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Abstract. We introduce the notion of locally supplemented modules (i.e.,

modules for which every finitely generated submodule is supplemented). We

show that a module M is locally supplemented if and only if M is a sum of

local submodules. We characterize several classes of rings in terms of locally

supplemented modules. Among others, we prove that a ring R is a Camillo

ring if and only if every finitely embedded R-module is locally supplemented.

It is also shown that a ring R is a Gelfand ring if and only if every R-module

having a finite Goldie dimension is locally supplemented.
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1. Introduction

Throughout this article, all rings are commutative with identity and all modules

are unital. Let R be a ring. We denote respectively by Spec(R) and Max(R) the set

of all prime ideals of R and the set of all maximal ideals of R. LetM be an R-module

and let x ∈M . We denote the annihilator of M (of x) by Ann(M) (by Ann(x)), i.e.

Ann(M) = {r ∈ R | rm = 0 for every m ∈M} and Ann(x) = {r ∈ R | rx = 0}. We

use Rad(M), Soc(M), E(M), and EndR(M) to denote the radical, the socle, the

injective hull of M , and the endomorphism ring of M , respectively. The notation

N ⊆M means that N is a subset of M and the notation N ≤M means that N is

a submodule of M . We say that a submodule N of M is a small submodule and we

write N �M if M 6= N +L for any proper submodule L of M . A nonzero module

M is called hollow if every proper submodule is small in M . Let N be a submodule

of a module M . A submodule K of M is called a supplement of N in M if K is

minimal with respect to the property M = N +K, equivalently, M = N +K and

N ∩K � K. If every submodule of M has a supplement in M , then M is called

supplemented. The module M will be called a local module if Rad(M) is a small

maximal submodule of M .
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In Section 2, we introduce the notion of locally supplemented modules. A module

M is said to be locally supplemented if every finitely generated submodule of M

is supplemented. We investigate some basic properties of locally supplemented

modules and we establish a characterization of this type of modules. It is shown that

a module M is locally supplemented if and only if M is a sum of local submodules

of M .

The results obtained in Section 3 can be considered as the principal motivation

behind this work. In fact, a number of classes of rings are characterized in terms

of locally supplemented modules. The class of rings R for which every finitely

embedded module is locally supplemented, is shown to be exactly that of Camillo

rings (that is, the rings R for which HomR(E(R/m1), E(R/m2)) = 0 for any two

distinct maximal ideals m1 and m2 of R). Also, we characterize the class of rings R

for which every R-module having a finite Goldie dimension is locally supplemented

as that of the Gelfand rings (i.e., the rings in which every prime ideal is contained

in only one maximal ideal).

2. Some properties of locally supplemented modules

Definition 2.1. An R-module M is called locally supplemented if every finitely

generated submodule of M is supplemented.

Example 2.2. (i) It is clear that every artinian module is locally supplemented.

(ii) From [14, Propositions A.7 and A.8], it follows that a finitely generated Z-

module is supplemented if and only if it is a torsion module. This implies that

locally supplemented Z-modules are exactly the torsion Z-modules.

It is of natural interest to compare the class of locally supplemented modules

and that of supplemented modules. We begin by giving some locally supplemented

modules which are not supplemented.

Example 2.3. (i) Let R be a semiperfect ring which is not perfect (for example

we can take a discrete valuation ring R). Then every R-module is locally supple-

mented by [14, Theorem 4.41]. Consider the R-module M = R(N). So M is locally

supplemented. However, M is not supplemented by [5, Theorem 1].

(ii) It is well known that every artinian module is supplemented. Let p be a

prime integer and let M = ⊕∞i=1Mi with Mi
∼= Z(p∞) for all i ≥ 1. Let N be a

finitely generated submodule of M . Then N ⊆ ⊕nj=1Mij for some positive integers

i1, . . . , in. It follows that N is artinian and so supplemented. Hence M is locally

supplemented. On the other hand, M is not supplemented by [14, Propositions A.7

and A.8].
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In [20, p. 45 Remark], Zöschinger exhibits a supplemented R-module M over a

noncommutative ring R such that M has a cyclic submodule which is not supple-

mented. In particular, the module M is not locally supplemented. One may ask

whether any supplemented module over a commutative ring is locally supplemented.

