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Abstract. Let R be a commutative ring with 1 6= 0 and Z(R) its set of zero-

divisors. The zero-divisor graph of R is the (simple) graph Γ(R) with vertices

Z(R) \ {0}, and distinct vertices x and y are adjacent if and only if xy = 0. In

this paper, we consider generalizations of Γ(R) by modifying the vertices or

adjacency relations of Γ(R). In particular, we study the extended zero-divisor

graph Γ(R), the annihilator graph AG(R), and their analogs for ideal-based

and congruence-based graphs.

Mathematics Subject Classification (2010): 05C99, 13A15, 13A99

Keywords: Zero-divisor graph, commutative ring with identity

1. Introduction

Let R be a commutative ring with 1 6= 0, and let Z(R) be its set of zero-divisors.

The zero-divisor graph of R is the (simple) graph Γ(R) with vertices Z(R)∗ = Z(R)\
{0}, the set of nonzero zero-divisors of R, and distinct vertices x and y are adjacent

if and only if xy = 0. There have been several other “zero-divisor” graphs associated

to R. The extended zero-divisor graph of R is the (simple) graph Γ(R) with vertices

Z(R)∗, and distinct vertices x and y are adjacent if and only if xmyn = 0 for positive

integersm and n with xm 6= 0 and yn 6= 0. The annihilator graph ofR is the (simple)

graph AG(R) with vertices Z(R)∗, and distinct vertices x and y are adjacent if and

only if annR(xy) 6= annR(x) ∪ annR(y) (i.e., annR(x) ∪ annR(y) ( annR(xy)).

These graphs all have the same vertex set Z(R)∗, and Γ(R) ⊆ Γ(R) ⊆ AG(R).

The ideal-based zero-divisor graph of R with respect to an ideal I of R is the

(simple) graph ΓI(R) with vertices ZI(R) = {x ∈ R\I | xy ∈ I for some y ∈ R\I },
and distinct vertices x and y are adjacent if and only if xy ∈ I. The ideal-based

extended zero-divisor graph of R (with respect to I) is the (simple) graph ΓI(R) with

vertices ZI(R), and distinct vertices x and y are adjacent if and only if xmyn ∈ I
for positive integers m and n with xm 6∈ I and yn 6∈ I. The ideal-based annihilator

graph of R (with respect to I) is the (simple) graph AGI(R) with vertices ZI(R),

and distinct vertices x and y are adjacent if and only if (I : xy) 6= (I : x) ∪ (I : y)
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(i.e., (I : x) ∪ (I : y) ( (I : xy)). Thus Γ{0}(R) = Γ(R), Γ{0}(R) = Γ(R),

and AG{0}(R) = AG(R). These graphs all have the same vertex set ZI(R), and

ΓI(R) ⊆ ΓI(R) ⊆ AGI(R).

More generally, for any (multiplicative) commutative semigroup S with 0, let

Z(S) = {x ∈ S | xy = 0 for some 0 6= y ∈ S } be the set of zero-divisors of S. The

zero-divisor graph of S is the (simple) graph Γ(S) with vertices Z(S)∗ = Z(S)\{0},
and distinct vertices x and y are adjacent if and only if xy = 0. Thus Γ(R) = Γ(S),

where S = R considered as a monoid under the given ring multiplication (or S =

Z(R)), and ΓI(R) = Γ(S), where S = RI is the Rees semigroup of R with respect

to the ideal I. We define the extended zero-divisor graph of S to be the (simple)

graph Γ(S) with vertices Z(S)∗, and distinct vertices x and y are adjacent if and

only if xmyn = 0 for positive integers m and n with xm 6= 0 and yn 6= 0; and

the annihilator graph of S is the (simple) graph AG(S) with vertices Z(S)∗, and

distinct vertices x and y are adjacent if and only if annS(xy) 6= annS(x)∪annS(y)

(i.e., annS(x) ∪ annS(y) ( annS(xy)). These graphs all have the same vertex set

Z(S)∗, Γ(S) ⊆ Γ(S), and Γ(S) ⊆ AG(S) if S 6= Z(S) (cf. [3, Theorem 3.1]).

In particular, Γ(S) ⊆ Γ(S) ⊆ AG(S) if S has an identity element. Note that

Γ(R) = Γ(S) and AG(R) = AG(S) for S = R considered as a multipicative monoid,

and ΓI(R) = Γ(S) and AGI(R) = AG(S) for S = RI .

Let ∼ be a multiplicative congruence relation on R (i.e., ∼ is an equivalence

relation on R and x ∼ y implies xz ∼ yz for x, y, z ∈ R). Then R/∼ = { [x]∼ |
x ∈ R }, the set of ∼-congruence classes of R, is a commutative monoid under

the induced multiplication [x]∼[y]∼ = [xy]∼ with identity element [1]∼ and zero

element [0]∼. (We will often just write [x] for [x]∼ when the context is clear.)

Thus Γ∼(R) = Γ(R/∼), called the congruence-based zero-divisor graph of R with

respect to ∼ (or the ∼-zero-divisor graph of R for short), is the (simple) graph

with vertices Z(R/∼)∗ = Z(R/∼) \ {[0]∼}, and distinct vertices [x]∼ and [y]∼ are

adjacent if and only if [x]∼[y]∼ = [xy]∼ = [0]∼, if and only if xy ∈ [0]∼. Special

cases of Γ∼(R) include the usual zero-divisor graphs Γ(R) and Γ(R/I), the ideal-

based zero-divisor graph ΓI(R), and the compressed zero-divisor graphs ΓE(R) and

ΓE(R/I) (see Sections 4 and 5). This approach clarifies the many isolated results

concerning the various zero-divisor graphs spread throughout the literature. We

define the extended ∼-zero-divisor graph of R to be Γ∼(R) = Γ(R/∼) and the ∼-

annihilator graph of R to be AG∼(R) = AG(R/∼). These graphs all have the same

vertex set Z(R/∼)∗, and Γ∼(R) ⊆ Γ∼(R) ⊆ AG∼(R).
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The concept of a zero-divisor graph was introduced by I. Beck ([18]), and then

further studied by D. D. Anderson and M. Naseer ([4]). However, they let all the

elements of R be vertices of the graph, and they were mainly interested in colorings.

Our definition of Γ(R) and the emphasis on studying the interplay between the

graph-theoretic properties of Γ(R) and the ring-theoretic properties of R are from

[13]. The extended zero-divisor graph Γ(R) was given by D. Bennis, J. Mikram,

and F. Taraza in [19]. In [17], A. Badawi defined the annihilator graph AG(R).

In [31], S. P. Redmond introduced the ideal-based zero-divisor graph ΓI(R), and

the ideal-based annihilator graph AGI(R) was defined by M. Afkami, N. Hoseini,

and K. Khashyarmanesh in [1]. The semigroup zero-divisor graph Γ(S) was given

by F. R. DeMeyer, T. McKenzie, and K. Schneider in [22], and the semigroup

annihilator graph AG(S) was defined by M. Afkhami, K. Khashyarmanesh, and S.

M. Sakhdari in [3]. The ∼-zero-divisor graph Γ∼(R) was introduced in [12]. For

additional information and references about zero-divisor graphs, see [8], [10], [11],

[24], [33], and the three survey articles [6], [7], and [21].

Starting with Γ(R), we can modify both the vertices and edges to get new “zero-

divisor” graphs. In this paper, we study these ideas in more detail. In the second

section, we study the ideal-based graphs ΓI(R), ΓI(R), and AGI(R). Results for

Γ(R), Γ(R), and AG(R) then follow by letting I = {0}. In the third section,

we study the congruence-based graphs Γ∼(R), Γ∼(R), and AG∼(R). We also in-

vestigate when Γ∼(R) is complemented or uniquely complemented. In the fourth

section, we study compressed graphs. In the final section, we study maps between

congruence-based graphs. This extends the work in [12] on Γ∼(R) to Γ∼(R) and

AG∼(R).

Throughout, R will be a commutative ring with 1 6= 0, Z(R) its set of zero-

divisors and Z(R)∗ = Z(R) \ {0}, nil(R) its set of nilpotent elements, U(R) its

group of units, T (R) = RS , where S = R \ Z(R), its total quotient ring, and

dim(R) its Krull dimension. For I an ideal of R,
√
I = {x ∈ R | xn ∈ I for some

n ∈ N }, and I is a radical ideal if
√
I = I. For I an ideal of R and x ∈ R, let

(I : x) = { y ∈ R | xy ∈ I }; thus (0 : x) = annR(x). We say that R is reduced

if nil(R) = {0}. These concepts extend in the obvious way to semigroups and

semigroup ideals. We will often consider R to be a commutative monoid under the

ring multiplication. In this case, an (ring) ideal of R is always a semigroup ideal of

R. However, the converse may fail since the union of (ring) ideals ofR is a semigroup

ideal of R. As usual, we assume that a subring has the same identity element as

the ring R, x0 = 1 for 0 6= x ∈ R, and all ring and monoid homomorphisms send
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the identity to the identity. Let N, Z, Zn, Q, and Fq denote the positive integers,

integers, integers modulo n, rational numbers, and the finite field with q elements,

respectively, and A∗ = A \ {0}. For any undefined ring-theoretic terminology, see

[26] or [27]; for semigroups, see [25].

Except for a brief digression in Section 4, we assume that all graphs are simple

graphs, i.e., they are undirected graphs with no multiple edges or loops. By abuse

of notation, we will often let G, rather than V (G), denote the vertices of a graph

G. Recall that a graph G is connected if there is a path between any two distinct

vertices of G. For vertices x and y of G, let d(x, y) be the length of a shortest path

from x to y (d(x, x) = 0 and d(x, y) =∞ if there is no such path). The diameter of

G is diam(G) = sup{ d(x, y) |x and y are vertices of G }. The girth of G, denoted

by gr(G), is the length of a shortest cycle in G (gr(G) =∞ if G contains no cycles).

