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1. Introduction

Braided categories were introduced by Joyal and Street [5]. They are related to

knot invariants, topology and quantum groups, since they can express symmetries.

Some examples of braided categories are:

• graded modules over a commutative ring,

• (co)modules over a (co)quasi-triangular Hopf algebra,

• the Braid category, [5, Section 2.2],

• the center of a tensor category.

In the last example, we begin with a tensor category and construct a braided one. In

a general scenario, a natural question is it is possible to construct braidings starting

with tensor categories. In particular, if G is a finite group, can a G-extension of a

tensor category be braided? In this work we show that this can be done in very

few cases. Then, an extension of a braided category is not necessarily braided, so

it is really complicated to extend that property.

However, constructing examples of non-braided categories is also important. A

big family of these come from the category of (co)modules of a Hopf algebra without

a (co)quasi-triangular structure, see [9, T 10.4.2]. Masuoka in [6] and [7] constructs

explicit examples of non-Quasi-triangular or non-CoQuasi-triangular Hopf algebras.

In particular these Hopf algebras can not be obtained from any group algebra by

twist (or cocycle) deformation. Other examples were constructed in [4].
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In the literature there are a few explicit examples of tensor categories, for this

reason we construct in [8] eight tensor categories, following the description intro-

duced in [3] of Crossed Products. These categories extend the module category

over certain quantum groups, called supergroup algebras. In a few words, a crossed

product tensor category is, as Abelian category, the direct sum of copies of a fixed

tensor category, and the tensor product comes from certain data. Then founding

all possible data, we explicitly construct tensor categories.

In the same work [3], the author also describes all possible braidings over a

crossed product. Following this, three conditions were introduced to decide if a

G-crossed product is braidable:

(1) the base category has to be braided,

(2) G has to be Abelian, and the biGalois objects associated to each crossed

product have to be trivial,

(3) the 3-cocycle associated to each crossed product over an specific supergroup

algebra has to be trivial, if G is the cyclic group of order 2.

The goal in the present paper is to obtain all possible braidings over the categories

introduced in [8]. With this, only two categories of the eight found in [8] are braided

with the trivial braiding only, and the other 6 are not braidable.

In [8, Theorem 6.3], using the Frobenius-Perron dimension, we proved that these

eight categories are the module category of a quasi-Hopf algebra. Although we do

not know how to explicitly compute these algebras, as a corollary of this work,

we know that six of these algebras are non-Quasi-triangular and two are Quasi-

triangular only. In particular, we are obtaining information about certain quasi-

Hopf algebras without knowing them explicitly; showing how useful it is to work in

the category world. In a future, when we can explicitly describe these quasi-Hopf

algebras, we will already know how their Quasi-triangular structures are.

2. Preliminaries and notation

Throughout this paper we shall work over an algebraically closed field k of char-

acteristic zero. For basic knowledge of Hopf algebras see [9]. Let H be a finite-

dimensional Hopf algebra and A be a left H-comodule. Then A is also a right

H-comodule with right coaction a 7→ a0 ⊗ S(a−1), see [1, Proposition 2.2.1(iii)].

A left H-Galois extension of Aco(H) is a left H-comodule algebra (A, ρ) such that

A ⊗Aco(H) A → H ⊗ A, a ⊗ b 7→ (1 ⊗ a)ρ(b) is bijective. Similarly, we define right

H-Galois extension.
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Consider L another finite-dimensional Hopf algebra. An (H,L)-biGalois object

[10] is an algebra A that is a left H-Galois extension and a right L-Galois exten-

sion of the base field k such that the two comodule structures make it an (H,L)-

bicomodule. Two biGalois objects are isomorphic if there exists a bijective bico-

module morphism that is also an algebra map. For A an (H,L)-biGalois object,

define the tensor functor

FA : Comod(L)→ Comod(H), FA = A�L − .

By [10], every tensor functor between comodule categories is one of these, and

FA ' FB as tensor functors if and only if A ' B as biGalois objects.

If A = H, then every natural monoidal equivalence β : FH → FH is given by

f ⊗ idX : H�HX → H�HX, (X, ρX) ∈ Comod(H),

where f : H → H is a bicomodule algebra isomorphism.

Lemma 2.1. Every natural monoidal equivalence idComod(H) → idComod(H) is

given by (εf ⊗ idX)ρX .