But as far as we know this question is still unanswered. However, there exist some

partial answers to this question.

Example 2.4. Any supplemented R-module over a commutative noetherian ring

R is locally supplemented by [21, Folgerung 2 p. 55].

Recall that a ring R is called semiperfect if R is semilocal and the idempotents

lift modulo Rad(R). It is well known that a commutative ring R is semiperfect if

and only if R is a finite direct product of local rings.

Lemma 2.5. (See [21, Satz 1.6 and Folgerung p. 52]) Let M be a finitely generated

R-module over a commutative ring R. Then the following are equivalent:

(i) M is supplemented;

(ii) M is locally supplemented;

(iii) R/Ann(x) is a semiperfect ring for all 0 6= x ∈M ;

(iv) R/Ann(M) is a semiperfect ring.

The next result is a direct consequence of Lemma 2.5.

Proposition 2.6. The following are equivalent for an R-module M :

(i) M is locally supplemented;

(ii) Rx is supplemented for every x ∈M ;

(iii) R/Ann(x) is a semiperfect ring for every 0 6= x ∈M ;

(iv) R/Ann(N) is a semiperfect ring for every nonzero finitely generated sub-

module N of M .

Recall that a ring R is called a Gelfand ring if every prime ideal of R is contained

in only one maximal ideal of R. Using [21, Folgerung p. 50], it follows that a ring R

is semiperfect if and only if R is semilocal and Gelfand. This fact has the following

consequence:

Proposition 2.7. Let R be a ring. If I1 and I2 are proper ideals of R such that

R/I1 and R/I2 are semiperfect rings, then R/I1I2 and R/I1∩I2 are also semiperfect

rings.

Let M be an R-module. The support of M is denoted by Supp(M) and it is

defined by Supp(M) = {p ∈ Spec(R) | p ⊇ Ann(N) for some cyclic submodule N
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of M}. Note that Supp(M) = {p ∈ Spec(R) | Mp 6= 0}. The set of all maximal

ideals in Supp(M) will be denoted by MaxSupp(M). Then MaxSupp(M) = {m ∈
Max(R) |Mm 6= 0}.

Remark 2.8. (i) It is clear that any submodule of a locally supplemented module is

again locally supplemented. Since every factor of a semiperfect ring is semiperfect,

it follows that the class of locally supplemented modules is closed under factor

modules.

(ii) Let M be an R-module. From Propositions 2.6 and 2.7, we see that any sum

of locally supplemented submodules of M is locally supplemented. This implies

that M contains a unique maximal locally supplemented submodule which will

be denoted by K(M). By Proposition 2.6, we have K(M) = {x ∈ M | Rx is

supplemented} = {x ∈ M | x = 0 or R/Ann(x) is a semiperfect ring}. Let m

be a maximal ideal of R. As in [21, p. 53], let Km(M) = {x ∈ M | x = 0 or

the only maximal ideal over Ann(x) is m}. By [21, Satz 2.3], we have K(M) =⊕
m∈MaxSupp(M)Km(M).

Recall that an R-module M is said to be local if M contains a proper submodule

which contains all other proper submodules. It is easy to see that a module M is

local if and only if it is hollow and cyclic (see [7, 2.15]).

If M is an R-module and P =
∏

m∈MaxSupp(M)Mm is the direct product of the

localizations Mm’s, then we denote by Ψ the map which sends an element x ∈ M
to the element in P whose Mm-th coordinate in Mm is x/1.

The next result describes the structure of locally supplemented modules.

Theorem 2.9. The following are equivalent for an R-module M :

(i) M is locally supplemented;

(ii) M = K(M);

(iii) M =
⊕

m∈MaxSupp(M)Km(M);

(iv) M =
∑
λ∈Λ Lλ where Lλ is a local submodule of M for all λ ∈ Λ;

(v) Ψ is an isomorphism between M and
⊕

m∈MaxSupp(M)Mm.

(vi) For every m ∈MaxSupp(M), Km(M) is isomorphic to Mm under the map

x 7→ x/1.

Proof. (i) ⇔ (ii) This is obvious.

(ii) ⇔ (iii) This follows from [21, Satz 2.3].