As usual, Kn will denote the complete graph on n vertices, and Km,n will denote

the complete bipartite graph on m,n vertices (m and n may be infinite cardinals).

If m = 1 (or n = 1), then Km,n is called a star graph. A subgraph H of a graph

G is an induced subgraph of G if two vertices of H are adjacent in H if and only if

they are adjacent in G. For graphs G and G′, a function f : G −→ G′ is a graph

homomorphism if vertices x and y are adjacent in G implies that f(x) and f(y) are

adjacent in G′. The function f is a graph isomorphism if it is bijective and f and

f−1 are both graph homomorphisms (i.e., vertices x and y are adjacent in G if and

only if f(x) and f(y) are adjacent in G′); in this case, we write G ∼= G′ (again, by

abuse of notation, we will often just write G = G′ when f is a naturally induced

graph isomorphism). For a vertex x of a graph G, let NG(x) = { y ∈ V (G) | y is

adjacent to x } and NG(x) = NG(x)∪{x}. (We will often just write N(x) or N(x)

when the context is clear.) To avoid trivialities, we will implicitly assume when

necessary that our graphs are not the empty graph. A general reference for graph

theory is [20].

Many of the results in this paper are from the second-named author’s PhD

dissertation ([28]) at The University of Tennessee under the direction of the first-

named author.

2. Ideal-based graphs

In this section, we study the ideal-based graphs ΓI(R),ΓI(R), and AGI(R).

These graphs all have common vertex set ZI(R), but different adjacency rela-

tions. We will prove results for the general ideal-based case, and then results for

Γ(R),Γ(R), and AG(R) follow by letting I = {0}. Note that ZI(R) = ∅ if and only
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if I = R or I is a prime ideal of R. In particular, Z(R)∗ = ∅ if and only if R is

an integral domain. Also, if (I : xy) = (I : x) ∪ (I : y), then (I : x) ⊆ (I : y) or

(I : y) ⊆ (I : x).

There is a strong relationship between ΓI(R) and Γ(R/I). In fact, ΓI(R) may be

constructed from Γ(R/I) and I; see [31, Section 2] for details. A similar relationship

and construction exist for ΓI(R) and AGI(R)) ([28]).

It is clear that ΓI(R) is a subgraph of both ΓI(R) and AGI(R). We first show

that ΓI(R) is also a subgraph of AGI(R).

Theorem 2.1. Let R be a commutative ring with 1 6= 0 and I an ideal of R. Then

ΓI(R) ⊆ ΓI(R) ⊆ AGI(R).

Proof. Clearly ΓI(R) ⊆ ΓI(R). We show that ΓI(R) ⊆ AGI(R). Let x and y

be adjacent vertices in ΓI(R). Then xmyn ∈ I for positive integers m and n with

xm 6∈ I and yn 6∈ I. We may assume that xm−1yn 6∈ I and xmyn−1 6∈ I. Let z =

xm−1yn−1. Then z(xy) = xmyn ∈ I, but zx = xmyn−1 6∈ I and zy = xm−1yn 6∈ I;

so z ∈ (I : xy) \ ((I : x) ∪ (I : y)). Thus x and y are also adjacent in AGI(R); so

ΓI(R) ⊆ AGI(R). �

Corollary 2.2. Let R be a commutative ring with 1 6= 0. Then Γ(R) ⊆ Γ(R) ⊆
AG(R).

The following example shows that all possible inclusions may occur.

Example 2.3. Let R = Z2 × Z8. Note that (0, 2) and (1, 2) are adjacent in Γ(R),

but not in Γ(R); and (1, 2) and (1, 4) are adjacent in AG(R), but not in Γ(R). Thus

Γ(R) ( Γ(R) ( AG(R).

It is easy to check that (1) Γ(R) = Γ(R) = AG(R) = K1 for R = Z4, (2)

Γ(R) ( Γ(R) = AG(R) for R = Z2 × Z4, and (3) Γ(R) = Γ(R) ( AG(R) for

R = Z2 × Z2 × Z2.

Remark 2.4. One is tempted to define the extended annihilator graph AG(R)

with vertices Z(R)∗, and distinct vertices x and y are adjacent if and only if

annR(xmyn) 6= annR(xm) ∪ annR(yn) for positive integers m and n. However,

AG(R) = AG(R). Clearly AG(R) ⊆ AG(R). For the reverse inclusion, let x and

y be adjacent vertices in AG(R). Then annR(xmyn) 6= annR(xm) ∪ annR(yn)

for positive integers m and n, and thus zxmyn = 0, but zxm 6= 0 and zyn 6= 0,

for some z ∈ R. We may assume that zxmyn−1 6= 0 and zxm−1yn 6= 0. Thus

zxm−1yn−1 ∈ annR(xy) \ (annR(x) ∪ annR(y)), and hence x and y are also ad-

jacent in AG(R). Thus AG(R) = AG(R). In a similar manner, we can define

AGI(R), and as above, AGI(R) = AGI(R).
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Although distinct, nonzero, nilpotent elements x and y need not be adjacent in

Γ(R), we have d(x, y) ≤ 2 in Γ(R), and they are always adjacent in AG(R). We

generalize this to ΓI(R) and AGI(R).

Theorem 2.5. Let R be a commutative ring with 1 6= 0, I an ideal of R, and

x, y ∈
√
I \ I with x 6= y.

(a) d(x, y) ≤ 2 in ΓI(R).

(b) x and y are adjacent in AGI(R).

Proof. (a) Let x, y ∈
√
I \ I be distinct with xy 6∈ I. Let m and n be the least

positive integers such that xm, yn ∈ I. Choose j to be the greatest nonnegative

integer such that z = xm−1yj 6∈ I. Then xz = xmyj ∈ I and zy = xm−1yj+1 ∈ I
by choice of j; so d(x, y) = 2 in ΓI(R).

(b) Let x, y ∈
√
I \ I be distinct. Let m and n be the least positive integers such

that xm, yn ∈ I; so xmyn ∈ I. If xiyj ∈ I for some 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1,

then x and y are adjacent in ΓI(R), and hence in AGI(R) by Theorem 2.1. So

we may assume that xiyj 6∈ I for every 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1. In

particular, xm−1yn−1, xm−1yn−2, xm−2yn−1 6∈ I. Let z = xm−1yn−2 + xm−2yn−1.

Then zxy = xmyn−1 + xm−1yn ∈ I, and zx = xmyn−2 + xm−1yn−1 6∈ I since

xmyn−2 ∈ I and xm−1yn−1 6∈ I. Similarly, zy = xm−1yn−1 + xm−2yn 6∈ I. Thus

(I : xy) 6= (I : x) ∪ (I : y); so x and y are adjacent in AGI(R). �

Corollary 2.6. Let R be a commutative ring with 1 6= 0 and 0 6= x, y ∈ nil(R)

with x 6= y.

(a) ([5, Lemma 3.11]) d(x, y) ≤ 2 in Γ(R).

(b) ([17, Theorem 3.10]) x and y are adjacent in AG(R).

Example 2.7. Let R = Z2[X,Y ]/(X2, Y 2) = Z2[x, y]. Then 0 6= x, y ∈ nil(R) are

distinct and adjacent in AG(R), but are not adjacent in Γ(R) or Γ(R).

The following theorem gives conditions for equality in Theorem 2.1. (The proof

of part (a) (resp., part (b)) patches some gaps in the proof of [19, Theorem 2.1]

(resp., [30, Theorem 3.1]).) As in [16], an ideal I of R is a 2-absorbing ideal of R if

whenever xyz ∈ I for x, y, z ∈ R, then xy ∈ I, xz ∈ I, or yz ∈ I.

Theorem 2.8. Let R be a commutative ring with 1 6= 0 and I an ideal of R.

(a) ΓI(R) = ΓI(R) if and only if

(1) x ∈
√
I implies x2 ∈ I, and

(2) x ∈ R \
√
I implies (I : x2) = (I : x).
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In particular, ΓI(R) = ΓI(R) when I is a radical ideal of R.

(b) AGI(R) = ΓI(R) if and only if I is a 2-absorbing ideal of R.

Proof. (a) Suppose that ΓI(R) = ΓI(R). First, let x ∈
√
I. If xn ∈ I, but

xn−1 6∈ I for n ≥ 3, let y = x(1 + xn−2). Then y ∈
√
I \ I (y 6∈ I since y ∈ I

implies x2 = xy − xn ∈ I), x 6= y, and x and y are adjacent in ΓI(R) since

xn−1y = xn(1 + xn−2) ∈ I. Thus x and y are also adjacent in ΓI(R); so xy ∈ I.

Hence x2 = xy − xn ∈ I, a contradiction; so x2 ∈ I and (1) holds. Next, let

x ∈ R \
√
I and y ∈ (I : x2). If y ∈ I, then y ∈ (I : x). If x = y, then x3 ∈ I,

a contradiction. So assume that y 6∈ I and x 6= y. Then x2y ∈ I; so x and y

are adjacent in ΓI(R). Hence they are also adjacent in ΓI(R); so xy ∈ I. Thus

(I : x2) ⊆ (I : x); so (2) holds.

Conversely, suppose that (1) and (2) hold. We have ΓI(R) ⊆ ΓI(R) by Theo-

rem 2.1. For the reverse inclusion, let x and y be adjacent vertices in ΓI(R). Then

xmyn ∈ I for positive integers m and n with xm 6∈ I and yn 6∈ I. If x ∈
√
I, then

m = 1 by (1). Thus xyn ∈ I. If in addition, y ∈
√
I, then n = 1 by (1) again; so

xy ∈ I. If y 6∈
√
I, then x ∈ (I : yn) = (I : y) by (2) and induction. Thus xy ∈ I.

