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Abstract. Given a finite connected bipartite graph, finite-dimensional inde-

composable semisimple Leibniz algebras are constructed. Furthermore, any

finite-dimensional indecomposable semisimple Leibniz algebra admits a simi-

lar construction.
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1. Introduction

The finite-dimensional simple Lie algebras over an algebraically closed field of

characteristic zero are classified and it is a classical result that a finite-dimensional

semisimple Lie algebra is a direct sum of simple Lie subalgebras (see [6]). A finite-

dimensional module over a semisimple Lie algebra due to Weyl’s theorem is com-

pletely reducible into a direct sum of simple submodules. Furthermore, a Lie algebra

admits a Levi decomposition – a semi-direct sum of a semisimple subalgebra and a

maximal solvable ideal.

In this paper a “non-commutative” generalization of Lie algebras, introduced by

Bloh ([3]) and later by Loday ([9],[10]) – the so-called Leibniz algebras are stud-

ied. Although the classical simplicity for Leibniz algebras implies that it is a Lie

algebra, a modified definition of the simplicity was introduced in [5] and has been

in use in the various papers on the structure theory of Leibniz algebras. General-

ization of semisimplicity for Leibniz algebras draws a parallel with semisimple Lie

algebras, which is the main focus of the current work. However, it is well-known

that a semisimple Leibniz algebra is not in general a direct sum of simple Leib-

niz algebras, and the question on the structure of semisimple Leibniz algebras has

been open. Recently, in [1, Theorem 3.5] the authors establish the description of

the finite-dimensional indecomposable semisimple non-Lie Leibniz algebra using a

graph, whose vertexes are the simple Lie subalgebras of the liezation of the Leibniz

algebra.
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Motivated by the results of [1], the goal of this work is to shed light on how finite-

dimensional semisimple Leibniz algebras are built. Turns out, the structure of a

finite-dimensional semisimple Leibniz algebra is more clear if instead of a graph (cf

[1]), one uses a bipartite graph. The main results are presented in the last section,

consisting of the description of semisimple Leibniz algebras from [1] with different

proofs and a new construction of finite-dimensional semisimple Leibniz algebras

using the bipartition of an associated graph.

2. Preliminaries

In the following section necessary definitions and results on Lie algebra and

representation theory is given. Connection of Leibniz algebra with Lie algebra and

its modules is provided. One of the main ingredients in this work, an analogue

of Levi’s theorem for Leibniz algebra is obtained directly from the results of T.

Pirashvili [12] in Subsection 2.2.

2.1. Lie algebras and Leibniz algebras.

Definition 2.1. An algebra g over K is called a Lie algebra over K if its multipli-

cation ([−,−]) satisfies the identities:

(1) [x, x] = 0

(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g (Jacobi identity).

Definition 2.2. A (left) g-module is vector space M together with a map g⊗M →
M, x⊗m 7→ x.m such that for all x, y ∈ g and all m ∈M we have

[x, y].m = x.(y.m)− y.(x.m).

Given a left g-module action on M , one can construct a right action by setting

m.x =: −x.m and it satisfies the identity

m.[x, y] = (m.x).y − (m.y).x.

Left and right actions induce Lie algebra structure on M ⊕ g, where M becomes

an abelian ideal and g is a subalgebra. If one has the right action of g on M and

sets the left action to be zero, this induces a new type of a product that generalizes

the Lie bracket on g given in the following.

Example 2.3. ([7]) Let g be a Lie algebra and M be a g-module. Consider L =

g⊕M with a bracket [(g1,m1), (g2,m2)] := ([g1, g2],−g2.m1). Then

[[x, y], z] = [[x, z], y] + [x, [y, z]] (1)
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holds for any x, y, z ∈ L and this algebra is not a Lie algebra if the action of g on

M is not trivial.

A similar construction is given in [5].

Definition 2.4. A vector space L with a bracket that satisfies identity (1) is called

a Leibniz algebra.

The Leibniz algebra of Example 2.3 is denoted by gnM .

For a Leibniz algebra L set I = Span〈[x, x] | x ∈ L〉. Then I is a proper ideal

of L and [L, I] = {0}. If I = {0} then L is a Lie algebra (and the converse is

also true). For a non-Lie Leibniz algebra the ideal I is always non-trivial and the

following notion is well-defined.

Definition 2.5. For a Leibniz algebra L the quotient algebra gL := L/I is a Lie

algebra which is called the liezation of L.

