

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 26 (2019) 1-12 DOI: 10.24330/ieja.586838

SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP

A. Hamzeh and A. R. Ashrafi

Received: 4 May 2018; Accepted: 26 April 2019 Communicated by Abdullah Harmancı

ABSTRACT. Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x)|o(y) or o(y)|o(x). In an earlier paper, the main properties of this graph was obtained. The aim of this paper is to investigate the Hamiltonianity, Eulerianness and 2-connectedness of this graph.

Mathematics Subject Classification (2010): 05C25, 05C50 Keywords: Power graph, main supergraph, 2-connectivity, Hamiltonian

1. Introduction

Let G be a finite group and $x \in G$. The order of x is denoted by o(x) and the least common multiple of all element orders in G is the exponent of G which is denoted by Exp(G). If there is an element $a \in G$ such that o(a) = Exp(G), then G is called full exponent. The set of all element orders of G is denoted by $\pi_e(G)$ and the set of all prime factors of |G| is denoted by $\pi(G)$. Set $\Xi_i(G)$ to be the set of all elements of G of order i and $\Omega_i(G) = |\Xi_i(G)|$. Also $nse(G) = {\Omega_i(G)|i \in \pi_e(G)}$. An EPPO-group is a group that all elements have prime power order and an EPOgroup is a group with elements of prime order.

Throughout this paper graph means simple graph. Suppose Γ is such a graph. The number of vertices adjacent to x is the degree of x and is denoted by $deg_{\Gamma}(x)$. If the graph Γ can not be disconnected by removing less than k vertices, then Γ is called k-connected. It is clear that every Hamiltonian graph is 2-connected. A set of all vertices in Γ such that no two of which are adjacent is an independent set for Γ . The independent number of Γ , $\alpha(\Gamma)$, is the cardinality of an independent set with maximum size. A set S of vertices of a graph Γ is a vertex cover for Γ , if every edge of Γ has at least one vertex in S as an endpoint. The vertex cover

The second author was partially supported by the University of Kashan under grant number no 364988/444.

number, $\beta(\Gamma)$, is the size of a minimum vertex cover of graph. In the graph Γ with n vertices always we have $\alpha(\Gamma) + \beta(\Gamma) = n$.

The directed power graph of a group G is a graph with vertex set G and there is a directed edge connecting x to y if and only if y is a power of x. This directed graph was introduced in the seminal paper of Kelarev and Quinn in 1999 [13]. In the mentioned paper, the authors considered the directed power graph of groups and gave a complete description of the structure of this graph for a finite abelian group. The same authors [15], extended their results to all semigroups. We refer to [14,16], for some properties of the directed power graph of semigroups.

Suppose A is a simple graph and $\mathcal{G} = {\Gamma_a}_{a \in A}$ is a set of graphs labeled by vertices of A. Following Sabidussi [20, p. 396], the A-join of \mathcal{G} is the graph Δ with the following vertex and edge sets:

$$\begin{split} V(\Delta) &= \{(x,y) \mid x \in V(A) \ \& \ y \in V(\Gamma_x)\}, \\ E(\Delta) &= \{(x,y)(x',y') \mid xx' \in E(A) \ or \ else \ x = x' \ \& \ yy' \in E(\Gamma_x)\}. \end{split}$$

If A is an p-vertex labeled graph then the A-join of $\Delta_1, \Delta_2, \ldots, \Delta_p$ is denoted by $A[\Delta_1, \Delta_2, \ldots, \Delta_p]$.

The undirected power graph of a finite group G, $\mathcal{P}(G)$, was introduced by Chakrabarty et al. [4]. This graph has G as its vertex set and two vertices xand y are adjacent if and only if one is a power of the other. The main properties of this graph were investigated by Cameron [2] and Cameron and Ghosh [3]. Define the graph $\mathcal{S}(G)$ with vertex set G such that two vertices x and y are adjacent if and only if o(x)|o(y) or o(y)|o(x). This graph is called the main supergraph of $\mathcal{P}(G)$. Some basic properties of this graph are studied in [11]. In [9], the automorphism group of this graph computed in general and in [10] its eigenvalues and Laplacian eigenvalues were computed. Set $\pi_e(G) = \{a_1, \ldots, a_k\}$ and define the graph Δ_G with vertex set $\pi_e(G)$ and edge set $E(\Delta_G) = \{xy \mid x, y \in \pi_e(G), x|y \text{ or } y|x\}$. In [8,9], the authors proved that $\mathcal{S}(G) = \Delta_G[K_{\Omega_{a_1}(G)}, \ldots, K_{\Omega_{a_k}(G)}]$, where K_n denotes the complete graph on n vertices.