Similarly, xy ∈ I if x 6∈
√
I. So in every case, xy ∈ I, and hence x and y are also

adjacent in ΓI(R). Thus ΓI(R) = ΓI(R).

The “in particular” statement is clear.

(b) First, suppose that AGI(R) = ΓI(R). Let xyz ∈ I for x, y, z ∈ R. There are

three cases.

(1) Suppose that x = y = z; then x3 ∈ I. If x2 6∈ I, then x and w = x(1+x) are

distinct adjacent vertices in AGI(R), and hence are also adjacent in ΓI(R).

Thus xw ∈ I; so x2 = xw − x3 ∈ I, a contradiction. Hence xy = x2 ∈ I.

(2) Suppose that x = y and z are distinct; then x2z ∈ I. Suppose that x2 6∈ I.

If xz 6∈ I, then x ∈ (I : xz) \ ((I : x) ∪ (I : z)). Thus x and z are adjacent

vertices in AGI(R), and hence are also adjacent in ΓI(R). Thus xz ∈ I, a

contradiction. So xz ∈ I.

(3) Suppose that x, y, z are all distinct, and xz 6∈ I and yz 6∈ I. Then z ∈ (I :

xy) \ ((I : x) ∪ (I : y)); so x and y are adjacent in AGI(R). Thus x and y

are also adjacent in ΓI(R); so xy ∈ I.

Thus I is a 2-absorbing ideal of R.

Conversely, suppose that I is a 2-absorbing ideal of R. We have ΓI(R) ⊆ AGI(R)

by Theorem 2.1. For the reverse inclusion, let x and y be adjacent vertices in

AGI(R). Then there is a z ∈ (I : xy) \ ((I : x) ∪ (I : y)). Thus xyz ∈ I, xz 6∈ I,
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and yz 6∈ I. Hence xy ∈ I since I is a 2-absorbing ideal of R, and thus x and y are

also adjacent in ΓI(R). Hence AGI(R) = ΓI(R). �

Corollary 2.9. Let R be a commutative ring with 1 6= 0.

(a) ([19, Theorem 2.1]) Γ(R) = Γ(R) if and only if

(1) x ∈ nil(R) implies x2 = 0, and

(2) x ∈ R \ nil(R) implies annR(x2) = annR(x).

In particular, Γ(R) = Γ(R) when R is reduced.

(b) ([30, Theorem 3.1]) AG(R) = Γ(R) if and only if {0} is a 2-absorbing ideal

of R.

In [11, Theorem 2.2] (resp., [2, Theorem 4.10]), it was shown that Γ(T (R)) ∼=
Γ(R) (resp., AG(T (R)) ∼= AG(R)). We next show that Γ(T (R)) ∼= Γ(R) as well.

Theorem 2.10. Let R be a commutative ring with 1 6= 0 and total quotient ring

T (R). Then Γ(T (R)) ∼= Γ(R), Γ(T (R)) ∼= Γ(R), and AG(T (R)) ∼= AG(R).

Proof. Let T = T (R). We need only show that Γ(T ) ∼= Γ(R). Let ϕ : Z(R)∗ −→
Z(T )∗ be the bijection defined in the proof of [11, Theorem 2.2], and let ∼R (resp.,

∼T ) be the congruence relation defined on Z(R)∗ (resp., Z(T )∗) by a ∼R b (resp.,

(a ∼T b)⇔ annR(a) = annR(b) (resp., annT (a) = annT (b)). We need to show that

vertices x and y are adjacent in Γ(R) if and only if ϕ(x) and ϕ(y) are adjacent in

Γ(T ), i.e., xmyn = 0 for positive integers m,n with xm 6= 0 and yn 6= 0 if and only

if ϕ(x)mϕ(y)n = 0 for positive integers m,n with ϕ(x)m 6= 0 and ϕ(y)n 6= 0. The

proof of [11, Theorem 2.2] shows that ϕ(xm)ϕ(yn) = 0 when xmyn = 0. Since ∼R

and ∼T are congruence relations, we have ϕ(xm) ∼T ϕ(x)m and ϕ(yn) ∼T ϕ(y)n.

Thus ϕ(x)mϕ(y)n = 0. Clearly, xm 6= 0 ⇔ ϕ(xm) 6= 0 ⇔ ϕ(x)m 6= 0. So the result

holds. �

Probably the two best known properties of Γ(R) are that Γ(R) is connected

with diam(Γ(R)) ∈ {0, 1, 2, 3} ([13, Theorem 2.3]) and gr(Γ(R)) ∈ {3, 4,∞} ([13,

Theorem 2.4], [23, Theorem 1.6], [29, (1.4)]). Also, diam(Γ(R)) ∈ {0, 1, 2, 3} ([19,

Theorem 3.1]), gr(Γ(R)) ∈ {3, 4,∞} ([19, Theorem 4.1]), diam(AG(R)) ∈ {0, 1, 2}
([17, Theorem 2.2]), and gr(AG(R)) ∈ {3, 4,∞} ([17, Corollary 2.11]). These

results also hold for the ideal-based graphs and have been investigated in [31] and

[15] for ΓI(R) and in [1] for AGI(R).

Theorem 2.11. Let R be a commutative ring with 1 6= 0 and I an ideal R.

(a) ΓI(R), ΓI(R), and AGI(R) are connected.

(b) 0 ≤ diam(AGI(R)) ≤ diam(ΓI(R)) ≤ diam(ΓI(R)) ≤ 3.
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(c) diam(AGI(R)) ∈ {0, 1, 2}.
(d) ΓI(R), ΓI(R), and AGI(R) have girth 3, 4, or∞. Moreover, gr(AGI(R)) ≤

gr(ΓI(R)) ≤ gr(ΓI(R)).

Proof. (a) and (b) are clear since ΓI(R) is connected with diam(ΓI(R)) ∈ {0, 1, 2, 3}
([31, Theorem 2.4]), all three graphs have the same vertex set ZI(R), and ΓI(R) ⊆
ΓI(R) ⊆ AGI(R) by Theorem 2.1.

(c) By part (b), we need only show that if d(x, y) = 3 in ΓI(R), then x and y

are adjacent in AGI(R). Since d(x, y) = 3 in ΓI(R), there are a, b ∈ R \ I such

that xa, ab, by ∈ I and xb, ay 6∈ I. Thus (I : x) 6⊆ (I : y) and (I : y) 6⊆ (I : x); so

(I : xy) 6= (I : x) ∪ (I : y). Hence x and y are adjacent in AGI(R). (Also, see the

proof of Theorem 3.3(c)).

(d) We have gr(ΓI(R)) ∈ {3, 4,∞} ([31, Lemma 5.1]) and gr(AGI(R)) ∈ {3, 4,∞}
([1, Theorem 1.7]). If I = {0}, then ΓI(R) = Γ(R) has girth 3, 4, or ∞ ([19, The-

orem 4.1]). So we may assume that I is a nonzero, proper ideal of R that is not

prime. If gr(ΓI(R)) ∈ {3, 4}, then clearly gr(ΓI(R)) ∈ {3, 4} since ΓI(R) ⊆ ΓI(R).

If gr(ΓI(R)) = ∞, then ΓI(R) = K2 by (the proof of) [15, Theorem 3.1]. Thus

ΓI(R) = K2; so gr(ΓI(R)) =∞. Hence gr(ΓI(R)) ∈ {3, 4,∞}.
The “moreover” statement is clear since ΓI(R) ⊆ ΓI(R) ⊆ AGI(R). �

Corollary 2.12. Let R be a commutative ring with 1 6= 0.

(a) Γ(R), Γ(R), and AG(R) are connected.

(b) 0 ≤ diam(AG(R)) ≤ diam(Γ(R)) ≤ diam(Γ(R)) ≤ 3.

(c) diam(AG(R)) ∈ {0, 1, 2}.
(d) Γ(R), Γ(R), and AG(R) have girth 3, 4, or ∞. Moreover, gr(AG(R)) ≤

gr(Γ(R)) ≤ gr(Γ(R)).

The following relationship between diam(Γ(R)) and diam(AG(R)) will be needed

in Theorem 2.14.

Theorem 2.13. Let R be a commutative ring with 1 6= 0.

(a) If AG(R) is complete and R 6∼= Z2 × Z2, then Z(R) is an ideal of R.

(b) If AG(R) is complete, then diam(Γ(R)) ≤ 2. In particular, 0 ≤ diam(Γ(R)) ≤
diam(AG(R)) + 1.

Proof. (a) This follows from the proof of [2, Proposition 4.1].

(b) Suppose that AG(R) is complete. We may assume that |Z(R)∗| ≥ 3; so

R 6∼= Z2×Z2. Thus Z(R) is an ideal of R by part (a). Let x, y ∈ Z(R)∗ be distinct.

Then x − y ∈ Z(R); so there is a 0 6= z ∈ R with z(x − y) = 0. We may assume
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that z 6= x. Since AG(R) is complete, z and x are adjacent in AG(R). Hence

annR(zx) 6= annR(z) ∪ annR(x); so there is a 0 6= t ∈ R with t(zx) = 0, tz 6= 0,

and tx 6= 0. Thus w = tz ∈ Z(R)∗ and wx = wy = 0; so d(x, y) ≤ 2 in Γ(R). Hence

diam(Γ(R)) ≤ 2.

The “in particular” statement is clear. �

We next give a more careful comparison of the diameter and girth for the three

zero-divisor graphs.

