

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA VOLUME 27 (2020) 263-270 DOI: 10.24330/ieja.663084

A CONDITION FOR CYCLIC CHIEF FACTORS OF FINITE GROUPS

Changwen Li

Received: 20 June 2019; Revised: 3 July 2019; Accepted: 16 July 2019 Communicated by Arturo Magidin

ABSTRACT. In this paper, we find a condition under which every chief factor of G below a normal subgroup H of G is cyclic by using the τ -supplemented subgroups. Some recent results are generalized.

Mathematics Subject Classification (2010): 20D10, 20D20 Keywords: Sylow subgroup, τ -supplemented, p-nilpotent

1. Introduction

In this paper, G always denotes a finite group and p is a prime. A subgroup H of G is called S-quasinormal (or S-permutable) [6] in G if it permutes with every Sylow subgroup of G; H is S-supplemented [13] in G if there exists a subgroup T of G such that G = HT and $H \cap T \leq H_{sG}$, where H_{sG} is the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. In [14], Skiba proved the following significant result:

Theorem 1.1. Let H be a normal subgroup of a group G. Suppose that for every non-cyclic Sylow subgroup P of H, all maximal subgroups of P or all cyclic subgroups of P of prime order and order 4 are S-supplemented in G. Then every G-chief factor below H is cyclic.

A subgroup H of G is SS-quasinormal [8] in G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B; H is SS-supplemented [17] in G if there is a subgroup T of G such that G = HT and $H \cap T$ is SS-quasinormal in G. In [17], Yan et al. strengthened Theorem 1.1 as follows:

Theorem 1.2. Let H be a normal subgroup of a group G. Suppose that for every non-cyclic Sylow subgroup P of H, all maximal subgroups of P or all cyclic subgroups of P of prime order and order 4 are SS-supplemented in G. Then every G-chief factor below H is cyclic.

The project is supported by the Natural Science Foundation of China (No: 11571145).

CHANGWEN LI

A subgroup H of G is said to be *s*-semipermutable [15] in G if H permutes with all Sylow *q*-subgroups of G for the primes q not dividing |H|; H is τ -quasinormal [11] in G if H permutes with every Sylow subgroup Q of G such that (|H|, |Q|) = 1and $(|H|, |Q^G|) \neq 1$; H is τ -supplemented [10] in G if G has a subgroup T such that G = HT and $H \cap T \leq H_{\tau G}$, where $H_{\tau G}$ is the subgroup generated by all those subgroups of H which are τ -quasinormal in G. It is easy to see that if a subgroup H of G is SS-supplemented in G, then H is τ -supplemented in G. However, the converse does not hold in general. In this paper, we get the following result which is an extension of Theorems 1.1 and 1.2.

Theorem 1.3. Let H be a normal subgroup of G. Suppose that there exists a normal subgroup X of G such that $F^*(H) \leq X \leq H$ and for every non-cyclic Sylow subgroup P of X, either all maximal subgroups of P lacking supersolvable supplements in G or all cyclic subgroups of P of prime order and order 4 without supersolvable supplements in G are τ -supplemented in G. Then every G-chief factor below H is cyclic.

Here $F^*(G)$ is the generalized Fitting subgroup of G, i.e., the product of all normal quasinilpotent subgroups of G (see [4, X, 13]).

2. Preliminaries

Lemma 2.1 ([10, Lemma 2.2]). Let H be a τ -supplemented subgroup of a group G.

- (1) If $H \leq L \leq G$, then H is τ -supplemented in L.
- (2) If $N \leq G$, $N \leq H \leq G$ and H is a p-group for some prime p, then H/N is τ -supplemented in G/N.
- (3) If H is a π -subgroup and N is a normal π' -subgroup of G, then HN/N is τ -supplemented in G/N.

Lemma 2.2 ([7, Lemma 2.12]). Let P be a Sylow p-subgroup of a group G, where p is a prime with (|G|, p-1) = 1. If every maximal subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Lemma 2.3 ([2, A, 1.2]). Let U, V, and W be subgroups of a group G. Then the following statements are equivalent:

- (1) $U \cap VW = (U \cap V)(U \cap W);$
- (2) $UV \cap UW = U(V \cap W).$

264

Lemma 2.4. Let H be a p-subgroup of G and N be a normal subgroup of G. If H is τ -quasinormal in G, then $H \cap N$ is also τ -quasinormal in G.