The proper power graph $\mathcal{P}^*(G)$ and its proper main supergraph $\mathcal{S}^*(G)$ are defined as graphs constructed from $\mathcal{P}(G)$ and $\mathcal{S}(G)$ by removing identity element of G, respectively.

Suppose G is a finite group, $X \subseteq G$ and $C \subseteq G - \{1\}$. Following Williams [25], the prime graph $\Lambda(G)$ is a simple graph that vertices are primes dividing the order of the group. Two vertices p and q are adjacent if and only if G contains an element of order pq. The commuting graph C(G, X) is a simple graph with vertex set X,

and two vertices $x, y \in X$ are adjacent, whenever xy = yx. In this paper, we will assume that $X = G - \{1\}$ and the corresponding commuting graph is denoted by $\Delta(G)$. The directed Cayley graph $\overrightarrow{X(G,C)}$ is a graph with vertex set G and edge set $\{(g,h)|g^{-1}h \in C \cup C^{-1}\}$. It is well-known that Cayley graphs are regular and vertex-transitive.

Suppose Γ_1 and Γ_2 are two graphs. The Cartesian product Γ_1 and Γ_2 , $\Gamma_1 \Box \Gamma_2$, is a graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ such that two vertices (a, b) and (x, y)are adjacent in $\Gamma_1 \Box \Gamma_2$ if a = x and $by \in E(H)$ or b = y and $ax \in E(G)$. The tensor product $\Gamma_1 \times \Gamma_2$ of graphs Γ_1 and Γ_2 is a graph with the same vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and two vertices (a, b) and (x, y) are adjacent in $\Gamma_1 \times \Gamma_2$ if and only if $by \in E(H)$ and $ax \in E(G)$.

Let Γ be a graph and $M \subseteq V(\Gamma)$. M is called a module if for any $x \notin M$, $M \subseteq N(x)$ or $M \cap N(x) = \emptyset$. The trivial modules are empty set, singletons and the whole set V. A graph in which all modules are trivial is said to be primitive. A strong module is a module M such that for any other module M', either $M \cap M' = \emptyset$ or $M \subseteq M'$ or $M' \subseteq M$. We now assume that M and M' two disjoint modules. If any vertex of M is adjacent to all vertices of M', then we say M and M' are adjacent, and if there is no an edge such that one of its end points is belong to Mand another in M' then we say M and M' are non-adjacent.

For a module M, if $M \subset S$ and there is no module M' such that $M \subset M' \subset S$, then the module M is maximal with respect to a set S of vertices. We shall assume S = V, if the set S is not specified. Let for $1 \leq i \leq k$, M_i be a module of graph Γ and $P = \{M_1, \ldots, M_k\}$ be a partition of the vertex set of a graph, then P is a modular partition of Γ . A non-trivial modular partition $P = \{M_1, \ldots, M_k\}$ which only contains maximal strong modules is a maximal modular partition. Notice that each graph has a unique maximal modular partition. Quotient graph whose vertices are modules belonging to the modular partition P of graph Γ is denoted by Γ/P . In this graph, two vertices of Γ/P are adjacent if and only if the corresponding modules are adjacent in Γ [7].

Theorem 1.1. (Modular Decomposition Theorem)[5,6] For any graph Γ , one of the following three conditions is satisfied:

- Γ is not connected.
- $\overline{\Gamma}$ is not connected.
- Γ and Γ are connected and the quotient graph Γ/P, with P the maximal modular partition of Γ, is a primitive graph.