Let a = diam(Γ(R)), b = diam(Γ(R)), c = diam(AG(R)). Then 0 ≤ c ≤ b ≤ a ≤
3 and 0 ≤ c ≤ 2 by Corollary 2.12, and 0 ≤ a ≤ c+1 by Theorem 2.13. There are 9

integer-tuples (a, b, c) that satisfy these three conditions. We show that 7 of them

can be realized as (diam(Γ(R)), diam(Γ(R)), diam(AG(R))) for some commutative

ring R with 1 6= 0.

Theorem 2.14. Let a, b, c ∈ N ∪ {0}. Then there is a commutative ring R with

1 6= 0 such that (a, b, c) = (diam(Γ(R)), diam(Γ(R)), diam(AG(R))) if and only if

(a, b, c) is (0, 0, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2), (3, 2, 2), or (3, 3, 2).

Proof. If a = diam(Γ(R)) = 0, then Γ(R) = Γ(R) = AG(R) = K1 and R ∼= Z4 or

Z2[X]/(X2). Thus, b = diam(Γ(R)) = 0 and c = diam(AG(R)) = 0; so (a, b, c) =

(0, 0, 0) can be realized.

If a = diam(Γ(R)) = 1, then Γ(R) = Γ(R) = AG(R) = Kn for some n ≥ 2.

Thus b = diam(Γ(R)) = 1 and c = diam(AG(R)) = 1. Hence, for example,

(a, b, c) = (1, 1, 1) can be realized using R = Z2 × Z2. Moreover, (1, 1, 0) and

(1, 0, 0) cannot be realized.

Let a = diam(Γ(R)) = 2. Then 1 ≤ c ≤ b ≤ 2. Let R = Z8. Then Γ(R) = K1,2

has diameter 2, and Γ(R) = AG(R) = K3 each have diameter 1. Thus (a, b, c) =

(2, 1, 1) can be realized. Next, let S = Z2[X,Y ]/(X2, Y 2). Then Γ(S) = Γ(S) each

have diameter 2 and AG(S) = K7 has diameter 1. Hence (a, b, c) = (2, 2, 1) can be

realized. Finally, let T = Z6. Then Γ(T ) = Γ(T ) = AG(T ) = K1,2; so each graph

has diameter 2. Thus (a, b, c) = (2, 2, 2) can be realized. By Theorem 2.13(b), the

(2, 2, 0), (2, 1, 0), and (2, 0, 0) cases cannot be realized.

Let a = diam(Γ(R)) = 3. Let R = Z2 × Z4. Then diam(Γ(R)) = 3 and Γ(R) =

AG(R) each have diameter 2. Thus (a, b, c) = (3, 2, 2) can be realized. Next, let

S = Z2×Z2×Z2. Then Γ(S) = Γ(S) each have diameter 3 and diam(AG(S)) = 2.

Thus (a, b, c) = (3, 3, 2) can be realized. By Theorem 2.13(b), the (3, 1, 1), (3, 2, 1),

and (3, 3, 1) cases cannot be realized. �
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Now, let a = gr(Γ(R)), b = gr(Γ(R)), c = gr(AG(R)). Then a, b, c ∈ {3, 4,∞}
and 3 ≤ c ≤ b ≤ a ≤ ∞ by Corollary 2.12. There are 10 tuples (a, b, c) with

a, b, c ∈ N ∪ {∞} that satisfy these two conditions. We show that 6 of them can

be realized as (gr(Γ(R)), gr(Γ(R)), gr(AG(R))) for some commutative ring R with

1 6= 0. As an added bonus, the proof shows which rings have these given girth

tuples (cf. [19, Theorems 4.5 and 4.6]).

Theorem 2.15. Let a, b, c ∈ N ∪ {∞}. Then there is a commutative ring R with

1 6= 0 such that (a, b, c) = (gr(Γ(R)), gr(Γ(R)), gr(AG(R))) if and only if (a, b, c)

is (3, 3, 3), (4, 4, 3), (4, 4, 4), (∞, 3, 3), (∞, 4, 4), or (∞,∞,∞).

Proof. We have gr(Γ(R)) ∈ {3, 4,∞}. We handle each case separately.

(1) gr(Γ(R)) = 3.

In this case, gr(Γ(R)) = gr(Γ(R)) = gr(AG(R)) = 3. For example, let R =

F4[X]/(X2). Then Γ(R) = Γ(R) = AG(R) = K3; so all three graphs have girth 3.

Thus (a, b, c) = (3, 3, 3) can be realized.

(2) gr(Γ(R)) = 4.

If R is reduced, then T (R) = K1 ×K2 for fields K1 and K2 with |Ki| ≥ 3 ([14,

Theorem 2.2]). Thus, Γ(R) = Γ(R) = AG(R) = Km,n, where m = |K1| − 1 ≥ 2

and n = |K2| − 1 ≥ 2. So each graph has girth 4. For example, let R = Z3 × Z3.

Then Γ(R) = Γ(R) = AG(R) = K2,2; so all three graphs have girth 4. Thus

(a, b, c) = (4, 4, 4) can be realized.

If R is not reduced, then R ∼= D×B, where D is an integral domain with |D| ≥ 3

and B is Z4 or Z2[X]/(X2) ([14, Theorem 2.3]). Thus Γ(R) = Γ(R); so each graph

has girth 4. However, gr(AG(R)) = 3 since (0, f)−(d, f)−(e, f)−(0, f) is a 3-cycle

in AG(R) for distinct 0 6= d, e ∈ D and 0 6= f ∈ B with f2 = 0. For example,

let R = Z3 × Z4. Hence (a, b, c) = (4, 4, 3) can be realized, and (4, 3, 3) cannot be

realized.

(3) gr(Γ(R)) =∞.

If R is reduced, then T (R) = Z2 ×K for K a field ([14, Theorem 2.4]). Thus,

Γ(R) = Γ(R) = AG(R) = K1,n, where n = |K| − 1. In this case, gr(Γ(R)) =

gr(Γ(R)) = gr(AG(R)) =∞. For example, let R = Z2×Z2. Then Γ(R) = Γ(R) =

AG(R) = K1,1 = K2; so all three graphs have girth∞. Hence (a, b, c) = (∞,∞,∞)

can be realized.

If R is not reduced, there are three cases ([14, Theorem2.5]). Let B = Z4 or

Z2[X]/(X2).

(i) R ∼= B. In this case, Γ(R) = Γ(R) = AG(R) = K1. So all three graphs have

infinite girth. Thus, again, (a, b, c) = (∞,∞,∞) can be realized.
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(ii) R ∼= Z2 × B. In this case, Γ(R) ( Γ(R) = AG(R), and AG(R) has the

4-cycle (1, 0)− (0, 1)− (1, d)− (0, d)− (1, 0), where 0 6= d ∈ B with d2 = 0, and no

3-cycles. Thus (a, b, c) = (∞, 4, 4) can be realized.

(iii) Γ(R) is a star graph with |R| = 8, |R| = 9, or Γ(R) is infinite with center x

and nil(R) = {0, x} with x2 = 0.

For |R| = 8 (e.g., R = Z8), we have Γ(R) = K1,2 and Γ(R) = AG(R) = K3

(cf. [11, Remark 3.12]). Thus gr(Γ(R)) = ∞ and gr(Γ(R)) = gr(AG(R)) = 3.

Thus (a, b, c) = (∞, 3, 3) can be realized. For |R| = 9 (e.g., R = Z9), we have

Γ(R) = Γ(R) = AG(R) = K1,1 = K2 (cf. [11, Remark 3.12]). Hence, again,

(a, b, c) = (∞,∞,∞) can be realized.

For Γ(R) an infinite star graph, we have Γ(R) = Γ(R) = AG(R) = K1,m for some

infinite cardinal m. (Let d, e ∈ R \ {0, x} be distinct vertices. Then annR(d) =

annR(e) = {0, x} since d, e 6∈ nil(R) and 0 6= de 6= x; so annR(de) = {0, x}.
Hence AG(R) = Γ(R).) So all three graphs have infinite girth. Thus, again,

(a, b, c) = (∞,∞,∞) can be realized.

Moreover, (a, b, c) = (∞,∞, 4), (∞,∞, 3), and (∞, 4, 3) cannot be realized. �

3. Congruence-based graphs

In this section, we consider congruence-based graphs. For a more detailed ac-

count of the ∼-zero-divisor graph Γ∼(R), see [12]. In Section 5, we consider maps

between congruence-based graphs.

We first define the congruence-based analogs of Γ(R) and AG(R). Let ∼ be

a multiplicative congruence relation on R. Then R/∼ is a commutative monoid

with zero [0]∼, and I = [0]∼ is a semigroup ideal of R. We define the extended ∼-

zero-divisor graph of R to be Γ∼(R) = Γ(R/∼), and the annihilator ∼-zero-divisor

graph of R to be AG∼(R) = AG(R/∼). These graphs all have the same vertex set

Z(R/∼)∗ = Z(R/∼) \ {[0]∼}, and distinct vertices [x]∼ and [y]∼ are adjacent in

Γ∼(R) (resp., Γ∼(R), AG∼(R)) if and only if [x]∼[y]∼ = [0]∼ (resp., [x]m∼ [y]n∼ = [0]∼

for positive integers m and n with [x]m∼ 6= [0]∼ and [y]n∼ 6= [0]∼, annR/∼([x]∼[y]∼) 6=
annR/∼([x]∼) ∪ annR/∼([y]∼)). Let I = [0]∼. Then [x]∼[y]∼ = [0]∼ if and only if

xy ∈ I; so [x]∼ and [y]∼ are adjacent in Γ∼(R) (resp., Γ∼(R), AG∼(R)) if and only

if xy ∈ I (resp., xmyn ∈ I for m,n ∈ N with xm 6∈ I and yn 6∈ I, (I : xy) 6= (I :

x) ∪ (I : y)). Note that Z(R/∼)∗ = ∅ if and only if [0]∼ = R (i.e., ∼= R × R) or

[0]∼ is a prime semigroup ideal of R ([12, Theorem 3.3(a)]).