Proof. Let Q be a Sylow q-subgroup of G and $(p, |Q^G|) \neq 1$, where q is a prime distinct from p. Since $|N|_q = |HN|_q$ and $N \cap Q$ is a Sylow q-subgroup of N, we have that $N \cap Q = HN \cap Q$, i.e., $(H \cap Q)(N \cap Q) = HN \cap Q$. By Lemma 2.3, we have $HQ \cap NQ = (H \cap N)Q$. Thus $H \cap N$ is τ -quasinormal in G.

Lemma 2.5. Let G be a group and p a prime dividing |G| with (|G|, p-1) = 1.

- (1) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.
- (2) If G is p-supersolvable, then G is p-nilpotent.
- (3) If N is a normal subgroup of G with order p and G/N is p-supersolvable, then G is p-nilpotent.

Proof. (1) and (2) are [9, Lemma 2.6]. (3) follows directly from (2). \Box

Lemma 2.6 ([11, Lemmas 2.2]). If a subgroup H of G is τ -quasinormal in G and $H \leq O_p(G)$ for some prime p, then H is S-quasinormal in G.

Lemma 2.7 ([14, Corollary 1.1]). Let H be a normal subgroup of a group G. If every G-chief factor below $F^*(H)$ is cyclic, then every G-chief factor below H is cyclic.

Lemma 2.8 ([12, Theorem A]). If H is an S-permutable p-subgroup of G for some prime p, then $N_G(H) \ge O^p(G)$.

Lemma 2.9. Let H be a normal subgroup of a group G. Suppose that for every non-cyclic Sylow subgroup P of H, all cyclic subgroups of P of prime order and order 4 without supersolvable supplements in G are τ -supplemented in G. Then every G-chief factor below H is cyclic.

Proof. In fact, there are some typing errors in [10, Theorem 3 and Corollary 1] and "S-supplemented" should be " τ -supplemented".

3. Proof of Theorem 1.3

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. If every maximal subgroup of P not having a p-nilpotent supplement in G is τ -supplemented in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order.

CHANGWEN LI

(1) $O_{p'}(G) = 1.$

Assume that $R = O_{p'}(G) \neq 1$. Then, obviously, PR/R is a Sylow *p*-subgroup of G/R. Suppose that M/R is a maximal subgroup of PR/R. Then there exists a maximal subgroup P_1 of P such that $M = P_1R$. If P_1 has a *p*-nilpotent supplement D in G, then M/R has a *p*-nilpotent supplement DR/R in G/R. If P_1 is τ supplemented in G, then M/R is τ -supplemented in G/R by Lemma 2.1(3). Hence G/N satisfies the hypothesis of the theorem. The minimal choice of G implies that G/R is *p*-nilpotent and so G is also *p*-nilpotent, a contradiction.

(2) G is solvable.

If every maximal subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent by Lemma 2.2. Hence there exists a maximal subgroup V of P such that V is τ -supplemented in G. Then there is a non-p-nilpotent subgroup T of G such that G = VT and $V \cap T \leq V_{\tau G}$. Since $O_{p'}(G) = 1$, we have that $p||Q^G|$ for every non-trivial Sylow q-subgroup Q of G ($p \neq q$). Hence $V_{\tau G}Q = QV_{\tau G}$. This shows that $V_{\tau G}$ is S-semipermutable in G. If $V_{\tau G} = 1$, then, by Lemma 2.5(1), T is p-nilpotent, a contradiction. Hence $V_{\tau G} \neq 1$. Let L be a minimal normal subgroup of G contained in $(V_{\tau G})^G$. By virtue of [5, Theorem A], L is solvable. Consequently, $L \leq O_p(G)$. By Lemma 2.1(2), it is easy to see that every maximal subgroup of P/L not having a p-nilpotent supplement in G/L is τ -supplemented in G/L. Hence G/L satisfies the hypothesis of the theorem. The minimal choice of G implies that G/L is p-nilpotent. Since (|G/L|, p - 1) = 1, it follows that G/L is solvable.

(3) The final contradiction.

Let N be a minimal normal subgroup of G. From steps (1) and (2), $N \leq O_p(G)$. Using the same argument as in the proof of step (2), we have G/N is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, N is the unique minimal normal subgroup of G and $\Phi(G) = 1$. Consequently, G has a maximal subgroup M such that $N \notin M$. Obviously, $N \cap M$ is normal in G. The minimal normality of N yields that $N \cap M = 1$ and so $G/N \cong M$ is p-nilpotent.