Proof. For X ∈ Comod(H), the coaction induces an isomorphism X ' H�HX

with inverse induced by ε, the counit. Then idComod(H) ' FH as tensor functors.

Since all natural monoidal autoequivalences of FH are given by f ⊗ idX then all

natural monoidal autoequivalences of idComod(H) are given by (εf ⊗ idX)ρX . �

Definition 2.2. [9, Definition 10.1.5] (H,R) is a Quasi-triangular (or QT) Hopf

algebra if H is a Hopf algebra and there exists R ∈ H ⊗ H, called the R-matrix,

invertible such that

(∆⊗ id)R = R13R23, (id⊗∆)R = R13R12, ∆op(h) = R∆(h)R−1, h ∈ H.

Dualizing we can define, (H, r) is a CoQuasi-triangular (or CQT) Hopf algebra

if H is a Hopf algebra and r : H ⊗H → k, called the r-form, is a linear functional

which is invertible with respect to the convolution multiplication and satisfies for

arbitrary a, b, c ∈ H

r(c⊗ ab) = r(c1 ⊗ b)r(c2 ⊗ a), r(ab⊗ c) = r(a⊗ c1)r(b⊗ c2),

r(a1 ⊗ b1)a2b2 = r(a2 ⊗ b2)b1a1.

Remark 2.3. Drinfeld defined a quantum group as a non-commutative, non-

cocommutative Hopf algebra. Examples of these are the QT Hopf algebras. The
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importance of quantum groups lies in they allow to construct solutions for the quan-

tum Yang-Baxter equation in statistical mechanics (the R-matrix is a solution of

this equation). An example of quantum group are the supergroup algebras.

A supergroup algebra is a supercocommutative Hopf algebra of the form k[G] n
∧V , where G is a finite group and V is a finite-dimensional G-module. They

appear and have an interesting role in the classification of triangular algebras, see

[2, Theorem 4.3].

Example 2.4. Consider H = kC2 n kV , for V a 2-dimensional vector space and

C2 the 2-cyclic group generated by u with u · v = −v for v ∈ V . As an algebra, it is

generated by elements v ∈ V, g ∈ C2 subject to relations vw+wv = 0; gv = (g · v)g

for all v, w ∈ V, g ∈ C2. The coproduct and antipode are determined by

∆(v) = v ⊗ 1 + u⊗ v; ∆(g) = g ⊗ g;S(v) = −uv;S(g) = g−1, v ∈ V, g ∈ C2.

Taking R = 1
2 (1 ⊗ 1 + 1 ⊗ u + ⊗1 − u ⊗ u), (H,R) is a QT-Hopf algebra. We

can construct a CoQuasi-triangular structure taking r = R∗ since H is auto-dual.

Then (H,R∗) is a CQT-Hopf algebra.

Definition 2.5. A finite tensor category is a locally finite, k-linear, rigid, monoidal

Abelian category D with EndD (1) ∼= k. Given a finite group Γ, a (faithful) Γ-

grading on a finite tensor category D is a decomposition D = ⊕g∈ΓDg, where Dg
are full Abelian subcategories of D such that

• Dg 6= 0;

• ⊗ : Dg ×Dh → Dgh for all g, h ∈ Γ.

We have that C := De is a tensor subcategory of D. The category D is call a

Γ-extension of C. Denote by [V, g] the homogeneous elements in D, for V ∈ Dg,
g ∈ Γ.

A braided tensor category is a tensor category C with natural isomorphisms

cX,Y : X ⊗ Y → Y ⊗X such that

αV,W,UcU,V⊗WαU,V,W = (id⊗cU,W )αV,U,W (cU,V ⊗ id), (1)

α−1
W,U,V cU⊗V,Wα

−1
U,V,W = (cU,W ⊗ id)α−1

U,W,V (id⊗cV,W ). (2)

If (H, r) is a CQT-Hopf algebra then Comod(H) is a braided tensor category with

braiding given by cV⊗W (x⊗ y) = r(y−1 ⊗ x−1)y0 ⊗ x0, for all V,W ∈ Comod(H).

The following theorem gives us the first condition to know when an extension

can be braided.
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Theorem 2.6. Let D = ⊕g∈GDg be a Γ-extension of C. If D is a braided tensor

category then C is a braided tensor category.