Throughout this paper we refer to [19] for group theory concepts and for graph theoretical concepts and notations, we refer to [24]. For the sake of completeness, in what follows we mention the presentation of the dihedral group D_{2n} , the semidihedral group SD_{8n} , the dicyclic group T_{4n} and the group V_{8n} .

$$D_{2n} = \langle a, b \mid a^n = b^2 = e, \ bab = a^{-1} \rangle,$$

$$SD_{8n} = \langle a, b \mid a^{4n} = b^2 = e, \ bab = a^{2n-1} \rangle,$$

$$T_{4n} = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle,$$

$$V_{8n} = \langle a, b \mid a^{2n} = b^4 = e, \ aba = b^{-1}, \ ab^{-1}a = b \rangle$$

It is easy to see the dicyclic group T_{4n} has order 4n and the groups SD_{8n} and V_{8n} have order 8n.

2. Main results

A vertex in a graph Γ is said to be even, if its degree is an even integer. There is a condition for Eulerian of a graph Γ which states that Γ is Eulerian if and only if all of its degrees are even.

Theorem 2.1. Let G be a finite group. The graph S(G) is Eulerian if and only if G is an odd order group.

Proof. Suppose G is a group of order n. Then the degree of identity has to be n-1 and so n is odd. Conversely, suppose n is odd and $\pi_e(G) = \{a_1, \ldots, a_k\}$. Choose the non-identity vertex x in $\mathcal{S}(G)$ and assume that $o(x) = a_i$. Then

$$deg_{\mathcal{S}(G)}(x) = \Omega_{a_i}(G) + \sum_{a_i \mid a_j \neq e \text{ or } (a_j \mid a_i \& a_i \neq a_j)} \Omega_{a_j}(G).$$

If k_i , $1 \le i \le k$, denotes the number of cyclic subgroups of order a_i then $\Omega_{a_i}(G) = k\phi(a_i)$, that ϕ is the Euler's totient function. Since G has odd order, it does not have involutions and $\phi(m)$, $m \ge 3$, is even. Thus for each a_i , $a_i \in \pi_e(G)$, $\Omega_{a_i}(G)$ is even. Therefore, degree of every vertex in $\mathcal{S}(G)$ is even and $\mathcal{S}(G)$ is Eulerian. \Box

In the next theorem, the relationship between connectedness of $\mathcal{S}^*(G)$ and $\Lambda(G)$ is studied.

Theorem 2.2. ([11]) If the prime graph of a group G is disconnected then $\mathcal{S}^*(G)$ is disconnected. In particular, $\mathcal{S}(G)$ is not Hamiltonian.

Theorem 2.3. Let G be a finite group. If Δ_G is Hamiltonian then $\mathcal{S}(G)$ will be Hamiltonian.

Proof. Suppose Δ_G is Hamiltonian and $T : e \sim a_1 \sim \ldots \sim a_k \sim e$ is a Hamiltonian cycle in Δ_G . Set $\Xi(G) = \{x_{i1}, x_{i2}, \ldots, x_{i\Omega_{a_i}(G)}\}$. We construct a Hamiltonian cycle T' in $\mathcal{S}(G)$ as follows:

$$T': \qquad e \sim x_{11} \sim \ldots \sim x_{1\Omega_{a_1}(G)} \sim x_{21} \sim \ldots \sim x_{2\Omega_{a_2}(G)} \sim \ldots \sim x_{k1} \sim \ldots \sim x_{k\Omega_{a_k}(G)} \sim e,$$

and so $\mathcal{S}(G)$ is Hamiltonian, as desired.

Corollary 2.4. The main supergraph of the power graph of the following simple groups are not Hamiltonian:

²F₄(q), where q = 2^{2m+1} and m ≥ 1;
 ²G₂(q), where q = 3^{2m+1} and m ≥ 0;
 A₁(q), A₂(q), B₂(q), C₂(q) and S₄(q), where q is an odd prime power;
 F₄(2^m), m ≥ 1 and U₃(q), where q is a prime power.

Proof. Apply Theorems 2.34 and 2.35 from [11].

It is easy to see that the main supergraph of the power graph of the cyclic group of order p, p is prime, is Hamiltonian. This simple result and Corollary 2.4 suggest the following conjecture:

Conjecture 2.5. The main supergraph of the power graph of a non-abelian finite simple group is not Hamiltonian.

Theorem 2.6. If G is full exponent then $\mathcal{S}(G)$ is 2-connected.