Let V be an arbitrary maximal subgroup of P. Next we shall prove that if V is τ -supplemented in G, then V has a p-nilpotent supplement in G. Assume there is a subgroup T of G such that G = VT and $V \cap T \leq V_{\tau G}$. If $N \cap V_{\tau G} \neq 1$, then, by Lemma 2.4, $N \cap V_{\tau G}$ is τ -quasinormal in G. By virtue of Lemma 2.6, $N \cap V_{\tau G}$ is S-quasinormal in G. Furthermore, $O^p(G) \leq N_G(N \cap V_{\tau G})$ from Lemma 2.8. It follows that $N = (N \cap V_{\tau G})^G = (N \cap V_{\tau G})^{O^p(G)P} = (N \cap V_{\tau G})^P \leq (V_{\tau G})^P \leq V^P = V$. This implies that G = VM and V has the p-nilpotent supplement M in G. If

266

 $N \cap V_{\tau G} = 1$, then $V \cap T \cap N = 1$ and so $|T \cap N| = |T \cap N : V \cap T \cap N| = |(T \cap N)V : V| \le |NV : V| \le |P : V| \le p$. Since $T/T \cap N \cong TN/N \le G/N$, we have that $T/T \cap N$ is *p*-nilpotent. In view of Lemma 2.5(3), *T* is *p*-nilpotent as desired.

Now we have that every maximal subgroup of P has a p-nilpotent supplement in G. Applying Lemma 2.2, G is p-nilpotent, a contradiction.

Corollary 3.2. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. If every maximal subgroup of P not having a p-supersolvable supplement in G is τ -supplemented in G, then G is p-nilpotent.

Proof. It follows directly from Lemma 2.5(2) and Theorem 3.1.

Corollary 3.3. Let P be a Sylow p-subgroup of a group G, where p is the smallest prime dividing |G|. If every maximal subgroup of P not having a supersolvable supplement in G is τ -supplemented in G, then G is p-nilpotent.

Theorem 3.4. Let H be a normal subgroup of a group G. Suppose that for every non-cyclic Sylow subgroup P of H, each maximal subgroup of P not having a supersolvable supplement in G is τ -supplemented in G. Then every G-chief factor below H is cyclic.

Proof. Suppose that this theorem is false and let (G, H) be a counterexample for which |G| + |H| is minimal. By Corollary 3.3 and Lemma 2.5, H is p-nilpotent, where p is the smallest prime dividing |H|. Let V be a normal p-complement of H. Then V is normal in G since it is characteristic in H. Moreover, by Lemma 2.1, the hypothesis holds for (G/V, H/V). Hence in the case when $V \neq 1$, we have every G/V-chief factor below H/V is cyclic by the choice of (G, H). It is clear that (G, V) also satisfies the hypothesis. Hence each G-chief factor below V is cyclic again by the choice of (G, H). It follows that every G-chief factor below H is cyclic, a contradiction. Hence V = 1, which implies that H is a p-group. In view of [10, Theorem 4], every G-chief factor below H is cyclic. This contradiction completes the proof.

Proof of Theorem 1.3. Applying Theorem 3.4 and Lemma 2.9, every *G*-chief factor below *X* is cyclic. Since $F^*(H) \leq X$, we have that every *G*-chief factor below $F^*(H)$ is cyclic. Consequently, every *G*-chief factor below *H* is cyclic by virtue of Lemma 2.7.

4. Applications

Theorem 4.1. Let p be a prime divisor of |G| with (|G|, p-1) = 1 and H a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal subgroup of P not having a p-nilpotent supplement in G is τ -supplemented in G, then G is p-nilpotent.

Proof. By Lemma 2.1(1), every maximal subgroup of P not having a p-nilpotent supplement in H is τ -supplemented in H. Applying Theorem 3.1, H is p-nilpotent. Let V be the normal p-complement of H. Then V is normal in G since it is characteristic in H. If $V \neq 1$, then it is easy to see that G/V satisfies the hypothesis of the theorem by virtue of Lemma 2.1(3). Hence G/V is p-nilpotent by induction. It follows that G is p-nilpotent. Next we assume that V = 1, i.e. H = P. Since G/P is p-nilpotent, we may let K/P be the normal Hall p'-subgroup of G/P. By Schur-Zassenhaus Theorem, $K = PK_{p'}$. Applying Lemma 2.1(1) and Theorem 3.1 again, $K = P \times K_{p'}$. Obviously, $K_{p'}$ is also a normal p-complement of G and so G is p-nilpotent.

A subgroup H of G is said to be c-supplemented in G if there exists a subgroup K of G such that G = HK and $H \cap K \leq H_G$, where H_G is the largest normal subgroup of G contained in H (see [1]).

Corollary 4.2 ([3, Theorem 3.4]). Let P be a Sylow p-subgroup of G, where p is the smallest prime dividing |G|. If all maximal subgroups of P are c-supplemented in G, then G is p-nilpotent.