Proof. Let c be the braiding of D, then c[V,e],[W,e] : [V ⊗W, e] → [W ⊗ V, e] and

c[V,e],[W,e] = [cV,W , e] for some natural isomorphism cV,W : V ⊗W → W ⊗ V , for

V,W objects in C. Since the associativity isomorphism satisfies a[V,e],[W,e],[U,e] =

[aV,W,U , e], where a is the associativity morphism for C; then c is a braiding for

C. �

In [3], the author describes and classifies a family of such extensions and calls

it crossed product tensor category. Fix H a finite-dimensional Hopf algebra. In

the case when C = Comod(H), in [8], we described crossed products in terms of

Hopf-algebraic datum. A continuation they are introduced.

If g ∈ G(H) and L is a (H,H)-biGalois object then the cotensor product L�Hkg
is one-dimensional. Let φ(L, g) ∈ Γ be the group-like element such that L�Hkg '
kφ(L,g) as left H-comodules. Assume that A is an H-biGalois object with left H-

comodule structure λ : A → H ⊗k A. If g ∈ G(H) is a group-like element we

can define a new H-biGalois object Ag on the same underlying algebra A with

unchanged right comodule structure and a new left H-comodule structure given by

λg : Ag → H ⊗k A
g, λg(a) = g−1a−1g ⊗ a0 for all a ∈ A.

Theorem 2.7. [8, Lemma 5.7, Theorem 5.4] Let Υ = (La, (g(a, b), fa,b), γ)a,b∈Γ be

a collection where

• La is a (H,H)-biGalois object;

• g(a, b) ∈ G(H);

• fa,b : (La�HLb)g(a,b) → Lab are bicomodule algebra isomorphisms;

• γ ∈ Z3(G(H),k×) normalized,

such that for all a, b, c ∈ Γ:

Le = H, (g(e, a), fe,a) = (e, idLa) = (g(a, e), fa,e); (3)

φ(La, g(b, c))g(a, bc) = g(a, b)g(ab, c); (4)

fab,c(fa,b ⊗ idLc) = fa,bc(idLa ⊗f b,c). (5)

Then Comod(H)(Υ) := ⊕g∈Γ Comod(H) as a structure of tensor category.
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Proof. We give an sketch of the proof. Let Υ be a collection as in the Theorem.

For V,W ∈ Comod(H), a, b ∈ Γ, define

[V, a]⊗ [W, b] : = [V ⊗ (La�HW )⊗ kg(a,b), ab],

[V, 1]∗ : = [V ∗, 1],

[k, a]∗ : = [kg(a,a−1), a
−1].

Using [8, Eq (5.8)], we obtain the pentagon diagram and therefore Comod(H)(Υ) is

a monoidal category. Since Comod(H) is finite tensor category, then Comod(H)(Υ)

is also finite tensor category. �

The following theorem gives us a second condition to decided if our extensions

can be braided.

Theorem 2.8. If Comod(H)(Υ) is braided with braiding c then the following con-

ditions have to hold

(1) La ' H for all a ∈ Γ,

(2) Γ is Abelian,

(3) Υ comes from a data (g, fa,b, γ)a,b∈Γ with

• g ∈ Z2(Γ, G(H)) normalized,

• fa,b : Hg(a,b) → H a bicomodule algebra isomorphism with fab,cfa,b =

fa,bcf b,c,

• γ ∈ Z3(G(H),k×) normalized.

Proof. (1) Take, for any V ∈ Comod(H), c[V,e][1,a] : [V, a] → [La�HV, a], this

defines a natural isomorphism ca : idC → La�H− which is monoidal since c is a

braiding. Then La ' H as bicomodule algebras for all a ∈ Γ.

(2) Consider c[1,a][1,b] : [kg(a,b), ab] → [kg(b,a), ba] then ab = ba for all a, b ∈ Γ

and Γ is Abelian.

(3) Since La is trivial, then Equation (4) of Theorem 2.7 is equivalent to g ∈
Z2(Γ, G(H)) and it is normalized by Equation (3) of Theorem 2.7. Moreover fa,b :

Hg(a,b) → H is a bicomodule algebra isomorphism that satisfies fab,cfa,b = fa,bcf b,c

which is equivalent to Equation (5) of Theorem 2.7. �

Remark 2.9. By definition of bicomodule morphism, fa,b : H → H has to be

an algebra isomorphism such that fa,b(h)1 ⊗ fa,b(h)2 = g−1h1g ⊗ fa,b(h2) and

fa,b(h)1 ⊗ fa,b(h)2 = fa,b(h1)⊗ h2, then g−1h1g ⊗ fa,b(h2) = fa,b(h1)⊗ h2.
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In the case when H = ∧V#kC2, as Example 2.4, using the previous Theorem

we obtained eight tensor categories non-equivalent pairwise, [8, Section 6.3], named

C0(1, id,±1), C0(u, ι,±1), D(1, id,±1), D(u, ι,±1).