(iii) ⇒ (iv) This follows from the fact that for every nonzero cyclic submodule

of Km(M) (m ∈MaxSupp(M)) is a local module.
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(iv) ⇒ (i) Let N be a finitely generated submodule of M =
∑
λ∈Λ Lλ. So

N ≤ Lλ1 + · · ·+ Lλn for some λ1, . . . , λn ∈ Λ. Note that Lλ1 + · · ·+ Lλn is locally

supplemented by [7, 20.20] and Lemma 2.5. Therefore N is supplemented and

consequently M is locally supplemented.

(i) ⇔ (v) ⇔ (vi) By [13, Theorem B]. �

The next result is a direct consequence of Theorem 2.9.

Corollary 2.10. Let M be an indecomposable R-module. Then M is locally supple-

mented if and only if M = Km(M) for some maximal ideal m of R.

The next result is taken from [3, Lemma 1.10].

Lemma 2.11. Let M be an R-module and let p be a prime ideal of R. Then

Mp = 0 if and only if HomR(M,E(R/p)) = 0.

Applying Corollary 2.10 and Lemma 2.11, we obtain the following result.

Proposition 2.12. Let R be a ring and let p ∈ Spec(R). Then the following

conditions are equivalent:

(i) E(R/p) is a locally supplemented R-module;

(ii) MaxSupp(E(R/p)) contains only one maximal ideal;

(iii) There exists a maximal ideal m of R such that HomR(E(R/p), E(R/m′)) =

0 for any m′ ∈Max(R) \ {m}.

Combining Theorem 2.9 and [7, 20.18], we get the following corollary.

Corollary 2.13. Let M be a locally supplemented module. If N is a submodule of

M such that M/N is finitely generated, then N has a supplement in M .

The product of locally supplemented modules is not, in general, locally supple-

mented as shown below.

Example 2.14. Let p be a prime integer and consider the family {Mi}i≥1 of Z-

modules where Mi = Z/piZ for all i ≥ 1. Let M =
∏
i≥1Mi. It is clear that

each Mi (i ≥ 1) is a locally supplemented Z-module. On the other hand, taking

x = (xi)i≥1 ∈ M with xi = 1 + piZ for every i ≥ 1, we have AnnZ(x) = 0. So

x 6∈ K(M). Hence M is not locally supplemented by Theorem 2.9.

We conclude this section by presenting an example which shows that the class

of locally supplemented modules is not closed under module extensions.
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Example 2.15. Let K be a field and let the commutative ring S =
∏
n∈NKn,

where Kn = K for all n ∈ N. Let R be the subring of S consisting of all sequences

{dn} such that there exist c ∈ K, k ∈ N with dn = c for all n ≥ k. Then R is

a von Neumann regular ring and Soc(R) consists of all sequences {dn} in R such

that dn = 0 for all n ≥ k for some k ∈ N. Clearly, Soc(R) is a maximal ideal of R

since the ring R/Soc(R) is isomorphic to the field K. Consider the following short

exact sequence

0→ Soc(R)→ R→ R/Soc(R)→ 0.

Note that Soc(R) and R/Soc(R) are locally supplemented R-modules. However,

R is not a locally supplemented R-module, since otherwise R will be a semiperfect

ring (see Proposition 2.6) and hence R will be a semisimple ring.

3. Rings whose modules are locally supplemented

In this section, we characterize several important classes of rings in terms of

locally supplemented modules. We begin with the following result which is a direct

consequence of [14, Theorem 4.41 and Corollary 4.42].

Proposition 3.1. The following conditions are equivalent for a ring R:

(i) Every R-module is locally supplemented;

(ii) Every injective R-module is locally supplemented;

(iii) The R-module R is locally supplemented;

(iv) The R-module R is supplemented;

(v) R is semiperfect.

Recall that an integral domain R is called h-local if the following two conditions

are satisfied:

(1) Each nonzero ideal of R is contained in only finitely many maximal ideals

of R;

(2) Each nonzero prime ideal of R is contained in only one maximal ideal of R.

Remark 3.2. Let R be a domain which is not a field and let K be its quotient

field. Using [13, Corollary 4.7] and Theorem 2.9, we conclude that R is an h-local

domain if and only if K/R is a locally supplemented R-module. In particular, if R

is a Dedekind domain, then the R-module K/R is locally supplemented.