Corollary 4.3 ([15, Theorem 3.3]). Let p be the smallest prime divisor of |G| and P a Sylow p-subgroup of G. If every maximal subgroup of P is S-semipermutable in G, then G is p-nilpotent.

Theorem 4.4. Let \mathfrak{F} be a saturated formation containing the class of all supersoluble groups \mathfrak{U} and H a normal subgroup of a group G such that $G/H \in \mathfrak{F}$. Let X be a normal subgroup of G with $F^*(H) \leq X \leq H$. Suppose that for every non-cyclic Sylow subgroup P of X, either all maximal subgroups of P lacking supersolvable supplements in G or all cyclic subgroups of P of prime order and order 4 without supersolvable supplements in G are τ -supplemented in G. Then $G \in \mathfrak{F}$.

Proof. Applying Theorem 1.3, every *G*-chief factor below *H* is cyclic. By [2, IV, Proposition 3.11], the chief factors of *H* are *f*-central. And since $G/H \in \mathfrak{F}$, the chief factors of G/H are *f*-central. Thus all chief factors of *G* are *f*-central, i.e. $G \in \mathfrak{F}$.

Corollary 4.5 ([3, Theorem 4.2]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and H a normal subgroup of a group G such that $G/H \in \mathfrak{F}$. If every maximal subgroup of any Sylow subgroup of H is c-supplemented in G, then $G \in \mathfrak{F}$.

Corollary 4.6 ([16, Theorem 1.1]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and H a normal subgroup of a group G such that $G/H \in \mathfrak{F}$. If all maximal subgroups of any Sylow subgroup of $F^*(H)$ are c-supplemented in G, then $G \in \mathfrak{F}$.

Corollary 4.7 ([16, Theorem 1.2]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and H a normal subgroup of a group G such that $G/H \in \mathfrak{F}$. If all minimal subgroups and all cyclic subgroups with order 4 of $F^*(H)$ are c-supplemented in G, then $G \in \mathfrak{F}$.

Acknowledgement. The author would like to thank the referee for the valuable suggestions and comments.

References

- A. Ballester-Bolinches, Y. Wang and G. Xiuyun, *c-supplemented subgroups of finite groups*, Glasg. Math. J., 42(3) (2000), 383-389.
- [2] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter Expositions in Mathematics, 4, Walter de Gruyter & Co., Berlin, 1992.
- [3] X. Guo and K. P. Shum, Finite p-nilpotent groups with some subgroups csupplemented, J. Aust. Math. Soc., 78(3) (2005), 429-439.
- [4] B. Huppert and N. Blackburn, Finite Groups III, Fundamental Principles of Mathematical Sciences, 243, Springer-Verlag, Berlin-New York, 1982.
- [5] I. M. Isaacs, Semipermutable π -subgroups, Arch. Math. (Basel), 102(1) (2014), 1-6.
- [6] O. H. Kegel, Sylow-gruppen und subnormalteiler endlicher gruppen, Math. Z., 78(1) (1962), 205-221.
- [7] C. Li, Finite groups with some primary subgroups SS-quasinormally embedded, Indian J. Pure Appl. Math., 42(5) (2011), 291-306.
- [8] S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319(10) (2008), 4275-4287.
- C. Li, N. Yang and N. Tang, Some new characterisations of finite p-supersoluble groups, Bull. Aust. Math. Soc., 89(3) (2014), 514-521.
- [10] C. Li, X. Zhang and X. Yi, On τ-supplemented subgroups of finite groups, Miskolc Math. Notes, 14(3) (2013), 997-1008.

CHANGWEN LI

- [11] V. O. Lukyanenko and A. N. Skiba, On weakly τ-quasinormal subgroups of finite groups, Acta Math. Hungar., 125(3) (2009), 237-248.
- [12] P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207(1) (1998), 285-293.
- [13] A. N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315(1) (2007), 192-209.
- [14] A. N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory, 13(6) (2010), 841-850.
- [15] L. Wang and Y. Wang, On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups, Comm. Algebra, 34(1) (2006), 143-149.
- [16] H. Wei, Y. Wang and Y. Li, On c-supplemented maximal and minimal subgroups of Sylow subgroups of finite groups, Proc. Amer. Math. Soc., 132(8) (2004), 2197-2204.
- [17] Q. Yan, X. Bao and Z. Shen, Finite groups with SS-supplement, Monatsh. Math., 184(2) (2017), 325-333.

Changwen Li

School of Mathematics and Statistics Jiangsu Normal University 221116 Xuzhou, China e-mail: lcw2000@126.com