We next give the analogs of Theorems 2.1, 2.8, and 2.11 for congruence-based

graphs. Recall that Z(R/∼)∗ = Z(R)∗ for ∼ = =R, and Z(R/∼)∗ = ZI(R) for ∼
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given by x ∼ y if and only if x = y or x, y ∈ I. Thus, Theorems 2.1, 2.8, and 2.11

are special cases of our next two results.

Theorem 3.1. Let R be a commutative ring with 1 6= 0, ∼ a multiplicative con-

gruence relation on R, and I = [0]∼.

(a) Γ∼(R) ⊆ Γ∼(R) ⊆ AG∼(R).

(b) Γ∼(R) = Γ(R)∼ if

(1) x ∈
√
I implies x2 ∈ I, and

(2) x ∈ R \
√
I implies (I : x2) = (I : x).

In particular, Γ∼(R) = Γ(R)∼ when I is a radical semigroup ideal of R.

(c) AG∼(R) = Γ∼(R) if I is a 2-absorbing semigroup ideal of R.

Proof. The proof of (a) (resp., (b) and (c)) is similar to that of Theorem 2.1 (resp.,

Theorem 2.8). Note that (b) and (c) are not “if and only if”; see Example 3.2. �

The next example shows that parts (b) and (c) of Theorem 3.1 are not “if and

only if” as in Theorem 2.8.

Example 3.2. Let R = Z8 and ∼ be given by x ∼ y ⇔ annR(x) = annR(y)

(equivalently, x ∼ y ⇔ y = ux for some u ∈ U(R)). Then I = [0] = {0} and

Z(R/∼)∗ = {[2], [4]}; so Γ∼(R) = Γ∼(R) = AG∼(R) = K2. However, 2 ∈
√
I =

{0, 2, 4, 6} and 22 = 4 6∈ I; so the converse of Theorem 3.1(b) fails. And I is not a

2-absorbing ideal of R; so the converse of Theorem 3.1(c) fails.

Theorem 3.3. Let R be a commutative ring with 1 6= 0, ∼ a multiplicative con-

gruence relation on R, and I = [0]∼.

(a) Γ∼(R), Γ∼(R), and AG∼(R) are connected.

(b) 0 ≤ diam(AG∼(R)) ≤ diam(Γ∼(R)) ≤ diam(Γ∼(R)) ≤ 3.

(c) diam(AG∼(R)) ∈ {0, 1, 2}.
(d) Γ∼(R), Γ∼(R), and AG∼(R) have girth 3, 4, or∞. Moreover, gr(AG∼(R)) ≤

gr(Γ∼(R)) ≤ gr(Γ∼(R)).

Proof. The proofs of (a) and (b) follow as those in Theorem 2.11 since Γ∼(R)

is connected with diam(Γ∼(R)) ∈ {0, 1, 2, 3} ([12, Theorem 2.7(a)]) and Γ∼(R) ⊆
Γ∼(R) ⊆ AG∼(R) by Theorem 3.1(a).

(c) Suppose that distinct vertices [x] and [y] are not adjacent in AG∼(R). Then

(I : xy) = (I : x) ∪ (I : y); so we may assume that (I : y) ⊆ (I : x) = (I : xy). Let

w ∈ (I : y) \ I; so w ∈ ZI(R) and wx,wy ∈ I. Thus [x] − [w] − [y] is a path of

length 2 in AG∼(R) (actually, in Γ∼(R)), and hence diam(AG∼(R)) ≤ 2.

(d) By [12, Theorem 2.7(b)], gr(Γ∼(R)) ∈ {3, 4,∞}.
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First, suppose that Γ∼(R) ( Γ∼(R). By Theorem 3.1(b), either (1) there is an

x ∈ R such that xn ∈ I, but xn−1 6∈ I for some n ≥ 3, or (2) there is an x ∈ R \
√
I

such that (I : x) ( (I : x2). If (1) holds and n ≥ 4, then [x] − [x2] − [xn−1] − [x]

is a 3-cycle in Γ∼(R). So suppose that n = 3. If Z(R/∼)∗ = {[x], [x2]}, then

Γ∼(R) = Γ∼(R) = K2, a contradiction. Thus by part (a), there is another vertex

[y] adjacent to either [x] or [x2]. In either case, [x] − [x2] − [y] − [x] is a 3-cycle

in Γ∼(R). If (2) holds, let y ∈ R with yx2 ∈ I, but yx 6∈ I. If y2 ∈ I, then

[y] − [x] − [xy] − [y] is a cycle; and if y2 6∈ I, then [x] − [xy] − [x2] − [y] − [x] is a

cycle. Hence gr(Γ∼(R)) ∈ {3, 4,∞}.
Next, suppose that Γ∼(R) ( AG∼(R). Let [x] and [y] be adjacent in AG∼(R),

but not in Γ∼(R). Then (I : xy) 6= (I : x) ∪ (I : y) and xy 6∈ I; so there is a

z ∈ ZI(R) with zxy ∈ I, but zx, zy 6∈ I. If [z] 6∈ {[x], [y]}, then [x]− [z]− [y]− [x]

is a 3-cycle in AG∼(R). If, say, [z] = [x], then [x]− [y]− [x2]− [xy]− [x] is a cycle

and [y] 6= [x], [y] 6= [xy] 6= [x]. Thus gr(AG∼(R)) ∈ {3, 4,∞}.
The “moreover” statement is clear. �

Let G be a simple graph. We say that distinct adjacent vertices x and y of

G are orthogonal, written x ⊥ y, if there is no vertex z of G adjacent to both

x and y (i.e., the edge x – y is not part of a triangle in G). The graph G is

complemented if for every vertex x of G, there is a vertex y of G with x ⊥ y (y is

called a complement of x), and G is uniquely complemented if G is complemented

and whenever x ⊥ y and x ⊥ z for vertices x, y, z of G, then N(y) = N(z). Note

that for distinct [x]∼ and [y]∼ in Γ∼(R), we have [x]∼ ⊥ [y]∼ if and only if xy ∈ I
and (I : x) ∩ (I : y) ⊆ I ∪ [x]∼ ∪ [y]∼, where I = [0]∼.

In [11], it was determined when Γ(R) is complemented or uniquely comple-

mented. In particular, Γ(R) is uniquely complemented if and only if T (R) is von

Neumann regular or Γ(R) is a star graph ([11, Corollary 3.10]); Γ(R) is comple-

mented, but not uniquely complemented, if and only if R ∼= D × B, where D is

an integral domain and B is Z4 or Z2[X]/(X2) ([11, Theorem 3.14]); and if R is

reduced, then Γ(R) is uniquely complemented if and only if Γ(R) is complemented,

if and only if T (R) is von Neumann regular ([11, Theorem 3.5]). This was gen-

eralized to ΓI(R) in [32]. In particular, if I is nonzero, then ΓI(R) is uniquely

complemented if and only if ΓI(R) is complemented; and if I is a radical ideal of R,

then ΓI(R) is complemented if and only if Γ(R/I) is complemented ([32, Theorem

2.10]). We extend these results to Γ∼(R).

We will need the following lemma. Note that [x]∼ = [y]∼ does not imply that

x+ I = y + I, or conversely.
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Lemma 3.4. Let R be a commutative ring with 1 6= 0, ∼ a multiplicative congru-

ence relation on R with I = [0]∼ a radical ideal of R, and x, y ∈ R. Then [x]∼

and [y]∼ are distinct adjacent vertices in Γ∼(R) if and only x + I and y + I are

distinct adjacent vertices in Γ(R/I). Moreover, Γ∼(R) is complemented if and only

if Γ(R/I) is complemented.

Proof. Suppose that [x]∼ and [y]∼ are distinct adjacent vertices in Γ∼(R). Then

xy ∈ I. If x+ I = y + I, then x− y ∈ I, and thus x2 = x(x− y) + xy ∈ I. Hence

x ∈ I since I is a radical ideal of R. Thus [x]∼ = [0]∼, a contradiction. Hence x+ I

and y + I are distinct adjacent vertices in Γ(R/I).

Conversely, suppose that x+I and y+I are distinct adjacent vertices in Γ(R/I).

Then xy ∈ I. If [x]∼ = [y]∼, then x ∼ y, and thus x2 ∼ xy ∈ I = [0]∼. Hence

x2 ∈ I, and thus x ∈ I since I is a radical ideal of R. Hence x + I = I, a

contradiction. Thus [x]∼ and [y]∼ are distinct adjacent vertices in Γ∼(R).

The “moreover” statement is clear. �

Theorem 3.5. Let R be a commutative ring with 1 6= 0, ∼ a multiplicative con-

gruence relation on R, and I = [0]∼.

(a) If I is a radical semigroup ideal of R, then Γ∼(R) is uniquely complemented

if and only if Γ∼(R) is complemented.

(b) If I is a radical ideal of R, then the following statements are equivalent.

(1) Γ∼(R) is uniquely complemented.

(2) Γ∼(R) is complemented.

(3) Γ(R/I) is uniquely complemented.

(4) Γ(R/I) is complemented.

(5) T (R/I) is von Neumann regular.

Proof. (a) Clearly Γ∼(R) is complemented if Γ∼(R) is uniquely complemented. So

suppose that Γ∼(R) is complemented. Let [x] ⊥ [y] and [x] ⊥ [z] for distinct vertices

[x], [y], [z] of Γ∼(R) (we omit the “∼” on each [a]∼); we show that N([y]) = N([z]).