Proof. Suppose x is an element of order Exp(G). Then e and x are adjacent to all elements of the group. This proves that $\mathcal{S}(G)$ is 2-connected.

Theorem 2.7. If G is an abelian group, then $\mathcal{S}(G)$ is 2-connected.

Proof. To prove the theorem, it is enough to show that $\mathcal{S}^*(G)$ is connected. Choose non-identity elements $x, y \in \mathcal{S}^*(G)$. Since G is abelian, xy = yx. If x and y are adjacent in $\mathcal{S}(G)$, then are adjacent in $\mathcal{S}^*(G)$ too. This implies that $o(x) \nmid o(y)$ and $o(y) \nmid o(x)$. Our main proof will consider the following two cases:

- (1) o(x) and o(y) are coprime. Since o(xy) = o(x)o(y), o(x) | o(xy) and o(y) | o(xy). Thus x ~ xy ~ y is a path in S*(G) and so x, y are vertices of a connected component of S*(G).
- (2) $n = (o(x), o(y)) \neq 1$. Without loss of generality, we can assume that o(x) > o(y). Since $o(x) \equiv n \pmod{o(y)}$, $y^n = (xy)^{o(x)}$. On the other hand,

 $x^{o(y)} = (xy)^{o(y)}$ and so $y \sim y^n \sim (xy)^{o(x)} \sim xy \sim (xy)^{o(y)} \sim x^{o(y)} \sim x$ is a path in $\mathcal{S}^*(G)$. Hence x and y are in a connected component of $\mathcal{S}^*(G)$.

This proves that $\mathcal{S}^*(G)$ is connected.

Lemma 2.8. Let G and H be groups such that (|G|, |H|) = 1. Then $S(G \times H) = S(G) \times S(H)$.

Proof. Suppose (x, y) and (a, b) are adjacent vertices in $\mathcal{S}(G \times H)$. Then $o((x, y)) \mid o((a, b))$ or $o((a, b)) \mid o((x, y))$. Since G and H have coprime order, $o(x)o(y) \mid o(a)o(b)$ or $o(a)o(b) \mid o(x)o(y)$. On the other hand, (o(a), o(y)) = (o(b), o(x)) = 1. Hence $o(a)o(b) \mid o(x)o(y)$ implies that $o(a) \mid o(x)$ and $o(b) \mid o(y)$. Similarly, $o(x)o(y) \mid o(a)o(b)$ implies that $o(x) \mid o(a)$ and $o(y) \mid o(b)$. Therefor, a, x are adjacent in $\mathcal{S}(G)$, and b, y are adjacent in $\mathcal{S}(H)$. A similar argument as above shows that if (a, b) and (x, y) are adjacent in $\mathcal{S}(G) \times \mathcal{S}(H)$, then $ax \in E(\mathcal{S}(G))$ and $by \in E(\mathcal{S}(H))$.

The proof of the previous lemma shows that in general $S(G) \times S(H)$ is a subgraph of $S(G \times H)$. By [12, Theorem 5.29], if G and H are non-empty graphs, then $G \times H$ is connected if and only if both of G and H are connected and at least one of them are non-bipartite. Moreover, if G and H are connected and bipartite, then $G \times H$ has exactly two connected components. In the following theorem, we apply this result to prove that the main supergraph of the power graph of a nilpotent group is 2-connected.

Theorem 2.9. If G is nilpotent, then $\mathcal{S}(G)$ is 2-connected.

Proof. Since G is nilpotent, $G \cong P_1 \times \ldots \times P_r$, where P_i 's are all Sylow P_i subgroups of G. By Lemma 2.8, $\mathcal{S}(G) \cong \mathcal{S}(P_1 \times \ldots \times P_r) = \mathcal{S}(P_1) \times \ldots \times \mathcal{S}(P_r)$ and so $\mathcal{S}^*(G) \cong \mathcal{S}^*(P_1 \times \ldots \times P_r) = \mathcal{S}^*(P_1) \times \ldots \times \mathcal{S}^*(P_r)$. Since $\mathcal{S}^*(P_i)$, $1 \leq i \leq r$,
are complete, they are non-bipartite and connected. This shows that $\mathcal{S}^*(G)$ is
connected, as desired.