In all cases, the underlying Abelian category is Comod(H)⊕Comod(H) and for

V,W,Z ∈ Comod(H) they are defined in the following way:

• The tensor product, dual objects and associativity in C0(1, id,±1) are given by

[V, e][W, g] = [V ⊗W, g], [V, u][W, g] = [V ⊗U0�HW,ug],

[V, e]∗ = [V ∗, e], [1, u]∗ = [k, u],

α[V,u],[W,u],[Z,u] is not trivial, and U0 is certain BiGalois object, see [8, Section 4].

• The tensor product, dual objects and associativity in C0(u, ι,±1) are given by

[V, e][W, e] = [V ⊗W, 1], [V, u][W,u] = [V ⊗U0�HW ⊗ ku, e],

[V, e][W,u] = [V ⊗W,u], [V, u][W, e] = [V ⊗U0�HW,u],

[V, e]∗ = [V ∗, e], [1, u]∗ = [ku, u],

α[V,u],[W,u],[Z,u] is not trivial.

• The tensor product, dual objects and associativity in D(1, id,±1) are given by

[V, e][W, g] = [V ⊗W, g], [V, u][W, g] = [V ⊗W,ug],

[V, e]∗ = [V ∗, e], [1, u]∗ = [k, u],

α[V,u],[W,u],[Z,u] = [± idV⊗W⊗Z , u] and the others are trivial.

• The tensor product, dual objects and associativity in D(u, ι,±1) are given by

[V, e][W, e] = [V ⊗W, e], [V, u][W,u] = [V ⊗W ⊗ ku, e],

[V, e][W,u] = [V ⊗W,u], [V, u][W, e] = [V ⊗W,u],

[V, e]∗ = [V ∗, e], [1, u]∗ = [ku, u],

α[V,u],[W,u],[Z,u] = [± idV⊗W ⊗τ(ειρZ ⊗ idZ⊗ku), u], where ι : Hu → H is the unique

bicomodule algebra isomorphism which satisfies ι(u) = −u and ι(x) = −x for

x ∈ V ; and τ : X ⊗ Y → Y ⊗X, τ(z⊗ k) = k⊗ z for all X,Y ∈ Comod(H), see [8,

Remark 2.2].

Remark 2.10. By Lemma 2.8(1), we obtain that only the categories D(1, id,±1)

and D(u, ι,±1) could be braided, since the BiGalois objects have to be trivial.

By direct calculation on Equation (1), D(u, ι,−1) is not braided with trivial

braiding. So, in this case, we want to know if there exist another possible braidings.
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3. Braided crossed product

Let Γ be an Abelian group. In [8], following the ideas developed in [3], we

described all Γ-crossed product tensor categories which are extensions of Comod(H)

for H a Hopf algebra in terms of certain Hopf-algebraic datum. Fix (H, r) a CQT-

Hopf algebra. In the first Lemma of this Section, we do the same for the braiding

of crossed products that are Γ-extensions of Comod(H).

Remark 3.1. If v : H → H is a left H-comodule morphism, since the coaction is

the coproduct, v satisfies v(x)1 ⊗ v(x)2 = x1 ⊗ v(x2), for all x ∈ H. In particular,

v is not a coalgebra morphism and if g ∈ G(H), v(g) = gε(v(g)).

Lemma 3.2. Fix a datum (g, fa,b, γ)a,b∈Γ, as in Lemma 2.8, and let C be the

associated tensor category. Consider a pair (va, wa)a∈Γ where va, wa : H → H are

left H-comodule algebra isomorphisms. Let W a = εwa, V a = εva and F a,b = εfa,b.