Let [w] ∈ N([y]); so [w][y] = [0]. If [w][z] 6= [0], then [v] = [w][z] is adjacent to

both [x] and [y]. This follows since [v][x] = ([w][z])[x] = [w]([x][z]) = [w][0] = [0]

and [v][y] = ([w][z])[y] = ([w][y])[z] = [0][z] = [0]. Also, [v] 6= [x] since [v] = [x]

implies [x]2 = [v][x] = [0], and thus x ∈ I since I is a radical semigroup ideal of

R. But then [x] = [0], a contradiction. Similarly, [v] = [y] implies [y]2 = [v][y] =

([w][z])[y] = ([w][y])[z] = [0][z] = [0], and hence [y] = [0]. So [x], [y], and [v] are

all distinct. This contradicts that [x] ⊥ [y]. Thus [w][z] = [0], and [w] 6= [z] since
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[x] ⊥ [z]. Hence [w] ∈ N([z]); so N([y]) ⊆ N([z]). Similarly, N([z]) ⊆ N([y]); so

N([y]) = N([z]). Thus Γ∼(R) is uniquely complemented.

(b) (1) and (2) are equivalent by part (a). The equivalence of (2) and (4) follows

from Lemma 3.4. The equivalence of (3) - (5) follows from [11, Theorem 3.5] since

R/I is reduced. �

Corollary 3.6. ([32, Theorem 2.10]) Let R be a commutative ring and I a radical

ideal of R. Then the following statements are equivalent.

(1) ΓI(R) is uniquely complemented.

(2) ΓI(R) is complemented.

(3) Γ(R/I) is uniquely complemented.

(4) Γ(R/I) is complemented.

(5) T (R/I) is von Neumann regular.

4. Compressed graphs

In this section, we study “compressed” graphs. The compressed zero-divisor

graph ΓE(R) (using different notation) was first defined by S. B. Mulay ([29, p.

3551]). Specifically, let ∼ be the multiplicative congruence relation on R defined

by x ∼ y ⇔ annR(x) = annR(y). Then ΓE(R) = Γ∼(R) with vertices Z(R/∼)∗,

and distinct vertices [x] and [y] are adjacent if and only if [x][y] = [0], if and

only if xy = 0, since [0] = {0}. Analogously, we define ΓE(R) = Γ∼(R), and

AGE(R) = AG∼(R). Note that ΓE(R) ⊆ ΓE(R) ⊆ AGE(R) by Theorem 3.1(a).

The compressed annihilator graph AGE(R) was introduced in [30]. Also, see [8],

[10], [21], and [33] for more on ΓE(R).

Let G be a simple graph. For x, y ∈ V (G), define x ≡ y ⇔ NG(x) \ {y} =

NG(y) \ {x}. Then ≡ is an equivalence relation on V (G) ([10, Theorem 2.1]). Let

G/≡ be the (simple) graph with vertices V (G)/≡= {[x] | x ∈ G}, and distinct

vertices [x] and [y] are adjacent if and only if some (and hence every) element of

[x] is adjacent to some (and hence every) element of [y]. Note that for G = Γ(R),

x ≡ y in Γ(R) if and only if annR(x) \ {x, y} = annR(y) \ {x, y}. Moreover, if

R 6∼= Z2 × Z2, then ΓE(R) ∼= Γ(R)/≡ ([10, Theorem 2.5]). Thus, the graph ΓE(R)

is completely determined by, and may be computed from, Γ(R) when R 6∼= Z2×Z2.

In particular, if |Γ(R)| > 2, then ΓE(R) ∼= ΓE(S) if and only if Γ(R) ∼= Γ(S).

However, for R = Z2 × Z2 and S = Z3[X]/(X2), we have Γ(R) = Γ(S) = K2, but

ΓE(R) = K2 and ΓE(S) = K1.

The compressed zero-divisor graph ΓE(R) “compresses” Γ(R) by identifying ver-

tices with the same adjacency relations. However, ΓE(R) and AGE(R) need not
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“compress” Γ(R) and AG(R) in this way (see Example 4.2). We next define the

“compressed” graphs associated to Γ(R) and AG(R). Although all the graphs we

have studied in this paper are simple graphs, it is sometimes convenient to consider

these graphs to have loops. For example, there is a loop at x ∈ Z(R)∗ in Γ(R) (resp.,

Γ(R), AG(R)) if and only if x2 = 0 (resp., x ∈ nil(R), annR(x2) 6= annR(x)). We

will denote the graph Γ(R) (resp., Γ(R), AG(R)) with loops added by ΓL(R) (resp.,

Γ
L

(R), AGL(R)).

Let G be Γ(R),Γ(R), or AG(R). For x ∈ Z(R)∗, define their extended edge sets

E∗G(x) to be NG(x) ∪ {x | if x is a loop in G }; so NG(x) ⊆ E∗G(x) ⊆ NG(x).

Thus E∗Γ(R)(x) = {y ∈ Z(R)∗ | xy = 0}, E∗
Γ(R)

(x) = {y ∈ Z(R)∗ | xmyn = 0

for m,n ∈ N with xm 6= 0, yn 6= 0}, and E∗AG(R)(x) = {y ∈ Z(R)∗ | annR(xy) 6=
annR(x) ∪ annR(y)}. In particular, x ∈ E∗Γ(R)(x) ⇔ x2 = 0, x ∈ E∗

Γ(R)
(x) ⇔

x ∈ nil(R), and x ∈ E∗AG(R)(x) ⇔ annR(x2) 6= annR(x).

For the graphs G = Γ(R),Γ(R), and AG(R), the relation ∼G defined by x ∼G y

⇔ E∗G(x) = E∗G(y) is an equivalence relation on V (G) = Z(R)∗. We define the

∼G-compressed graph of G to be the simple graph G/∼G with vertices V (G/∼G)

= V (G)/∼G = { [x]∼G
| x ∈ V (G) }, and distinct vertices [x]∼G

and [y]∼G
are

adjacent if and only if x and y are adjacent in G. (This graph is well-defined

since if x ∼G a and y ∼G b, then x and y are adjacent if and only if a and b are

adjacent.) We denote the associated ∼G-compressed graphs by CΓ(R), CΓ(R), and

CAG(R), respectively. In the obvious way, one can also define CΓ∼(R), CΓ∼(R),

and CAG∼(R) for ∼ any multiplicative congruence relation on R; details are left

to the interested reader.

The equivalence relation ∼G on Z(R)∗ may be extended to an equivalence rela-

tion on R by defining [0]∼G
= {0} and [1]∼G

= R \Z(R). We will see that ∼Γ(R) is

actually a multiplicative congruence relation on R. However, the following example

shows that ∼G need not be a multiplicative congruence relation on R (or Z(R)∗)

when G is Γ(R) or AG(R).

Example 4.1. Let R = Z2 × Z8.

(a) ThenR/∼Γ(R)= {[(0, 0)], [(1, 1)], [(0, 1)], [(0, 2)], [(0, 4)], [(1, 0)], [(1, 2)], [(1, 4)]},
where [(0, 0)] = {(0, 0)}, [(1, 1)] = {(1, 1), (1, 3), (1, 5), (1, 7)}, [(0, 1)] = {(0, 1),

(0, 3), (0, 5), (0, 7)}, [(0, 2)] = {(0, 2), (0, 6)}, [(0, 4)] = {(0, 4)}, [(1, 0)] = {(1, 0)},
[(1, 2)] = {(1, 2), (1, 6)}, and [(1, 4)] = {(1, 4)}. Note that ∼Γ(R) is a multiplicative

congruence relation on R (and Z(R)∗), and V (CΓ(R)) = {[(0, 1)], [(0, 2)], [(0, 4)],

[(1, 0)], [(1, 2)], [(1, 4)]}.
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(b) Then R/∼Γ(R)= {[(0, 0)], [(1, 1)], [(0, 1)], [(0, 2)], [(1, 0)]}, where

[(0, 0)] = {(0, 0)}, [(1, 1)] = {(1, 1), (1, 3), (1, 5), (1, 7)}, [(0, 1)] = {(0, 1), (0, 3),

(0, 5), (0, 7)}, [(0, 2)] = {(0, 2), (0, 4), (0, 6)}, and [(1, 0)] = {(1, 0), (1, 2), (1, 4), (1, 6)}.
We have (0, 2) ∼Γ(R) (0, 4), but (0, 2)(0, 2) = (0, 4) 6∼Γ(R) (0, 0) = (0, 2)(0, 4).

Thus ∼Γ(R) is not a multiplicative congruence relation on R (or Z(R)∗), and

V (CΓ(R)) = {[(0, 1)], [(0, 2)], [(1, 0)]}.
(c) Then R/∼AG(R)= {[(0, 0)], [(1, 1)], [(0, 1)], [(0, 2)], [(1, 0), [(1, 2)]}, where

[(0, 0)] = {(0, 0)}, [(1, 1)] = {(1, 1), (1, 3), (1, 5), (1, 7)}, [(0, 1)] = {(0, 1), (0, 3),

(0, 5), (0, 7)}, [(0, 2)] = {(0, 2), (0, 4), (0, 6)}, [(1,0)] = {(1,0)}, and [(1, 2)] = {(1, 2),

(1, 4), (1, 6)}. We have (1, 2) ∼AG(R) (1, 4), but (1, 2)(1, 2) = (1, 4) 6∼AG(R) (1, 0) =

(1, 2)(1, 4). Thus ∼AG(R) is not a multiplicative congruence relation on R (or

Z(R)∗), and V (CAG(R)) = {[(0, 1)], [(0, 2)], [(1, 0), [(1, 2)]}.