Theorem 2.10. Let G be a finite group. If $xy \in E(\Delta(G))$ then x and y are in the same component of $S^*(G)$.

Proof. By definition, $V(\Delta(G)) = V(\mathcal{S}^*(G))$. Suppose, x, y are adjacent vertices of $\Delta(G)$. So xy = yx. If $o(x) \mid o(y)$ or $o(y) \mid o(x)$ then x and y are adjacent in $\mathcal{S}^*(G)$. We now assume that $o(x) \nmid o(y)$ and $o(y) \nmid o(x)$. We consider two cases that (o(x), o(y)) = 1 or $(o(x), o(y)) \neq 1$.

(1) (o(x), o(y)) = 1. In this case, o(xy) = o(x)o(y). This gives a path $x \sim xy \sim y$ in $\mathcal{S}^*(G)$, as desired.

6

7

(2) $(o(x), o(y)) \neq 1$. Choose the prime number p such that $p \mid o(x)$ and $p \mid o(y)$. If $t \in G$ has order p then $x \sim t \sim y$ is a path in $\mathcal{S}^*(G)$.

This completes the proof.

Corollary 2.11. If $\Delta(G)$ is complete then $\mathcal{S}(G)$ is 2-connected.

It is clear that if G and H are groups with the same order such that for each divisor d of |G|, $\Omega_d(G) = \Omega_d(H)$ then $\mathcal{S}(G) \cong \mathcal{S}(H)$. The converse of this result is not generally correct. To prove, we consider $G = Z_4 \times Z_4$ and $H = Z_2 \times Z_4 \times Z_2$. Since G and H are 2-groups, $\mathcal{S}(G) \cong \mathcal{S}(H)$. But $\Omega_4(G) = 8 < 12 = \Omega_4(H)$ and $\Omega_2(G) = 7 > 3 = \Omega_2(H)$. On the other hand, it is possible to find finite groups G and H such that $\mathcal{S}(G) \cong \mathcal{S}(H)$, but $\pi_e(G) \neq \pi_e(H)$. An example is the pair $(G, H) = (D_8, Z_8)$. Finally, it is possible to construct the pair (G, H) of finite groups such that $\pi_e(G) = \pi_e(H)$, but $\mathcal{S}(G) \cong \mathcal{S}(H)$. To see this, it is enough to assume that $G = D_{20}$ and $H = Z_2 \times Z_{10}$. In what follows, we prove that in the group under same specific conditions the equality of spectrum and order implies that the main supergraph are isomorphic.

Theorem 2.12. (See [1,23]). Suppose G_1 is a finite group and G_2 is one of the following finite groups:

- (1) A finite simple group,
- (2) A symmetric group S_n , $n \ge 3$,
- (3) Automorphism group of a sporadic simple group,

then $G_1 \cong G_2$ if and only if $|G_1| = |G_2|$ and $\pi_e(G_1) = \pi_e(G_2)$.

Corollary 2.13. If G_1 is a finite group and G_2 is one of the following finite groups:

- (1) A finite simple group,
- (2) A symmetric group S_n , $n \ge 3$,
- (3) Automorphism group of a sporadic simple group.

If $|G_1| = |G_2|$ and $\pi_e(G_1) = \pi_e(G_2)$ then $\mathcal{S}(G_1) \cong \mathcal{S}(G_2)$.

In the following result, the finite groups G in which the main supergraph $\mathcal{S}(G)$ is vertex transitive are classified.

Theorem 2.14. Let G be a finite group, then S(G) is a vertex transitive if and only if G is a p-group. There is no group G such that $\overrightarrow{S(G)}$ is vertex transitive.

Proof. If G is a p-group then S(G) is complete and so it is a Cayley graph. Conversely, we assume that S(G) is vertex-transitive, where G has order n. Since $deg_{S(G)}(e) = n - 1$, S(G) has to be complete and so G is a p-group.

We now assume that G is a finite group such that $\overline{\mathcal{S}(G)}$ is vertex transitive. Then each vertex of $\overline{\mathcal{S}(G)}$ will have the in-degree n-1 and out-degree zero which is impossible.