There is the following short exact sequence and the epimorphism f is universal

in the sense that a Leibniz algebra homomorphism from L to any Lie algebra g

factors through f :

I L gL

g

f

Note that, due to I annihilating the Leibniz algebra whenever multiplied from the

right, I admits a structure of a right Lie algebra gL-module with the well-defined

action i.g = [i, s(g)], where s : gL → L is a linear section.

Definition 2.6. An algebra A is called decomposable if A = A1 ⊕ A2 for some

proper ideals. An algebra without this property is called indecomposable.

Any finite-dimensional algebra is either indecomposable or is a finite direct sum

of indecomposable algebras. A Lie algebra with no non-trivial ideals is called simple.

Simple Lie algebras are indecomposable, while the converse is not necessarily true.

A Leibniz algebra with only one non-trivial ideal I, so-called simple Leibniz algebra,

is indecomposable.

2.2. Levi’s Theorem for Leibniz algebras. Similarly, as in Lie algebra theory,

the following notions transfer to the case of Leibniz algebra.

Definition 2.7. An ideal S of a Leibniz algebra L is called solvable if S[k] = {0}
for some integer k, where S[0] = S, S[m+1] = [S[m], S[m]]. The maximum solvable

ideal is called solvable radical and is denoted by Rad(g).
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A Lie algebra g is called semisimple if Rad(g) = {0}. There is a well-known

Levi-Malcev decomposition of a finite-dimensional Lie algebra g as a semidirect

sum of a semisimple subalgebra s and the solvable radical, so that g = sn Rad(g).

For Leibniz algebras similar result was proved by D. Barnes [2] in 2011. Note that,

the same result is implicit from [12, Proposition 2.4] given below.

Proposition 2.8. Let φ : L → g be an epimorphism from an arbitrary finite-

dimensional Leibniz algebra L to a semisimple Lie algebra g. Then φ admits a

section.

Indeed, consider a finite-dimensional Leibniz algebra L and apply Levi-Malcev

decomposition to its liezation gL. Applying Proposition 2.8 for an epimorphism

g ◦ f one obtains a section:

L gL = sn rad(g)

s

f

g

Clearly, the kernel of the epimorphism g ◦ f is Rad(L) and we have an analogue of

Levi decomposition for Leibniz algebra L ∼= sn Rad(L).

It is remarkable, that much earlier than the authors mentioned above, A. Bloh

established Levi theorem for Leibniz algebras in [4, Theorem 11] and the statement

above is also formulated in the following equivalent form [4, Theorem 12]:

Theorem 2.9. Any extension of a semisimple Lie algebra in the class of Leibniz

algebras is trivial.

The Malcev part of the theorem is not true in general for the case of Leibniz

algebras as shown in [2]. In some cases, conjugacy of Levi subalgebras is possible

(see [8] and [11]).

Definition 2.10. A Leibniz algebra L is called semisimple if its liezation gL is a

semisimple Lie algebra.

Note that, from Levi’s decomposition it follows that L is a semisimple Leibniz

algebra if and only if Rad(L) = I. Furthermore, there is the following.

Corollary 2.11. Let L be a finite-dimensional semisimple Leibniz algebra. Then

L ∼= gL n I, where gL is a semisimple Lie algebra (liezation of L).

Since I is a gL-module, and over a semisimple Lie algebra by Weyl’s semisim-

plicity I decomposes into a direct sum of simple gL-submodules, one obtains

L = (⊕m
i=1gi) n (⊕n

k=1Ik) (2)
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where gi’s are simple Lie algebras and Ik’s are simple ⊕m
i=1gi-modules.

Let a semisimple Leibniz algebra L be decomposable, that is L = L1⊕. . .⊕Lt and

L1, . . . , Lt are indecomposable Leibniz algebras. Obviously, L1 is also semisimple

and Corollary 2.11 implies L1 = g1 n I1, where g1 as the liezation of L1 must be a

subalgebra of gL. Thus, it is a direct sum of some simple components of gL. Since

L1 E L, I1 is a gL-module and using I1 ⊆ I it is a sum of simple g-submodules of

I. This implies that not only L1 admits the structure of decomposition (2), but

L1 = (⊕i∈Agi) n (⊕k∈BIk) for some A ⊆ {1, . . . ,m}, B ⊆ {1, . . . , n}. Hence, the

study of the structure of a semisimple Leibniz algebra is reduced to the study of an

indecomposable semisimple Leibniz algebra.