We call a ring R almost semiperfect if R/I is a semiperfect ring for any nonzero

ideal I of R. Clearly, every semiperfect ring is almost semiperfect. The following

Lemma is an easy consequence of [21, Folgerung p. 50].
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Lemma 3.3. Let R be an integral domain. Then R is almost semiperfect if and

only if it is h-local.

An R-module M is called unfaithful if AnnR(M) 6= 0.

Proposition 3.4. The following are equivalent for a ring R:

(i) Every unfaithful R-module is locally supplemented;

(ii) R is almost semiperfect;

(iii) R is semiperfect or R is an h-local domain.

Proof. (i) ⇒ (ii) Let I be a nonzero ideal of R. Since AnnR(R/I) = I 6= 0, R/I

is an unfaithful R-module and so it is locally supplemented. But R/I is a cyclic

R-module. Then R/I is a supplemented R-module. This implies that R/I is a

supplemented R/I-module. Hence R/I is a semiperfect ring (see Proposition 3.1).

(ii) ⇒ (iii) Assume that R is not an h-local domain. So R is not an integral

domain by Lemma 3.3. It follows that R contains two nonzero elements a and b

such that ab = 0. Since R is almost semiperfect, R/aR and R/bR are semiperfect.

Applying Proposition 2.7, it follows that R/aRbR = R/abR is semiperfect. Hence

R is a semiperfect ring.

(iii) ⇒ (i) From Lemma 3.3, it follows that R is almost semiperfect. Now let M

be an unfaithful R-module. Then R/Ann(M) is a semiperfect ring. By Proposition

3.1, M is locally supplemented as an R/Ann(M)-module and so also as an R-

module. �

A ring R is called Camillo if HomR(E(R/m1), E(R/m2)) = 0 for any two distinct

maximal ideals m1 and m2 of R. Sharpe and Vámos called these rings H-rings and

showed that any commutative noetherian ring is Camillo (see [15, p. 110]).

Example 3.5. (i) The ring of continuous functions from [0, 1] to itself is a Camillo

ring (see [6, p. 1461]).

(ii) By [10, Theorem 6.1A], every ring of Krull dimension zero is a Camillo ring.

(iii) Using [19, Lemma 2.3 and Propositions 3.2 and 4.1], we conclude that if R

is a ring such that Rm is a noetherian ring for every maximal ideal m of R, then R

is a Camillo ring. In particular, any von Neumann regular ring is Camillo.

Remark 3.6. It is shown in [21, Satz 2.5] that over a Camillo ring R, any supple-

mented R-module is locally supplemented.

A module M is called subdirectly irreducible if M has a simple essential socle.

It is easy to see that an R-module M is subdirectly irreducible if and only if
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E(M) = E(S) for some simple submodule S of M . Recall that a module M is called

finitely embedded if there exist finitely many simple submodules Si (1 ≤ i ≤ n) of

M such that E(M) = E(S1)⊕· · ·⊕E(Sn). Next, we characterize the class of rings

R for which every finitely embedded R-module is locally supplemented. It turns

out that this class is exactly that of the Camillo rings.

Theorem 3.7. Let R be a ring. The following conditions are equivalent:

(i) R is a Camillo ring;

(ii) E(R/m) is locally supplemented for every m ∈Max(R);

(iii)
⊕

m∈Max(R)E(R/m) is a locally supplemented R-module;

(iv) Any subdirectly irreducible R-module is locally supplemented;

(v) Any finitely embedded R-module is locally supplemented;

(vi) MaxSupp(E(S)) = MaxSupp(S) for any simple R-module S;

(vii) MaxSupp(E(M)) = MaxSupp(M) for any finitely embedded R-module M .

Proof. Note that the class of locally supplemented modules is closed under sub-

modules and direct sums (see Remark 2.8).

(i) ⇔ (ii) This follows from Proposition 2.12.

(ii) ⇒ (iii) This is clear.

(iii) ⇒ (iv) Let M be a subdirectly irreducible R-module. So there exists a

maximal ideal m of R such that E(M) ∼= E(R/m). By hypothesis, E(M) is a

locally supplemented R-module. This implies that M is locally supplemented.

