NILPOTENT AND LINEAR COMBINATION OF IDEMPOTENT MATRICES

Marjan Sheibani Abdolyousefi

Received: 9 December 2019; Accepted: 18 May 2020
Communicated by Huanyin Chen

Abstract. A ring \(R\) is Zhou nil-clean if every element in \(R\) is the sum of a nilpotent and two tripotents. Let \(R\) be a Zhou nil-clean ring. If \(R\) is of bounded index or 2-primal, we prove that every square matrix over \(R\) is the sum of a nilpotent and a linear combination of two idempotents. This provides a large class of rings over which every square matrix has such decompositions by nilpotent and linear combination of idempotent matrices.

Mathematics Subject Classification (2020): 16U40, 47B33
Keywords: Idempotent matrix, nilpotent matrix, linear combination, Zhou nil-clean ring

1. Introduction

Throughout, all rings are associative with an identity. Very recently, Zhou investigated a class of rings in which elements are the sum of a nilpotent and two tripotents that commute (see [7]). We call such ring a Zhou nil-clean ring. Many elementary properties of such rings are investigated in [4].

Decomposition of a matrix into the sum of simple matrices is of interest. In this paper, we consider a linear combination of the form

\[P = N + c_1P_1 + c_2P_2, \]

where \(N\) is a nilpotent matrix and \(P_1, P_2\) are idempotent matrices and \(c_1\) and \(c_2\) are scalars. Such decomposition of matrices over Zhou nil-clean rings is thereby determined in this way. A ring \(R\) is of bounded index if there exists \(m \in \mathbb{N}\) such that \(x^m = 0\) for all nilpotent \(x \in R\). A ring \(R\) is 2-primal if its primal radical coincides with the set of nilpotents in \(R\) [3]. For instance, every commutative (reduced) ring is 2-primal. Let \(R\) be Zhou nil-clean. If \(R\) is of bounded index or 2-primal, we prove that every square matrix over \(R\) is the sum of a nilpotent and linear combination of two idempotent matrices. This provides a large class of rings over which every square matrix has such decompositions by nilpotent and linear combination of idempotent matrices.
We use $N(R)$ to denote the set of all nilpotent elements in R. N stands for the set of all natural numbers.

2. Zhou nil-clean rings

Definition 2.1. A ring R is a Zhou ring if every element in R is the sum of two tripotents that commute.

The structure of Zhou rings was studied in [6]. We now investigate matrices over Zhou rings. We begin with

Lemma 2.2. Every square matrix over \mathbb{Z}_3 is the sum of two idempotents and a nilpotent.

Proof. See [5, Lemma 2.1].

Lemma 2.3. Every square matrix over \mathbb{Z}_5 is the sum of a nilpotent and a linear combination of two idempotent matrices.

Proof. As every matrix over \mathbb{Z}_5 is similar to a companion matrix, we may assume

$$A = \begin{pmatrix}
0 & c_0 \\
1 & 0 & c_1 \\
1 & 0 & c_2 \\
\vdots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
0 & c_{n-2} & \ddots & \ddots & 0 \\
1 & 0 & \cdots & \cdots & c_{n-1}
\end{pmatrix}.
$$

Case I. $c_{n-1} = 0$. Choose

$$W = \begin{pmatrix}
0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
\vdots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & \cdots & 0 \\
1 & 0 & \cdots & \cdots & 0 & 1
\end{pmatrix},
$$

$$E_1 = \begin{pmatrix}
0 & c_0 \\
0 & 0 & c_1 \\
0 & 0 & c_2 \\
\vdots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & c_{n-2} & \ddots & \cdots & 0 \\
0 & 1 & \cdots & \cdots & 1
\end{pmatrix},
$$

$$E_2 = \begin{pmatrix}
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\vdots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & \cdots & 0 \\
0 & 1 & \cdots & \cdots & 1
\end{pmatrix}.$$
Then $E_1^2 = E_1$ and $E_2^2 = E_2$, and so $A = E_1 + (-1)E_2 + W$.

Case II. $c_{n-1} = 1$. Choose

$$W = \begin{pmatrix} 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots \\ \cdots & 0 & 0 \\ 1 & 0 \end{pmatrix}, E = \begin{pmatrix} 0 & c_0 \\ 0 & 0 & c_1 \\ 0 & 0 & c_2 \\ \vdots & \vdots \\ \cdots & 0 & c_{n-2} \\ 0 & 1 \end{pmatrix}.$$

Then $E_2^2 = E_1$, and so $A = E_1 + 0 + W$.