We use the following result from [13, Theorem 6] on the structure of a simple

Lie module over a semisimple Lie algebra:

Theorem 2.12. Let M be a finite-dimensional simple Lie algebra module over a

finite-dimensional semisimple Lie algebra g = ⊕n
i=1gi. Then M ∼= ⊗n

i=1Mi, where

Mi is a simple gi-module for all i = 1, . . . , n.

3. Main results

Proposition 3.1. Let L be a finite-dimensional semisimple Leibniz algebra. Then

[Ik, gi] = Ik or {0} for all indexes i and k of the decomposition (2).

Proof. Without loss of generality let us consider [I1, g1]. Since I1 is a simple

⊕n
i=1gi-module, by Theorem 2.12 I1 = ⊗n

i=1Ji for simple gi-modules Ji. Note that

the action is [I1, g1] = [J1⊗· · ·⊗Jn, g1] = (J1⊗· · ·⊗Jn).g1 = (J1.g1)⊗J2⊗· · ·⊗Jn.

Now this is either {0} or J1 ⊗ · · · ⊗ Jn = I1 since J1 is an irreducible g1-module.

Moreover, it is well-known from representation theory of Lie algebras that [g1, I1] =

{0} if and only if J1 = C (a one-dimensional representation is trivial). �

Definition 3.2. ([1]) Let L be a semisimple Leibniz algebra with decomposition

(2). Two Lie algebras gi and gj from decomposition (2) are called adjacent if there

exists k such that [Ik, gi] = Ik = [Ik, gj ].

It is implicit from this definition that for a semisimple Leibniz algebra L with

decomposition (2), a graph Γ with vertexes {g1, . . . , gm} is built. Two vertexes gi

and gj are connected by an edge if [Ik, gi] = Ik = [Ik, gj ] for some k. The description

of indecomposable semisimple Leibniz algebra is established in [1, Theorem 3.5] and

rephrased in terms of connectivity of the graph Γ below.
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Theorem 3.3. Let L be an indecomposable semisimple Leibniz algebra with de-

composition (2). Then [Ik,⊕m
i=1gi] = Ik for all 1 ≤ k ≤ n and Γ is a connected

graph.

Proof. If for some 1 ≤ k ≤ n one has [Ik, gi] = {0} for all 1 ≤ i ≤ m, then Ik is

a direct summand of L (in fact, it is a contradiction with Ik ⊆ I being generated

by the squares). Thus, from Proposition 3.1 it follows that [Ik, gi] = Ik for some

1 ≤ i ≤ m which implies the first part of the statement. If graph Γ is disconnected,

let {gi}i∈A be some connected component of Γ. Using Proposition 3.1 build a set

of indexes B, where for p ∈ B there is some q ∈ A such that [Ip, gq] = Ip. Then

(⊕i∈Agi) n (⊕k∈BIk) is a direct summand of the Leibniz algebra L, which is a

contradiction. �

Using decomposition (2) consider another associated graph on the vertexes

{g1, . . . , gm, I1, . . . , In},

in which two vertexes are connected via an edge whenever the bracket of the end-

points is a non-zero set. Note that, due to [Ip, Iq] = [gi, gj ] = {0}, the only edges

are from the set of simple Lie algebras {g1, . . . , gm} to the set of simple gL-modules

{I1, . . . , In}.

Definition 3.4. For a semisimple Leibniz algebra L define its corresponding undi-

rected bipartite graph BΓ using decomposition (2) with bipartition (I,G), where

I = {I1, . . . , In}, G = {g1, . . . , gm} and Ikgi is an edge if and only if [Ik, gi] = Ik.

Theorem 3.5. A finite-dimensional semisimple Leibniz algebra is indecomposable

if and only if the associated bipartite graph BΓ is connected.

Proof. Assume that BΓ is not connected. Let ({gi}i∈A, {Ik}k∈B) be one of the

connected components of BΓ. Then (
⊕

i∈A gi) n (
⊗

k∈B Ik) is a direct summand

of the Leibniz algebra, thus the algebra is decomposable.

Conversely, if the Leibniz algebra is decomposable, then the corresponding bi-

partite graph is disconnected. �

The following corollary establishes that the converse of Theorem 3.3 is also valid.