For G = Γ(R) and x ∈ Z(R)∗, E∗Γ(R)(x) = annR(x)∗. Thus x ∼Γ(R) y ⇔
annR(x) = annR(y); so ∼Γ(R) is a multiplicative congruence relation and CΓ(R) =

ΓE(R). By definition, [x]∼Γ(R)
and [y]∼Γ(R)

are adjacent in CΓ(R) if and only if

xmyn = 0 for positive integers m and n with xm 6= 0 and yn 6= 0, and [x]∼AG(R)
and

[y]∼AG(R)
are adjacent in CAG(R) if and only if annR(xy) 6= annR(x) ∪ annR(y).

Although CΓ(R) = ΓE(R), we need not have CΓ(R) = ΓE(R) or CAG(R) =

AGE(R). For example, this is the case when R = Z2 × Z8. Below are the graphs

for Γ(R),Γ(R), AG(R),ΓE(R) = CΓ(R),ΓE(R), AGE(R), CΓ(R), and CAG(R) for

R = Z2 × Z8 (cf., Example 4.1).

Example 4.2. The graphs for Γ(R),Γ(R), AG(R), ΓE(R) = CΓ(R), ΓE(R), AGE(R),

CΓ(R), and CAG(R) for R = Z2 × Z8 (cf., Example 4.1).

Γ(Z2 × Z8) Γ(Z2 × Z8) AG(Z2 × Z8)
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ΓE(Z2 × Z8) ΓE(Z2 × Z8) AGE(Z2 × Z8)

CΓ(Z2 × Z8) CΓ(Z2 × Z8) CAG(Z2 × Z8)

We next consider some cases when CΓ(R) = ΓE(R) and CAG(R) = AGE(R).

Although the next result may seem obvious, note that we need to consider loops.

Theorem 4.3. Let R be a commutative ring with 1 6= 0.

(a) If Γ(R) = Γ(R), then CΓ(R) = ΓE(R) = ΓE(R).

(b) If AG(R) = Γ(R), then CAG(R) = AGE(R) = ΓE(R).

(c) If CΓ(R) = ΓE(R), then Γ(R) = Γ(R).

Proof. (a) Suppose that Γ(R) = Γ(R). Clearly ΓE(R) = ΓE(R). To show that

CΓ(R) = ΓE(R), we need only show that E∗
Γ(R)

(x) = E∗Γ(R)(x) for every x ∈ Z(R)∗

since CΓ(R) and ΓE(R) have the same adjacency relations. Since Γ(R) = Γ(R)

by hypothesis, E∗
Γ(R)

(x) \ {x} = E∗Γ(R)(x) \ {x} for every x ∈ Z(R)∗. So we need

only show that x2 = 0 ⇔ x ∈ nil(R). The (⇒) implication is clear; so suppose

by way of contradiction that xn = 0, but xn−1 6= 0, for some integer n ≥ 3. Let

z = x(1 + xn−2) ∈ Z(R)∗. Then z 6= x and z ∈ (E∗
Γ(R)

(x) \ {x}) \ (E∗Γ(R)(x) \ {x}),
a contradiction. Thus (⇐) also holds; so E∗

Γ(R)
(x) = E∗Γ(R)(x). Hence CΓ(R) =

ΓE(R).

(b) Suppose that AG(R) = Γ(R). Clearly AGE(R) = ΓE(R). To show that

CAG(R) = AGE(R), we need only show that E∗AG(R)(x) = E∗Γ(R)(x) for every

x ∈ Z(R)∗ since CAG(R) and AGE(R) have the same adjacency relations. Since

AG(R) = Γ(R) by hypothesis, E∗AG(R)(x) \ {x} = E∗Γ(R)(x) \ {x} for every x ∈
Z(R)∗. So we need only show that x2 = 0 ⇔ annR(x2) 6= annR(x). The (⇒)
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implication is clear; so suppose by way of contradiction that annR(x2) 6= annR(x),

but x2 6= 0. Let y ∈ annR(x2) \ annR(x); so yx2 = 0 and yx 6= 0. If y 6= x, then

y ∈ (E∗AG(R)(x) \ {x}) \ (E∗Γ(R)(x) \ {x}) since annR(xy) 6= annR(x) ∪ annR(y), a

contradiction. If y = x, then x3 = 0 and x2 6= 0. Let z = x(1 + x) ∈ Z(R)∗. Then

z 6= x, zx 6= 0, and zx2 = 0. Hence z ∈ (E∗AG(R)(x) \ {x}) \ (E∗Γ(R)(x) \ {x}) since

annR(xz) 6= annR(x) ∪ annR(z), a contradiction. Thus x2 = 0; so (⇐) also holds

and E∗AG(R)(x) = E∗Γ(R)(x). Hence CAG(R) = AGE(R).

(c) Suppose that CΓ(R) = ΓE(R). By Corollary 2.9(1), to show that Γ(R) =

Γ(R) we need to show that (1) x ∈ nil(R) implies x2 = 0 and (2) x ∈ R \ nil(R)

implies annR(x2) = annR(x). For (1), assume by way of contradiction that xn =

0, but xn−1 6= 0, for some integer n ≥ 3. Then [x]∼Γ(R)
and [xn−1]∼Γ(R)

are

distinct adjacent vertices in ΓE(R). However, [x]∼Γ(R)
= [xn−1]∼Γ(R)

in CΓ(R)

since E∗
Γ(R)

(x) = E∗
Γ(R)

(xn−1). This contradicts CΓ(R) = ΓE(R); so (1) holds. For

(2), suppose by way of contradiction that annR(x2) 6= annR(x). Let y ∈ R with

yx2 = 0 and yx 6= 0. Then [x]∼Γ(R)
and [x2]∼Γ(R)

are distinct adjacent vertices in

ΓE(R). However, [x]∼Γ(R)
= [x2]∼Γ(R)

in CΓ(R) since E∗
Γ(R)

(x) = E∗
Γ(R)

(x2). This

contradicts CΓ(R) = ΓE(R); so (2) holds. Thus Γ(R) = Γ(R). �

Remark 4.4. (a) The converse of Theorem 4.3(b) does not hold for R = Z30

since CAG(Z30) = AGE(Z30), but Γ(Z30) ( AG(Z30) since 2 and 3 are adjacent in

AG(Z30), but not in Γ(Z30).

(b) The proof of Theorem 4.3 shows that Γ(R) = Γ(R) implies ΓL(R) = Γ
L

(R)

and Γ(R) = AG(R) implies ΓL(R) = AGL(R). However, for R = Z2 ×Z4, we have

Γ(R) = AG(R), but Γ
L

(R) ( AGL(R) since there is a loop at (1, 2) in AGL(R),

but not in Γ
L

(R).

(c) (cf. Example 4.2) Let R = Zp1
n1 × · · · × Zpk

nk , where the pi are (not

necessarily distinct) primes and every ni ∈ N. If every ni ≤ 2, then CΓ(R) = ΓE(R)

and CAG(R) = AGE(R), otherwise CΓ(R) 6= ΓE(R) and CAG(R) 6= AGE(R) (cf.

[28, Cororally 2.8.1 and Proposition 2.16]).

5. Maps between graphs

In this section, we study maps between congruence-based graphs. This extends

the work in [12] on Γ∼(R) to Γ∼(R) and AG∼(R).

First, we recall several results from [12]. For a commutative ring R, let C(R)

be the set of multiplicative congruence relations on R. We can partially order

C(R) by ∼1≤∼2 ⇔ ∼1⊆∼2 (as subsets of R × R). So C(R) has a least element

=R = {(x, x) | x ∈ R} and a greatest element R × R. For ∼∈ C(R), [0]∼ is a
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semigroup ideal of R, and moreover, C(R) = tICI(R), where I is a semigroup ideal

of R and CI(R) = {∼∈ C(R) | [0]∼ = I}.
Let I be a semigroup ideal of R and ∼1, ∼2 ∈ C(R) with ∼1 ≤ ∼2. Then

it is easily verified that 1R : R −→ R induces a surjective monoid homomorphism

f : R/∼1 −→ R/∼2 given by f([x]∼1
) = [x]∼2

with f([0]∼1
) = [0]∼2

and f([1]∼1
) =

[1]∼2 . In fact, f is well-defined if and only if ∼1 ≤ ∼2, and f is injective if and only

if ∼1 = ∼2. Now suppose, in addition, that ∼1, ∼2 ∈ CI(R) (i.e., I = [0]∼1 = [0]∼2).

Then [x]∼1
∈ Z(R/∼1)∗ if and only if [x]∼2

∈ Z(R/∼2)∗ ([12, Lemma 2.4]). Thus f

induces a surjective function F : Γ∼1
(R) −→ Γ∼2

(R) given by F ([x]∼1
) = [x]∼2

, i.e.,

F = f |Z(R/∼1)∗ . Moreover, for distinct adjacent vertices [x]∼1
and [y]∼1

in Γ∼1
(R),

either F ([x]∼1) = F ([y]∼1) or F ([x]∼1) and F ([y]∼1) are adjacent in Γ∼2(R). Note

that F may be well-defined or injective (and hence a graph isomorphism) without

f being well-defined or injective (cf.[12, Remark 2.6(c)]).

Since F is surjective, there is an (not necessarily unique) injective function

G : Γ∼2(R) −→ Γ∼1(R) such that FG = 1Γ∼2 (R) (i.e., for each z ∈ Z(R/∼2)∗,

choose an α(z) ∈ Z(R/∼1)∗ such that F (α(z)) = z, and then define G(z) = α(z)).

Moreover, G([x]∼2
) and G([y]∼2

) are adjacent in Γ∼1
(R) if and only if [x]∼2

and

[y]∼2
are adjacent in Γ∼2

(R) since [0]∼1
= [0]∼2

= I. Thus G is an injective graph

homomorphism and embeds Γ∼2(R) as an induced subgraph of Γ∼1(R). We record

these observations in the following theorem.