Case III. $c_{n-1} = -1$. Choose

$$W = \begin{pmatrix} 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots \\ \cdots & 0 & 0 \\ 1 & 0 \end{pmatrix}, E = \begin{pmatrix} 0 & c_0 \\ 0 & 0 & c_1 \\ 0 & 0 & c_2 \\ \vdots & \vdots \\ \cdots & 0 & c_{n-2} \\ 0 & 1 \end{pmatrix}.$$

Then $E_2^2 = E_1$, and so $A = (-1)E_1 + 0 + W$.

Case IV. $c_{n-1} = 2$. Choose

$$W = \begin{pmatrix} 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots \\ \cdots & 0 & 0 \\ 1 & 0 \end{pmatrix}, E_1 = \begin{pmatrix} 0 & c_0 \\ 0 & 0 & c_1 \\ 0 & 0 & c_2 \\ \vdots & \vdots \\ \cdots & 0 & c_{n-2} \\ 0 & 1 \end{pmatrix},$$

$$E_2 = \begin{pmatrix} 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ \vdots & \vdots \\ \cdots & 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then $E_1^2 = E_1$ and $E_2^2 = E_2$, and so $A = E_1 + E_2 + W$.

Case IV. $c_{n-1} = -2$. Choose

$$W = \begin{pmatrix}
0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
\vdots & 0 & 0 \\
1 & 0
\end{pmatrix},
E_1 = \begin{pmatrix}
0 & 0 & c_0 \\
0 & 0 & c_1 \\
0 & 0 & c_2 \\
\vdots & \vdots & \vdots \\
\vdots & 0 & c_{n-2} \\
0 & 1
\end{pmatrix},
E_2 = \begin{pmatrix}
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\vdots & \vdots & \vdots \\
\vdots & 0 & 0 \\
0 & 1
\end{pmatrix}.$$

Then $E_1^2 = E_1$ and $E_2^2 = E_2$, and so $A = (-1)E_1 + (-1)E_2 + W$.

Therefore we complete the proof. \hfill \Box

Recall that a ring R is a Yaqub ring if it is the subdirect product of \mathbb{Z}_3’s. A ring R is a Bell ring if it is the subdirect product of \mathbb{Z}_5’s. We have

Lemma 2.4. Every Zhou ring is isomorphic to a strongly nil-clean ring of bounded index, a Yaqub ring, a Bell ring or products of such rings.

Proof. See [5, Lemma 2.3]. \hfill \Box

Lemma 2.5. (See [2, Lemma 6.6]) Let R be of bounded index. If $J(R)$ is nil, then $J(M_n(R))$ is nil for all $n \in \mathbb{N}$.

We are ready to prove the following.

Theorem 2.6. Let R be a Zhou nil-clean ring of bounded index. Then every square matrix over R is the sum of a nilpotent and linear combination of two idempotent matrices.

Proof. In view of Lemma 2.3, R is isomorphic to R_1, R_2, R_3 or the products of these rings, where R_1 is a strongly nil-clean ring of bounded index, R_2 is a Yaqub ring and R_3 is a Bell ring.

Step 1. Let $A \in M_n(R_1)$. In view of [2, Corollary 6.8], there exist an idempotent $E \in M_n(R_1)$ and $W \in N(M_n(R_1))$ such that $A = E + W$.

Then $E_1^2 = E_1$ and $E_2^2 = E_2$, and so $A = (-1)E_1 + (-1)E_2 + W$.

Therefore we complete the proof. \hfill \Box
Step 2. Let $A \in M_n(R_2)$, and let S be the subring of R_2 generated by the entries of A. That is, S is formed by finite sums of monomials of the form: $a_1a_2 \cdots a_m$, where a_1, \ldots, a_m are entries of A. Since R_2 is a commutative ring in which $3 = 0$, S is a finite ring in which $x = x^3$ for all $x \in S$. Thus, S is isomorphic to finite direct product of \mathbb{Z}_3. As $A \in M_n(S)$, it follows by Lemma 2.1 that A is the sum of two idempotents and a nilpotent matrix over S.

Step 3. Let $A \in M_n(R_3)$, and let S be the subring of R_3 generated by the entries of A. Analogously, S is isomorphic to finite direct product of \mathbb{Z}_5. As $A \in M_n(S)$, it follows by Lemma 2.2 that A is the sum of a linear combination of two idempotents and a nilpotent matrix over S.

Let $A \in M_n(R)$. We may write $A = (A_1, A_2, A_3)$ in $M_n(R_1) \times M_n(R_2) \times M_n(R_3)$, where $A_1 \in M_n(R_1), A_2 \in M_n(R_2), A_3 \in M_n(R_3)$. According to the preceding discussion, we obtain the result. \hfill \Box

Example 2.7. Let $n \geq 2$ be an integer, if $n = 2^k3^l5^m$, then every square matrix over $R = \mathbb{Z}_n$ is a linear combination of two idempotents and a nilpotent.