If for all a, b, c ∈ Γ and X ∈ Comod(H) we have

v1 = w1 = idH , (6)

(g(a, b), fa,b) = (g(b, a), f b,a), (7)

W b(x−3)W a(x−2)(W ab)−1(x−1)x0 = F a,b(x−2)r(x−1 ⊗ g(a, b))x0, x ∈ X, (8)

V b(x−3)V a(x−2)(V ab)−1(x−1)x0 = r(x−2 ⊗ g(a, b))F a,b(x−1)x0, x ∈ X, (9)

V a(g(b, c)) = (γa,b,cγb,c,a)−1γb,a,c, (10)

W b(g(c, a)) = γc,a,bγb,c,aγ
−1
c,b,a; (11)

then we obtain a braiding over C given by

c[V,a],[W,b] = cV,W ((V a ⊗ id)ρV ⊗ (W a ⊗ id)ρW )⊗ id, V,W ∈ Comod(H), a, b ∈ Γ.

All braidings over C come from a pair (va, wa)a∈Γ which satisfies (7) to (11).

Proof. By [3, Definition 5.3], a datum (g, fa,b, γ)a,b∈Γ has associated a braiding if

there exist a triple (θa, τa, ta,b)a,b∈G where

• θa, τa : idC → idC are monoidal natural isomorphisms,

• for all a, b ∈ G, ta,b : (Ua,b, σ
a,b) → (Ub,a, σ

b,a) are isomorphisms in Z(C),
where σa,bX = τ(εfa,b ⊗ idX)ρX , for (X, ρX) ∈ Comod(H), and Ua,b =

kg(a,b),

such that for all a, b, c ∈ Γ and X ∈ C, the following conditions hold

θ1 = τ1 = id, θa1 = id1 = τa1 , ta,1 = t1,a = id1, (12)

cUa,b,Xσ
a,b
X = ((τabX )−1τaXτ

b
X)⊗ idUa,b

, (13)
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σa,bX cUa,b,X = idUa,b
⊗((θabX )−1θaXθ

b
X), (14)

γa,b,c(θ
a
Ub,c
⊗ tbc,a)γb,c,a = (tb,c ⊗ idUba,c

)γb,a,c(tc,a ⊗ idUb,ac
), (15)

γ−1
c,a,b(τ

b
c,a ⊗ tb,ca)γ−1

b,c,a = (tb,a ⊗ idUc,ba
)γ−1
c,b,a(tb,c ⊗ idUbc,a

). (16)

By Lemma 2.1, each monoidal natural isomorphism of the identity functor comes

from a left H-comodule algebra isomorphism, then θaX := (εva ⊗ id)ρX and τaX :=

(εwa⊗idX)ρX for all X ∈ Comod(H). Since Ug(a,b) = kg(a,b), we can take ta,b ∈ k∗.
Each ta,b is a left H-comodule isomorphism if and only if g(a, b) ⊗ ta,b idk =

g(b, a)⊗ ta,b idk which gives g(a, b) = g(b, a) for all a, b ∈ Γ. Moreover, each ta,b is a

braided morphism if and only if σa,bX ta,b = σb,aX ta,b for a, b ∈ Γ and X ∈ Comod(H)

if and only if σa,b = σb,a. Then ta,b is an isomorphism in Z(Comod(H)) if and only

if Condition (7) holds.

Condition (12) is equivalent to v1 = w1 = idH and ta,1 = t1,a = 1, since

θak = idk = τak is always true. Condition (13) is equivalent to

F a,b(x−2)r(x−1 ⊗ g(a, b))x0 ⊗ k = W b(x−3)W a(x−2)(W ab)−1(x−1)x0 ⊗ k,

for x ⊗ k ∈ X ⊗ kg(a,b), which is equivalent to Condition (8). In the same way,

Condition (14) is equivalent to Condition (9). Condition (15) is equivalent to

γa,b,cV
a(g(b, c))tbc,aγb,c,a = tb,cγb,a,ctc,a but if we take c = 1 then

1 = tb,a, for a, b ∈ Γ,

so, this Condition is equivalent to Condition (10), and Condition (16) is equivalent

to Condition (11).

By [3, Theorem 5.4], this pair produces a braiding over C given by

c[V,a],[W,b] = [cV,W (θaV ⊗ τaW ), ab], for all V,W ∈ Comod(H), a, b ∈ Γ, (17)

and all braidings come from such a pair. �

Now, we focus our attention into the case Γ = C2. By Lemma 2.8, a datum Υ′ =

(g, f, γ) with g ∈ G(H) a group-like element, f : Hg → H a bicomodule algebra

isomorphism and γ ∈ k×, γ2 = 1; generates a tensor category C = Comod(H)(Υ′).