The present authors [11], proved that for each finite group G we have $|\pi(G)| \leq \alpha(\mathcal{S}(G)) \leq |\pi_e(G)| - 1$ with right-hand equality if and only if G is an *EPO*-group. Applying this result, we have:

Theorem 2.15. If G is a finite group of order n then $n+1-|\pi_e(G)| \leq \beta(\mathcal{S}(G)) \leq n-|\pi(G)|$. The left-hand equality is attained if and only if G is an EPO-group.

Theorem 2.16. Let G be a finite group. $\overline{\mathcal{S}^*(G)}$ is complete if and only if $G \cong \mathbb{Z}_2$.

Proof. Suppose $\mathcal{S}^*(G)$ is a complete graph. Then G is an *EPO*-group and there is a unique elements of each order. So, $\mathcal{S}(G)$ is a star graph and by [11, Corollary 2.18], $G \cong Z_2$. The converse is obvious.

Theorem 2.17. Let G be a finite group of order> 2. Then G has full exponent if and only if $\overline{S^*(G)}$ is disconnected.

Proof. If G is full exponent group of order n, n > 2 [11, Theorem 2.15], there are at least two elements of degree n - 1 in $\mathcal{S}(G)$. This proves that $\overline{\mathcal{S}^*(G)}$ is disconnected. To prove the converse, we show that if G is not a full exponent group of order n, n > 2, then $\overline{\mathcal{S}^*(G)}$ is connected. Suppose $|G| = p_1^{n_1} \dots p_k^{n_k}$. If k = 1, then $\mathcal{S}(G)$ is complete and $\overline{\mathcal{S}^*(G)}$ is an empty graph, as desired. Suppose $k \geq 2$. Define

$$V_i = \{ g \in G | 1 \neq o(g) \mid p_i^{n_i} \}.$$

Then for each *i*, the graph $\overline{\mathcal{S}^*(G)}$ has an induced subgraph isomorphic to $\overline{K_{|V_i|}}$ in such a way that every element $x \in V_i$ is adjacent to every element $y \in V_j$, $i \neq j$. Thus the induced subgraph $[\bigcup_{i=1}^k V_i]$ is connected. Suppose $x, y \notin \bigcup_{i=1}^k V_i$, $o(x) = q_1^{\alpha_1} \dots q_r^{\alpha_r}$ and $o(y) = q_1^{\beta_1} \dots q_s^{\beta_s}$, $r \leq s$. If (o(x), o(y)) = 1, then $xy \in E(\overline{\mathcal{S}^*(G)})$ as desired. We now assume that $d = (o(x), o(y)) \neq 1$. If there exists a prime number p such that $p \nmid d$ then we choose an element z of order pin G. So $x \sim z \sim y$ is a path connecting x and y in $\mathcal{S}(G)$. Hence, it is enough to assume that, for any $i, 1 \leq i \leq k, p_i \mid d$. Suppose $o(x) = p_1^{\gamma_1} \dots p_k^{\gamma_k}$ and $o(y) = p_1^{\delta_1} \dots p_k^{\delta_k}$. If $o(x) \nmid o(y)$ and $o(y) \nmid o(x)$ then $xy \in E(\overline{\mathcal{S}^*(G)})$. Suppose $o(x) \mid o(y)$ and choose i such that $\gamma_i \neq \alpha_i$. Then $x \sim x_i \sim y$ is a path in $\overline{\mathcal{S}^*(G)}$. This completes the proof.

Theorem 2.18. If G is a full exponent group, then the number of connected components of $\overline{\mathcal{S}^*(G)}$ is $c(\overline{\mathcal{S}^*(G)}) = \varphi(G) + 1$, where $\varphi(G) = |\{a \in G | o(a) = Exp(G)\}|$.

9

Proof. Suppose G is a full exponent group of order $p_1^{n_1} \dots p_k^{n_k}$, where, $p_i, 1 \le i \le k$ are distinct primes and k > 1. Similar to the Theorem 2.17, we define

$$V_i = \{ g \in G | 1 \neq o(g) \mid p_i^{n_i} \}.$$

By Theorem 2.17, the induced subgraph on $\bigcup_{i=1}^{k} V_i$ is connected. Suppose $x, y \notin \bigcup_{i=1}^{k} V_i$. If $o(x), o(y) \notin \{|G|, Exp(G)\}$ then by similar argument as in Theorem 2.17, there exits an element $u \in \bigcup_{i=1}^{k} V_i$, such that $x \sim u \sim y$ is path in $\overline{\mathcal{S}^*(G)}$. We now assume that $o(x) \in \{|G|, Exp(G)\}$. Then $\{x\}$ is a component of $\overline{\mathcal{S}^*(G)}$ and so the number of connected components is $\varphi(G) + 1$.