Proof. It is obvious by [5, Example 3.5] that R is a Zhou nil-clean ring, also it is clear that R is of bounded index. Then the result follows from Theorem 2.5. \hfill \Box

3. **2-Primal rings**

An element w in a ring R is called strongly nilpotent if any chain $x_1 = x, x_2, x_3, \ldots$ with $x_{n+1} \in x_nRx_n$ forces $x_m = 0$ for some $m \in \mathbb{N}$. Let $P(R)$ be the primal radical of R, i.e., the intersection of all prime ideals of R. Then $P(R)$ is exactly the set of all strongly nilpotents in R [1, Remark 2.8]. We derive

Theorem 3.1. Let R be a ring. Then the following are equivalent:

1. R is 2-primal and Zhou nil-clean.
2. $a - a^5 \in R$ is strongly nilpotent for all $a \in R$.
3. $R/P(R)$ has the identity $x = x^5$.
4. Every element in R is the sum of two tripotents and a strongly nilpotent that commute.

Proof. (1) \Rightarrow (2) This is obvious, as every nilpotent in R is strongly nilpotent.

(2) \Rightarrow (3) Since every strongly nilpotent in R is contained in $P(R)$, we are through.

(3) \Rightarrow (4) Let $a \in R$. Then $a = a^5$; hence, $a - a^5 \in P(R)$ is nilpotent. Thus, R is Zhou nil-clean. In view of [7, Theorem 2.11], every element in R is the sum of
two tripotents u, v and a nilpotent w that commute. Write $w^n = 0 (n \in \mathbb{N})$. Then $\overline{w} = \overline{w^5} \in R/P(R)$. Hence, $w \in P(R)$, i.e., w is strongly nilpotent, as desired.

(4) \Rightarrow (1) As every strongly nilpotent in R is nilpotent, R is Zhou nil-clean, by [7, Theorem 2.11]. In view of [7, Theorem 2.11], $2 \times 3 \times 5 \in N(R)$. Write $2^6 \times 3^7 \times 5^9 = 0(n \in \mathbb{N})$. Since $(2, 3, 5) = 1$, by the Chinese Remainder Theorem, $R \cong R_1 \times R_2 \times R_3$, where $R_1 = R/2^6R$, $R_2 = R/3^7R$ and $R_3 = R/5^9R$. Step 1. Let $a \in N(R_1)$. Then $a = e + w$ with $e^3 = e, w \in P(R)$ and $ae = ea$. As $2 \in N(R_1)$, we see that $2 \in P(R_1)$, as it is central. Hence, $a^2 - a^4 \in P(R)$, and so $a(a - a^3) \in P(R)$. As $P(R)$ is an ideal, we see that $(a - a^3)^2 \in P(R)$. Hence, $(a^3 - a^5)^2 \in P(R)$. It follows that $(a - a^5)^2 \in P(R)$. This implies that $a^2 \in P(R)$. This implies that $e^2 \in P(R)$, and so $e = e^3 \in P(R)$. Therefore $a \in P(R)$. Thus, $N(R) \subseteq P(R)$; hence, R_1 is 2-primal.

Step 2. Let $a \in N(R_2)$. Then $a = e + w$ with $e^3 = e, w \in P(R)$ and $ae = ea$. As $3 \in N(R_1)$, we see that $3 \in P(R_1)$, as it is central. Hence, $a - a^3 \in P(R)$. Hence, $a^3 - a^5 = a^2(a - a^3) \in P(R)$. It follows that $a - a^5 = (a - a^3) + (a^3 - a^5) \in P(R)$. This implies that $a \in P(R)$, and so $N(R) \subseteq P(R)$; hence, R_2 is 2-primal.

Step 3. Let $a \in N(R_3)$. Then there exist two tripotents $e, f \in R$ and a strongly nilpotent $w \in R$ that commute such that $a = e + f + w$. As $5 \in N(R_3)$, we easily see that $5 \in P(R_3)$, as it is central. Hence, $a^5 \equiv e^5 + f^5 (\text{mod } P(R))$. Hence, $a^5 \equiv e + f = a$, and so $a \in P(R)$. This shows that R_3 is 2-primal.

Therefore R is 2-primal, as asserted. \square

Corollary 3.2. Let R be a ring. Then the following are equivalent:

(1) R is 2-primal and Zhou nil-clean.

(2) Every element in R is the sum of four idempotents and a strongly nilpotent that commute.