(iv)⇒ (v) Let M be a finitely embedded R-module. Then E(M) is a finite direct

sum of subdirectly irreducible R-modules. By (iv), E(M) is locally supplemented.

So M itself is a locally supplemented module.

(v) ⇒ (vi) Let S be a simple R-module. As E(S) is finitely embedded, E(S)

is locally supplemented. By Proposition 2.12, there exists a maximal ideal m of R

such that MaxSupp(E(S)) = {m}. This clearly forces MaxSupp(S) = {m}.
(vi)⇒ (vii) LetM be a finitely embeddedR-module. Then E(M) = E(S1)⊕· · ·⊕

E(Sn) for some simple submodules Si (1 ≤ i ≤ n) of M . Thus MaxSupp(E(M)) =

∪ni=1MaxSupp(E(Si)) (see [4, p. 133 Proposition 16]). By hypothesis, we have

MaxSupp(E(M)) = ∪ni=1MaxSupp(Si) ⊆MaxSupp(M). Hence MaxSupp(M) =

MaxSupp(E(M)).

(vii) ⇒ (ii) Let m ∈ Max(R). Since E(R/m) is a finitely embedded R-module,

MaxSupp(E(R/m)) = MaxSupp(R/m) = {m}. Applying Proposition 2.12, it

follows that E(R/m) is a locally supplemented R-module. �
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Example 3.8. Combining Proposition 3.1 and Theorem 3.7, we see that any

semiperfect ring is Camillo.

Let M be an R-module. We say that M is an LE-module if EndR(M) is a local

ring. It is well known that every LE-module is indecomposable. A decomposition

M = ⊕i∈IMi is called an LE-decomposition of M if each Mi (i ∈ I) is an LE-

module. Let Assf (M) be the set of weakly associated primes of M , that is, the set

of prime ideals p of R such that p is minimal among the prime ideals containing

AnnR(x) for some x ∈ M . Recall that a ring R is called a Gelfand ring if every

prime ideal of R is contained in only one maximal ideal of R. A nonzero module M

is said to have finite uniform (or Goldie) dimension if there exist a positive integer

n and an essential submodule V of M such that V is a direct sum of n uniform

submodules. In this case, we write u.dim(M) = n. If M = 0 we set u.dim(M) = 0.

Replacing “m ∈Max(R)” in the condition (ii) of Theorem 3.7 by “p ∈ Spec(R)”,

we obtain the following characterizations of Gelfand rings in terms of locally supple-

mented modules.

Theorem 3.9. The following conditions are equivalent for a ring R:

(i) R is a Gelfand ring;

(ii) For every prime ideal p of R, E(R/p) is locally supplemented;

(iii)
⊕

p∈Spec(R)E(R/p) is a locally supplemented R-module;

(iv) Any LE-R-module is locally supplemented;

(v) Any R-module having an LE-decomposition is locally supplemented;

(vi) Any R-module M such that E(M) has an indecomposable decomposition is

a locally supplemented module;

(vii) Any R-module M which has a semiperfect endomorphism ring is a locally

supplemented module;

(viii) Any R-module having a finite Goldie dimension is locally supplemented;

(ix) Any R-module M such that Assf (M) is finite is locally supplemented.

Proof. (i) ⇒ (iv) By [8, Proposition III.1], MaxSupp(M) contains only one max-

imal ideal m of R. Thus M = Km(M). Therefore M is locally supplemented by

Corollary 2.10.

(iv) ⇒ (ii) This follows from [15, Lemma 2.29 and Proposition 3.12].

(ii) ⇒ (i) Let p be a prime ideal of R. Note that any maximal ideal of R

containing p belongs to MaxSupp(E(R/p)). But MaxSupp(E(R/p)) contains only

one element by Proposition 2.12. Then p is contained in only one maximal ideal of

R. It follows that R is a Gelfand ring.



CHARACTERIZATIONS OF RINGS VIA LOCALLY SUPPLEMENTED MODULES 187

(ii) ⇔ (iii) and (iv) ⇒ (v) See Remark 2.8.