Theorem 2.19. Let G be a finite group. Then,

- (1) if Exp(G) = m, then $c(\overline{S^*(G)}) = k\phi(m) + 1$, where k is the number of cyclic subgroups of order m in G;
- (2) if G is nilpotent, then $c(\overline{\mathcal{S}^*(G)}) = \prod_{i=1}^k \varphi(G_i) + 1$, where G_i 's are Sylow subgroups of G_i ;
- (3) $c(\overline{\mathcal{S}^*(G)}) = \phi(|G|) + 1$ if and only if the number of cyclic subgroups of order Exp(G) in G is $\frac{|G|}{Exp(G)}$.

Proof. Apply Theorems 2.2, 2.6, 2.8 and 3.2 from [22].

Corollary 2.20. The following hold:

- (1) if $2^k \neq n \geq 3$ is an even positive integer then $c(\overline{\mathcal{S}^*(D_{2n})}) = \phi(n) + 1$, and if n is odd then $\overline{\mathcal{S}^*(D_{2n})}$ is connected;
- (2) if $n \geq 3$, $\overline{\mathcal{S}^*(S_n)}$ is connected and if $n \geq 4$, then $\overline{\mathcal{S}^*(A_n)}$ is connected;
- (3) if $n = 2^k$, then $c(\overline{S^*(SD_{8n})}) = 8n 1$ and if $n \neq 2^k$, then $c(\overline{S^*(SD_{8n})}) = \phi(4n) + 1$;
- (4) if n is odd, then $\overline{S^*(T_{4n})}$ is connected and if $n = 2^k$, then $c(\overline{S^*(T_{4n})}) = 4n 1$. If $n \neq 2^k$ and n is an even number, then $c(\overline{S^*(T_{4n})}) = \phi(2n) + 1$;
- (5) if n is odd, then $\overline{\mathcal{S}^*(V_{8n})}$ is connected. If $n = 2^k$, then $c(\overline{\mathcal{S}^*(V_{8n})}) = 8n 1$ and if $n \neq 2^k$ and n is an even number, then $c(\overline{\mathcal{S}^*(V_{8n})}) = \phi(2n) + 1$.

By the graph structure of $\mathcal{S}(G) = \Delta_G[K_{\Omega_{a_1}(G)}, \ldots, K_{\Omega_{a_k}(G)}]$ and definition of module, one can see that every $K_{\Omega_{a_i}(G)}$, $1 \leq i \leq k$, in $\mathcal{S}(G)$ is a maximal strong module. Also $P = \{V(K_{\Omega_{a_1}(G)}), \ldots, V(K_{\Omega_{a_k}(G)})\}$ is a modular partition of $\mathcal{S}(G)$ and quotient graph $\mathcal{S}(G)/P$ is isomorphic to Δ_G .

Theorem 2.21. Let G_1 and G_2 be two finite groups. We also assume that these groups are not full exponent, they are not p-groups, for some prime number p, and the graphs Δ_{G_1} and Δ_{G_2} are primitive. If $\mathcal{S}^*(G_1) \cong \mathcal{S}^*(G_2)$, then $|G_1| = |G_2|$ and $nse(G_1) = nse(G_2)$. **Proof.** By Theorem 1.1, since Δ_{G_1} and Δ_{G_2} are primitive, $\mathcal{S}^*(G_1)$, $\mathcal{S}^*(G_2)$, $\overline{\mathcal{S}^*(G_1)}$ and $\overline{\mathcal{S}^*(G_2)}$ are connected. In addition, each graph has a unique maximal modular partition and $\mathcal{S}^*(G_1) \cong \mathcal{S}^*(G_2)$ implies that $\Delta_{G_1} \cong \Delta_{G_2}$ and so $|G_1| = |G_2|$. This shows that $nse(G_1) = nse(G_2)$, as desired.