Theorem 5.1. ([12, Theorem 3.1]) Let R be a commutative ring with 1 6= 0, and

let ∼1, ∼2 ∈ C(R) with ∼1 ≤ ∼2. Then there is a surjective monoid homomorphism

f : R/∼1 −→ R/∼2 given by f([x]∼1) = [x]∼2 . If [0]∼1 = [0]∼2 , then f induces a

surjective function F : Γ∼1(R) −→ Γ∼2(R) given by F ([x]∼1) = [x]∼2 and an injec-

tive graph homomorphism G : Γ∼2
(R) −→ Γ∼1

(R) such that FG = 1Γ∼2
(R). More-

over, for adjacent vertices [x]∼1
and [y]∼1

in Γ∼1
(R), either F ([x]∼1

) = F ([y]∼1
)

or F ([x]∼1) and F ([y]∼1) are adjacent in Γ∼2(R); and Γ∼2(R) is isomorphic to an

induced subgraph of Γ∼1(R).

Since all three congruence-based graphs have the same vertex set Z(R/∼)∗ =

Z(R/∼) \ {[0]∼}, these results extend in the natural way to Γ∼(R) and AG∼(R).

We need only check adjacency. Note that the functions F, F ′, F ′′ (resp., G,G′, G′′)

take the same values on Z(R/∼1)∗ (resp., Z(R/∼2)∗), but to avoid any possible

confusion on which graphs are being considered, we will use the “ ′s”.
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Theorem 5.2. Let R be a commutative ring with 1 6= 0, and let ∼1, ∼2 ∈
C(R) with ∼1 ≤ ∼2. If [0]∼1 = [0]∼2 , then the surjective monoid homomor-

phism f : R/∼1 −→ R/∼2 given by f([x]∼1
) = [x]∼2

induces a surjective func-

tion F ′ : Γ∼1
(R) −→ Γ∼2

(R) (resp., F ′′ : AG∼1
(R) −→ AG∼2

(R)) given by

F ′([x]∼1
) = [x]∼2

(resp., F ′′([x]∼1
) = [x]∼2

) and an injective graph homomorphism

G′ : Γ∼2(R) −→ Γ∼1(R) (resp., G′′ : AG∼2(R) −→ AG∼1(R)) such that F ′G′ =

1Γ∼2
(R) (resp., F ′′G′′ = 1AG∼2

(R)). Moreover, for adjacent vertices [x]∼1 and [y]∼1

in Γ∼1
(R) (resp., AG∼1

(R)), either F ′([x]∼1
) = F ′([y]∼1

) (resp., F ′′([x]∼1
) =

F ′′([y]∼1
)) or F ′([x]∼1

) and F ′([y]∼1
) (resp., F ′′([x]∼1

) and F ′′([y]∼1
)) are adja-

cent in Γ∼2(R) (resp., AG∼2(R)); and Γ∼2(R) (resp., AG∼2(R)) is isomorphic to

an induced subgraph of Γ∼1(R) (resp., AG∼1(R)).

By [12, Theorems 2.8 and 3.1], for a fixed semigroup ideal I of R, there is a largest

and a smallest ∼-zero-divisor graph for ∼ ∈ CI(R). The largest is ΓI(R), and the

smallest is Γ∼(R), where x ∼ y ⇔ (I : x) = (I : y). Moreover, Γ∼(R) = ΓE(R/I)

when I is a proper ideal of R (see Corollary 5.5). In particular, for I = {0}, Γ(R)

is the largest and ΓE(R) is the smallest zero-divisor graph. In [9, p. 1450070-4], it

was observed that ΓE(R) is isomorphic to a subgraph of Γ(R), and in [31, Corollary

2.7] that ΓI(R) contains |I| disjoint subgraphs isomorphic to Γ(R/I).

By Theorem 5.2, for ∼∈ CI(R), there are also a largest and a smallest Γ∼(R)

and AG∼(R). The largest are ΓI(R) and AGI(R), and the smallest are Γ∼(R) and

AG∼(R), where x ∼ y ⇔ (I : x) = (I : y). Moreover, Γ∼(R) = ΓE(R/I) and

AG∼(R) = AGE(R/I) (see Corollary 5.5). In particular, for I = {0}, the smallest

are the “compressed” graphs ΓE(R) and AGE(R), and the largest are Γ(R) and

AG(R).

However, for ∼1, ∼2 ∈ CI(R) with ∼1 ≤ ∼2, the function F : Γ∼1(R) −→ Γ∼2(R)

given by F ([x]∼1
) = [x]∼2

need not be a graph homomorphism since distinct adja-

cent vertices in Γ∼1
(R) may collapse to the same vertex in Γ∼2

(R). For example,

let R = Z9, ∼1 = =R, and define ∼2 by x ∼2 y ⇔ annR(x) = annR(y). Then ∼1,

∼2 ∈ C{0}(R) with ∼1 ≤ ∼2, Γ∼1(R) = Γ(R) = K2, and Γ∼2(R) = ΓE(R) = K1

(this corrects [12, p. 124]); so F : Γ(R) −→ ΓE(R) is not a graph homomorphism.

The next theorem gives a sufficient condition for F, F ′, and F ′′ to be graph homo-

morphisms. Note that Γ∼(R) = Γ∼(R) when I = [0]∼ is a radical semigroup ideal

of R.

Theorem 5.3. Let R be a commutative ring with 1 6= 0, I a radical semigroup ideal

of R, and ∼1, ∼2 ∈ CI(R) with ∼1 ≤ ∼2. Then F : Γ∼1
(R) −→ Γ∼2

(R) (resp.,



GENERALIZATIONS OF THE ZERO-DIVISOR GRAPH 259

F ′′ : AG∼1
(R) −→ AG∼2

(R)) given by F ([x]∼1
) = [x]∼2

(resp., F ′′([x]∼1
) = [x]∼2

)

is a surjective graph homomorphism.

Proof. The Γ∼(R) case is [12, Theorem 3.2]; so we do the AG∼(R) case. Suppose

that distinct vertices [x]∼1
and [y]∼1

are adjacent in AG∼1
(R). Then (I : xy) 6= (I :

x)∪(I : y) for I = [0]∼1
= [0]∼2

. Hence there is a z ∈ R with zxy ∈ I and zx, zy 6∈ I.

If [x]∼2
= F ′′([x]∼1

) = F ′′([y]∼1
) = [y]∼2

, then x ∼2 y; so zx2 ∼2 zxy ∼2 0. Thus

zx2 ∈ [0]∼2 = I, and hence zx ∈ I since I is a radical semigroup ideal of R, a

contradiction. Thus [x]∼2 and [y]∼2 are distinct adjacent vertices in AG∼2(R), and

hence F ′′ is a surjective graph homomorphism. �

In some cases, a ∼ ∈ CI(R) induces a ∼′ ∈ C{0}(R/I) such that [x]∼ 7→ [x+ I]∼′

gives a graph isomorphism Γ∼(R) −→ Γ∼′(R/I) ([12, Theorem 5.1]). Thus a

∼-zero-divisor graph may come from different base rings. We next formalize this

“change of rings” result to Γ∼(R) and AG∼(R). Note that the “∼1 ≤ ∼” hypothesis

is needed in Theorem 5.4 (see [12, Remark 5.3]). Again, F, F ′, and F ′′ take the

same values on Z(R/∼)∗.

Theorem 5.4. Let R be a commutative ring with 1 6= 0, and let I be a proper

ideal of R. Define ∼1 ∈ CI(R) by x ∼1 y ⇔ x − y ∈ I. Given ∼ ∈ CI(R) with

∼1 ≤ ∼, define ∼′ ∈ C{0}(R/I) by x + I ∼′ y + I ⇔ x ∼ y. Then F : Γ∼(R) −→
Γ∼′(R/I) (resp., F ′ : Γ∼(R) −→ Γ∼′(R/I), F ′′ : AG∼(R) −→ AG∼′(R/I)) given

by F ([x]∼) = [x+I]∼′ (resp., F ′([x]∼) = [x+I]∼′ , F
′′([x]∼) = [x+I]∼′) is a graph

isomorphism.

Proof. It is easy to verify that ∼′ is well-defined and ∼′ ∈ C{0}(R/I) since ∼1 ≤
∼. Define f : R/∼−→ (R/I)/∼′ by f([x]∼) = [x + I]∼′ . It is also easy to verify

that f is a monoid isomorphism and induces a graph isomorphism F : Γ∼(R) −→
Γ∼′(R/I) (resp., F ′ : Γ∼(R) −→ Γ∼′(R/I), F ′′ : AG∼(R) −→ AG∼′(R/I)) given

by F ([x]∼) = [x + I]∼′ (resp., F ′([x]∼) = [x + I]∼′ , F
′′([x]∼) = [x + I]∼′), i.e.,

F = F ′ = F ′′ = f |Z(R/∼)∗ . �

Corollary 5.5. Let R be a commutative ring with 1 6= 0, and let I be a proper

ideal of R. Define ∼1,∼2∈ CI(R) by x ∼1 y ⇔ x− y ∈ I and x ∼2 y ⇔ (I : x) =

(I : y). Then Γ∼1
(R) = Γ(R/I), Γ∼1

(R) = Γ(R/I), AG∼1
(R) = AG(R/I), and

Γ∼2
(R) = ΓE(R/I), Γ∼2

(R) = ΓE(R/I), AG∼2
(R) = AGE(R/I).

Most of the results in [12, Sections 5 and 6] for Γ∼(R) extend in the natural way

to Γ∼(R) and AG∼(R) since all three graphs have the same vertex set. We leave

the routine details to the interested reader.
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