(v) ⇒ (vii) This follows from the fact that any module M with a semiperfect

endomorphism ring has an LE-decomposition (see [9, Proposition 3.14]).

(vii) ⇒ (iv) This is immediate.

(v) ⇒ (vi) Note that every indecomposable injective module has a local endo-

morphism ring by [15, Proposition 3.12]. This implication follows directly from

Remark 2.8(i) and the fact that M ≤ E(M) for any module M .

(vi) ⇒ (viii) Let M be an R-module having a finite Goldie dimension. By [12,

Theorem 13.3], E(M) is a finite direct sum of indecomposable injective modules.

The result follows from (vi).

(viii)⇒ (i) Let p be a prime ideal of R. Then R/p is a uniform R-module. So the

R-module R/p is locally supplemented. Since R/p is an indecomposable R-module,

MaxSupp(R/p) = {m} for some m ∈ Max(R) by Corollary 2.10. Therefore m is

the only maximal ideal of R that contains p. Thus R is a Gelfand ring.

(ix) ⇒ (i) Let p be a prime ideal of R. We have Assf (R/p) = {p} is finite

and so R/p is locally supplemented. By similar arguments as in the proof of the

implication (viii) ⇒ (i), we obtain that R is a Gelfand ring.

(i) ⇒ (ix) Let M be an R-module such that Assf (M) is finite and let 0 6= x ∈
M . Since Assf (Rx) ⊆ Assf (M), Assf (Rx) is finite. This implies that the ring

R/Ann(x) has a finite number of minimal prime ideals. But R/Ann(x) is also

Gelfand. So R/Ann(x) is semiperfect by [1, Theorem 5]. Therefore M is locally

supplemented by Proposition 2.6. This completes the proof. �

To obtain another characterization of Gelfand rings, we need the following lemma.

Lemma 3.10. Let R be a ring and let M be an R-module. Then M is a locally

supplemented R-module if and only if M ⊗ N is a locally supplemented R-module

for every R-module N .

Proof. (⇒) Let N be an R-module and let 0 6= x =
∑n
i=1 xi ⊗ yi ∈ M ⊗ N

where xi ∈ M and yi ∈ N for every i ∈ {1, . . . , n}. Let M ′ = Rx1 + · · · +

Rxn. Thus Ann(M ′) ⊆ Ann(Rx). Note that M ′ is locally supplemented as M ′ ≤
M . Then R/Ann(M ′) is a semiperfect ring by Lemma 2.5. Since R/Ann(Rx) ∼=

R/Ann(M ′)
Ann(Rx)/Ann(M ′) (as rings), it follows that R/Ann(x) is also a semiperfect ring.

Therefore M ⊗N is locally supplemented by Proposition 2.6.

(⇐) Take N = R. �

Let M be an R-module and let p be a prime ideal of R. Since the ring Rp

is local (and hence semiperfect), Mp is always a locally supplemented Rp-module
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(Proposition 3.1). But this is no longer true if we consider Mp as an R-module as

shows the following result.

Corollary 3.11. The following are equivalent for a ring R:

(i) For every prime ideal p of R, Rp is a locally supplemented R-module;

(ii) For every prime ideal p of R and for every R-module M , Mp is a locally

supplemented R-module;

(iii) ⊕p∈Spec(R)Rp is a locally supplemented R-module;

(iv) ⊕p∈Spec(R)Mp is a locally supplemented R-module for every R-module M ;

(v) R is Gelfand.

Proof. (i) ⇒ (ii) It is well known that for every prime ideal p of a ring R and for

every R-module M , Mp
∼= M ⊗Rp. The result now follows from Lemma 3.10.

The implication (ii) ⇒ (i) is clear.

(i) ⇔ (iii) and (ii) ⇔ (iv) See Remark 2.8.

(i)⇒ (v) Let p be a prime ideal of R. Then Rp is an indecomposable R-module.

Since Rp is a locally supplemented R-module, MaxSupp(Rp) contains only one

element by Corollary 2.10. Moreover, if m is a maximal ideal containing p, then

m ∈ MaxSupp(Rp). So p is contained in only one maximal ideal of R. Therefore

R is a Gelfand ring.

(v) ⇒ (i) Let p be a prime ideal of R. Then Rp
∼= EndR(Rp) is a local ring.