The following theorem gives us the third and last condition to decide if our

categories are braidable.

Theorem 3.3. The category Comod(H)(Υ′) is a braided C2-extension if and only

if, there exists a pair of isomorphisms of left H-comodule algebras v, w : H → H

such that for all X ∈ ComodH and x ∈ X

a. ε(w(x−2)w−1(x−1))x0 = x,
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b. ε(w(x−2)w(x−1))x0 = εf(x−2)r(x−1 ⊗ g)x0,

c. ε(v(x−2)v−1(x−1))x0 = x,

d. ε(v(x−2)v(x−1))x0 = r(x−2 ⊗ g)εf(x−1)x0,

e. ε(v(g)) = γ−1,

f. ε(w(g)) = γ.

Proof. Condition (7) is always true. Condition (8) is equivalent to r(x−1⊗1)x0 =

x, and items a,b. Condition (9) is equivalent to r(x−1 ⊗ 1)x0 = x, and items c,d.

Condition (10) is equivalent to item e. Condition (11) is equivalent to item f.

Regarding condition r(x−1⊗1)x0 = x, it is always true over a CoQuasi-triangular

Hopf algebra. �

If H = ∧V#kC2, as Example 2.4, by [8, Proposition 4.10], the isomorphisms v

and w are identities. Then if the extension is braided the only possible braiding is

the trivial, see Equation (17), since the category ComodH has a braiding giving

by the r-form. With this information, Conditions a-f are equivalent to

a’. ε(x−2x−1)x0 = x,

b’. ε(x−2x−1)x0 = εf(x−2)r(x−1 ⊗ g)x0,

c’. ε(x−2x−1)x0 = r(x−2 ⊗ g)εf(x−1)x0,

d’. ε(g) = γ−1,

e’. ε(g) = γ.

Since g is a group-like element, d’ and e’ imply that γ = 1. Thus, the only categories

that could be braided are D(1, id, 1) and D(u, ι, 1).

Corollary 3.4. A C2-extension over Comod (∧V#kC2) is braided if and only if,

for all comodule X, r(f(x−1)⊗ g)x0 = x, for all x ∈ X.

Proof. Condition a’ is always true over comodules. Since x1y1r(x2⊗ y2) = r(x1⊗
y1)y2x2 for x, y ∈ H we have

(x−1g)r(x−2 ⊗ g)⊗ x0 = r(x−1 ⊗ g)gx−2 ⊗ x0.

Applying εf ⊗ idX , we obtain r(x−2 ⊗ g)εf(x−1)x0 = εf(x−2)r(x−1 ⊗ g)x0. This

implies that Conditions b’ and c’ are equivalent. Since

r(f(x)⊗ g) = r(f(x)1 ⊗ g)ε(g(f(x)2)) = r(x1 ⊗ g)ε(f(x2))

we have r(f(x−1)⊗g)x0 = εf(x−2)r(x−1⊗g)x0, then Condition b’ is equivalent to

r(f(x−1)⊗ g)x0 = x.
�

We are ready for our main result.
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Theorem 3.5. The categories D(1, id, 1) and D(u, ι, 1) are braided tensor cate-

gories. The remaining 6 categories found in [8] are non-braidable.

Proof. By [3, Theorem 5.4], the only possible option for v and w is for there to be

the identity. Then the categories D(1, id, 1) and D(u, ι, 1) have associated at most

a single pair (id, id), which would give it a braided structure For the remaining six

categories, we already know that they are non-braidable.

Since D(1, id, 1) has trivial associativity and Comod(H) is braided then the

braiding for D(1, id, 1) is

c[V,a],[W,b] = [cV,W , ab], for all V,W ∈ Comod(H), a, b ∈ C2. (18)

Over D(u, ι, 1) it is enough to check Equations (1) and (2) where the associativity

is not trivial. Since (f ⊗ id)(id⊗g) = (id⊗g)(f ⊗ id) for any f, g morphisms in the

category, also the braiding given in (18) also satisfies the desired Equations. �

Corollary 3.6. For X ∈ Comod (∧V#kC2), r(ι(x−1)⊗ g)x0 = x, for all x ∈ X.

Remark 3.7. Since Comod(H) is not symmetric, then these two categories are

not symmetric either.
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