G) \) is \(f_i(V) = t((C_{3^m}^{3^{i-1}}) - 2|C_{3^m}^{3^i}| + |C_{3^m}^{3^{i+1}}|) \) \((8) \).

\[\square\]

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

Joe Gildea (Corresponding Author) and **Rhian Taylor**

Department of Mathematics
Faculty of Science and Engineering
University of Chester
England
e-mails: j.gildea@chester.ac.uk (J. Gildea)
 rhian.taylor@chester.ac.uk (R. Taylor)