Theorem 2.22. [17,18,21] Suppose G, H are finite groups and one of the following are satisfied:

- *H* is a sporadic simple group;
- *H* is a Mathieu group;
- *H* is the symmetric group S_r , where *r* is prime number.

If |G| = |H| and nse(G) = nse(H), then $G \cong H$.

Theorem 2.23. Suppose G_1 and G_2 satisfy the conditions of Theorem 2.21. We also assume that one of the following conditions are satisfied:

- G_1 is a sporadic simple group;
- G₁ is a Mathieu group;
- G_1 is the symmetric group S_r , where r is prime number.

If $\mathcal{S}^*(G_1) \cong \mathcal{S}^*(G_2)$, then $G_1 \cong G_2$.

Proof. Apply Theorems 2.21 and 2.22.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

- J. X. Bi, A characterization of symmetric groups (Chinese), Acta. Math. Sinica, 33 (1990), 70-77.
- [2] P. J. Cameron, The power graph of a finite group, II, J. Group Theory, 13 (2010), 779-783.
- [3] P. J. Cameron and S. Ghosh, *The power graph of a finite group*, Discrete Math., 311 (2011), 1220-1222.
- [4] I. Chakrabarty, S. Ghosh and M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum, 78 (2009), 410-426.
- [5] M. Chein, M. Habib and M. C. Maurer, *Partitive hypergraphs*, Discrete Math., 37 (1981), 35-50.
- [6] T. Gallai, Transitiv orientierbare graphen (German), Acta Math. Acad. Sci. Hungar., 18 (1967), 25-66.

- [7] M. Habib and C. Paul, A survey of the algorithmic aspects of modular decomposition, Comput. Sci. Rev., 4 (2010), 41-59.
- [8] A. Hamzeh, Spectrum and L-spectrum of the cyclic graph, Southeast Asian Bull. Math., 42 (2018), 875-884.
- [9] A. Hamzeh and A. R. Ashrafi, Automorphism groups of supergraphs of the power graph of a finite group, European J. Combin., 60 (2017), 82-88.
- [10] A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups, Filomat, 31(16) (2017), 5323-5334.
- [11] A. Hamzeh and A. R. Ashrafi, The order supergraph of the power graph of a finite group, Turkish J. Math., 42 (2018), 1978-1989.
- [12] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.
- [13] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contributions to General Algebra, 12 (Vienna, 1999), Heyn, Klagenfurt, (2000), 229-235.
- [14] A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra, 251(1) (2002), 16-26.
- [15] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of semigroups, Comment. Math. Univ. Carolin., 45(1) (2004), 1-7.
- [16] A. V. Kelarev, S. J. Quinn and R. Smoliková, Power graphs and semigroups of matrices, Bull. Austral. Math. Soc., 63(2) (2001), 341-344.
- [17] A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of symmetric group S_r, where r is prime number, Ann. Math. Inform., 40 (2012), 13-23.
- [18] A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of sporadic simple groups by nse and order, J. Algebra Appl., 12 (2013), 1250158 (3 pp).
- [19] J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cambridge, New York-Melbourne, 1978.
- [20] G. Sabidussi, Graph derivatives, Math. Z., 76 (1961), 385-401.
- [21] C. Shao and Q. Jiang, A new characterization of Mathieu groups, Arch. Math. (Brno), 46 (2010), 13-23.
- [22] M. Tărnăuceanu, A generalization of the Euler's totient function, Asian-Eur.
 J. Math., 8(4) (2015), 1550087 (13 pp).

- [23] A. V. Vasil'ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of finite simple groups by spectrum and order, Algebra Logic, 48 (2009), 385-409.
- [24] D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.
- [25] J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (1981), 487-513.

A. Hamzeh

Department of Insurance General Insurance Research Center Tehran, I. R. Iran e-mail: hamze2006@yahoo.com, hamzeh@irc.ac.ir

A. R. Ashrafi (Corresponding Author) Department of Pure Mathematics Faculty of Mathematical Sciences University of Kashan Kashan 87317-53153, I. R. Iran e-mail: ashrafi@kashanu.ac.ir