Corollary 3.6. For a semisimple Leibniz algebra the following conditions are equiv-

alent:

(i) [Ik,⊕m
i=1gi] = Ik for all k = 1, . . . , n and graph Γ is connected;

(ii) BΓ is connected.
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Presented example below show that the first condition of the statement (i) is

essential.

Example 3.7. Consider a decomposition (⊕4
i=1gi)n(I1⊕I2⊕I3) with the non-zero

products:

[I3, g1] = [I3, g2] = I3 and [I2, g2] = [I2, g3] = [I2, g4] = I2.

The graphs Γ and BΓ corresponding to that decomposition are:

g1 g2

g3

g4

I1 I2 I3

g1 g2 g3 g4

Although Γ is connected, but since [I1,⊕4
i=1gi] = {0}, the Leibniz algebra cannot

be indecomposable. In fact, the graph BΓ shows that such Leibniz algebra is not

only indecomposable, but does not exist since I1 is not being generated by any

elements of the Leibniz algebra.

The next statement shows the construction of an indecomposable semisimple

Leibniz algebra from any finite connected bipartite graph.

Theorem 3.8. Given a finite and connected bipartite graph, there exists a finite-

dimensional indecomposable semisimple Leibniz algebra whose corresponding bipar-

tite graph is the given one.

Proof. Let BΓ be a finite, connected bipartite graph with bipartition (V,W ).

Let us denote formally the vertexes of V by v1, . . . , vm and the vertexes of W

by w1, . . . , wn. The essential m× n submatrix

A = (aij | aij = 1 if viwj is an edge and 0 otherwise)1≤i≤m,1≤j≤n

of the adjacency matrix of the graph Γ contains 1 in every row and in every column

since the graph is connected. This submatrix indicates how to build an inde-

composable semisimple Leibniz algebra with a corresponding bipartite graph BΓ.

Indeed, pick any simple Lie algebra g1, . . . , gm and simple gi-modules Mji for all

1 ≤ j ≤ n, 1 ≤ i ≤ m. Next, define a tensor (⊕m
i=1gi)-module Ik = ⊗m

i=1Jki, where

Jki = Mki if aki = 1 and Jki = C otherwise. By Theorem 2.12 the (⊕m
i=1gi)-module

Ik is simple for all 1 ≤ k ≤ n. Then L = (⊕m
i=1gi)n (⊕n

k=1Ik) is the Leibniz algebra

with corresponding bipartite graph BΓ. Note that by Theorem 3.5 it follows that

L is indecomposable. �
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Example 3.9. Up to an isomorphism there are exactly two connected bipartite

graphs with essential submatrix A being a 2× 2 matrix:

I1 I2

g1 g2

I1 I2

g1 g2

Then by the construction given in the Theorem 3.8 the corresponding indecompos-

able semisimple Leibniz algebras are the following:

L1 = (g1 ⊕ g2) n ((J11 ⊗ J12)⊕ (J21 ⊗ J22)) ,

L2 = (g1 ⊕ g2) n ((J11 ⊗ J12)⊕ J21) ,

where Jpq is a simple gq-module (and for L2, g-module J21 ∼= J21 ⊗ C). Note that

for both L1 and L2 the graph Γ is the same simple connected graph on two vertexes.

In conclusion, the study of the structure of semisimple finite-dimensional Leib-

niz algebras is complete. Indecomposable such algebras are build by construction

from the proof of Theorem 3.8 if one chooses finite-dimensional simple Lie alge-

bras g1, . . . , gm, well-known finite-dimensional irreducible gq-modules Jpq for all

1 ≤ q ≤ m, 1 ≤ p ≤ n and a connected bipartite graph with bipartition of vertexes

into m and n vertexes.
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de Leibniz [A noncommutative version of Lie algebras: the Leibniz algebras],

Enseign. Math., 39(2) (1993), 269-293.

[11] G. Mason and G. Yamskulna, Leibniz algebras and Lie algebras, SIGMA Sym-

metry Integrability Geom. Methods Appl., 9 (2013), 063 (10 pp).

[12] T. Pirashvili, On Leibniz homology, Ann. Inst. Fourier (Grenoble), 44(2)

(1994), 401-411.

[13] Z. X. Wan, Lie Algebras, International Series of Monographs in Pure and

Applied Mathematics, Vol. 104, Pergamon Press, Oxford-New York-Toronto,

Ont., 1975.

Rustam Turdibaev

Inha University in Tashkent

Ziyolilar 9

100170 Tashkent, Uzbekistan

e-mail: r.turdibaev@inha.uz