Now apply Theorem 3.9. �

Corollary 3.11 should be contrasted with the following remark.

Remark 3.12. Let R be a ring. Note that the R-module
∏

p∈Spec(R)Rp is locally

supplemented if and only if R is a semiperfect ring. This comes from the fact that R

is isomorphic (as an R-module) to a submodule of
∏

p∈Spec(R)Rp (see Proposition

3.1).

A ring R is called clean if each element of R can be expressed as the sum of a

unit and an idempotent. By [1, Proposition 2], every local ring is clean. It is shown

in [1, Corollary 4] that any clean ring is Gelfand. Combining Theorems 3.7 and

3.9, we get the following hierarchy:

R is clean ⇒ R is Gelfand ⇒ R is Camillo.

It is well known that for any prime ideal p of R, the R-module E(R/p) is in-

decomposable. Replacing the condition “E(R/p) is locally supplemented for all

p ∈ Spec(R)” in Theorem 3.9 by the condition “any indecomposable R-module is

locally supplemented”, we get the following characterization of clean rings.
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Proposition 3.13. The following conditions are equivalent for a ring R:

(i) R is a clean ring;

(ii) Any indecomposable R-module is locally supplemented;

(iii) Any R-module having an indecomposable decomposition is locally supple-

mented.

Proof. (i) ⇔ (ii) By [8, Proposition III.2].

(ii) ⇔ (iii) This follows from Remark 2.8. �

Let M be an R-module. We say that M is
∑

-injective if any direct sum of copies

of M is injective. Clearly, any
∑

-injective R-module is injective and the converse

holds when R is a noetherian ring.

Proposition 3.14. Let R be a ring. Then the following conditions are equivalent:

(i) Any
∑

-injective R-module is locally supplemented;

(ii) For any prime ideal p of R such that Rp is a noetherian ring, E(R/p) is a

locally supplemented R-module.

Proof. (i)⇒ (ii) Let p ∈ Spec(R) such that Rp is a noetherian ring. By [3, Remark

p. 236], E(R/p) is
∑

-injective and so it is locally supplemented.

(ii) ⇒ (i) Let M be a
∑

-injective R-module. By [3, Theorem 1.9], there exists

H ⊆ Spec(R) such that M ∼= ⊕p∈HE(R/p) and E(R/p) is
∑

-injective for every

p ∈ H. Using again [3, Remark p. 236], it follows that each Rp (p ∈ H) is a

noetherian ring. Hence each E(R/p) (p ∈ H) is a locally supplemented R-module.

Therefore M is locally supplemented (see Remark 2.8). �

Corollary 3.15. Let R be a Gelfand ring. Then any
∑

-injective R-module is

locally supplemented.

Proof. By Theorem 3.9 and Proposition 3.14. �

We conclude this paper by investigating the class of rings R for which every

locally supplemented R-module is semisimple. We call a ring R an LS-ring if every

local R-module is a simple module. It is clear that every von Neumann regular ring

is an LS-ring

Proposition 3.16. The following statements are equivalent for a ring R:

(i) Any locally supplemented R-module is semisimple;

(ii) For any R-module M , K(M) = Soc(M);

(iii) For any locally supplemented R-module M , Rad(M) = 0;

(iv) R is an LS-ring.
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Proof. (i) ⇔ (ii) This equivalence is immediate.

(i) ⇒ (iii) ⇒ (iv) These implications are clear.

(iv) ⇒ (i) Let M be a locally supplemented R-module. By Theorem 2.9, M =⊕
m∈MaxSupp(M)Km(M). Fix m ∈ MaxSupp(M) and let 0 6= x ∈ Km(M). Then

R/Ann(x) is a local ring. This implies that R/Ann(x) is a local R-module. By

hypothesis, R/Ann(x) is a simple R-module. Therefore R/Ann(x) ∼= Rx is a simple

R-module. Thus Km(M) is semisimple for all m ∈ MaxSupp(M). It follows that

M is a semisimple R-module. �

In the next results, we shed some light on the structure of LS-rings.

Proposition 3.17. Let R be a ring with J = Rad(R). Then the following condi-

tions are equivalent:

(i) R is an LS-ring;

(ii) (1) R/J is an LS-ring, and

(2) For any maximal ideal m of R, Rad(m)� m, and

(3) m2 = m for any maximal ideal m of R;

(iii) (1) R/J is an LS-ring, and

(2) J � m for any maximal ideal m of R.

Proof. We first observe that for a maximal ideal m of R with m2 = m, we have

Rad(m) = ∩m′∈Max(R)m
′m = J (see [11, Lemma 3]).

(i)⇒ (ii) It is easily seen that R satisfies the condition (1). To prove (3), let m be

a maximal ideal of R. Since R/m2 is a local R-module, R/m2 is a simple R-module.

This yields m2 = m. Let us show that R satisfies (2). Let X be a submodule of m

such that X +Rad(m) = m. Since Rad(m) = J , we have X + J = m. This implies

that m is the only maximal ideal of R which contains X. Therefore R/X is a local

R-module. By hypothesis, we have X = m. Hence Rad(m)� m.

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) Let a be an ideal of R such that a is contained in only one maximal

ideal m of R. Then R/(a + J) is a local R-module. Thus R/(a + J) is a local

R/J-module. Since R/J is an LS-ring, we have a+ J = m. As J � m, we see that

a = m. This completes the proof. �

Next, we provide a characterization of when a Camillo ring is an LS-ring.

Proposition 3.18. Let R be a Camillo ring. Then the following conditions are

equivalent:

(i) R is an LS-ring;
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(ii) R is von Neumann regular.

Proof. (i) ⇒ (ii) Let m be a maximal ideal of R. Since R is Camillo, E(R/m) is a

locally supplemented R-module by Theorem 3.7. Therefore E(R/m) is a semisimple

R-module by Proposition 3.16. Thus R/m = E(R/m) is an injective R-module. So

all simple R-modules are injective. By [12, Corollary 3.73], R is a von Neumann

regular ring.

(ii) ⇒ (i) This is clear. �

Recall that a module M is called semiartinian is any nonzero factor module of M

contains a simple submodule. We end this article by characterizing Camillo rings

over which any locally supplemented module can be decomposed into a direct sum

of cyclic submodules.

Theorem 3.19. The following conditions are equivalent for a Camillo ring R:

(i) Any locally supplemented R-module is a direct sum of cyclic submodules;

(ii) Rm is an artinian principal ideal ring for every maximal ideal m of R.

Proof. (i) ⇒ (ii) By [2, Proposition 8.8], we only need to show that Rm is an

artinian ring and dimRm/mRm
(mRm/m

2Rm) ≤ 1 for every maximal ideal m of R.

Let m be a maximal ideal of R and let M be a noetherian semiartinian R-

module. By [16, Proposition 3.1], we see that M is an artinian module. Thus

M is locally supplemented. By assumption, it follows that M is a direct sum of

cyclic submodules. Using [17, Lemma 1], we have dimR/mm/m
2 ≤ 1. This yields

dimRm/mRm
(mRm/m

2Rm) ≤ 1.

Now since R is a Camillo ring, it follows that any finitely embedded R-module is

locally supplemented by Theorem 3.7. Therefore every finitely embedded R-module

is a finite direct sum of cyclic submodules. Applying [18, Theorem 3], we conclude

that Rm is an artinian ring for every maximal ideal m of R.

(ii) ⇒ (i) let M be a locally supplemented R-module. By Theorem 2.9, M =⊕
m∈MaxSupp(M)Km(M). Let m ∈ MaxSupp(M). Notice that Km(M) has also a

structure of an Rm-module defined by the following operation: given x ∈ Km(M),

r ∈ R and s ∈ R \m, we put (r/s)x = rx′ with x′ is the unique element of Km(M)

which satisfies x = sx′. Note that x′ exists because Ann(x)+Rs = R. Moreover, we

have Rmx = Rx for every x ∈ Km(M). By hypothesis, Rm is an artinian principal

ideal ring. So Km(M) is a direct sum of cyclic Rm-submodules by [15, Theorem

6.7]. Hence M is a direct sum of cyclic R-submodules. �
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[18] P. Vámos, The dual of the notion of “finitely generated”, J. London Math.

Soc., 43(1) (1968), 643-646.
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