Proof. (1) \Rightarrow (2) This is obvious, by [4, Theorem 2.5]. (2) \Rightarrow (1) Let $a \in R$. Then there exist idempotents $e, f, g, h \in R$ and a strongly nilpotent $w \in R$ that commute such that $2 - a = e + f + g + h + w$. Hence, $a = (1 - e) - f + (1 - g) - h - w$. Obviously, $(1 - e) - f, (1 - g) - h \in R$ are both tripotents. Therefore a is the sum of two tripotents and a strongly nilpotent that commute. According to Theorem 3.1, R is 2-primal and Zhou nil-clean. \square

Theorem 3.3. Every subring of 2-primal Zhou nil-clean rings is 2-primal Zhou nil-clean.

Proof. Let S be a subring of a 2-primal Zhou nil-clean R. For any $a \in S$, we have $a \in R$. By virtue of Theorem 3.1, $a - a^5 \in P(R)$.

Given any chain \(x_1 = a - a^5, x_2, x_3, \ldots \) in \(S \) with \(x_{n+1} \in x_n S x_n \), we see that this chain is a chain in \(R \) with \(x_{n+1} \in x_n R x_n \). Thus, we can find some \(m \in \mathbb{N} \) such that \(x_m = 0 \). This implies that \(a - a^5 \) is strongly nilpotent. Hence, \(a - a^5 \in P(S) \).

By using Theorem 3.1 again, \(S \) is a 2-primal Zhou nil-clean ring.

Consequently the center of a 2-primal Zhou nil-clean ring is 2-primal Zhou nil-clean. Every corner of 2-primal Zhou nil-clean rings is 2-primal Zhou nil-clean.

Corollary 3.4. Every finite subdirect product of 2-primal Zhou nil-clean rings is 2-primal Zhou nil-clean ring.

Proof. Let \(R \) be the subdirect product of 2-primal Zhou nil-clean rings \(R_1, \ldots, R_n \). Then \(R \) is isomorphic to the subring of \(R_1 \times \cdots \times R_n \). In view of Theorem 5.3, \(R \) is a 2-primal Zhou nil-clean ring.

Example 3.5. Let \(R \) be a ring. Set \(S = \{(x, y) \in R \times R \mid x - y \in J(R)\} \), which is a subring of \(R \times R \). Then \(R \) is 2-primal Zhou nil-clean if and only if \(S \) is 2-primal Zhou nil-clean.

Proof. \(\Rightarrow \) Clearly, \(S \) is a subring of \(R \times R \). Thus, \(S \) is 2-primal Zhou nil-clean.

\(\Leftarrow \) Since \(R \) is a homomorphic image of \(S \), we easily obtain the result.

Example 3.6. Let \(V \) be a countably-infinite-dimensional vector space over \(\mathbb{Z}_5 \), with \(\{v_1, v_2, \ldots\} \) a basis, let

\[A = \{f \in \text{End}(V) \mid \text{rank}(f) < \infty, f(v_i) \in \sum_{k=1}^{i} v_k \mathbb{Z}_5 \text{ for all } i \in \mathbb{N}\}; \]

and let \(R \) be the \(\mathbb{Z}_5 \)-algebra of \(\text{End}(V) \) generated by \(A \) and the identity endomorphism. Then \(R \) is 2-primal Zhou nil-clean.

Proof. In view of [3, Example 4.2.20],

\[P(R) = \{f \in A \mid f(v_i) \in \sum_{k=1}^{i-1} v_k \mathbb{Z}_5 \text{ for all } i \in \mathbb{N}\}, \]

and then \(R/P(R) \) is isomorphic to the ring of all eventually-constant sequences in the direct product of \(\mathbb{Z}_5 \)'s; hence, \(R/P(R) \) has the identity \(x = x^5 \). Therefore \(a - a^5 \in P(R) \) for all \(a \in R \). By using Theorem 3.1, \(R \) is a 2-primal Zhou nil-clean ring, as asserted.

Proposition 3.7. Let \(R \) be a ring. Then the following are equivalent:

1. \(R \) is 2-primal Zhou nil-clean.
(2) $T_n(R)$ is 2-primal Zhou nil-clean for some $n \in \mathbb{N}$.
(3) $T_n(R)$ is 2-primal Zhou nil-clean for all $n \in \mathbb{N}$.

Proof. (1) \Rightarrow (3) Let $I = \{ \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \in T_n(R) \mid$ each $a_{ii} = 0 \}$. Then I is a nilpotent ideal of $T_n(R)$. Since $T_n(R)/I \cong \bigoplus_{i=1}^{n} R_i$ with each $R_i = R$, the finite direct product $\bigoplus_{i=1}^{n} R_i$ is Zhou nil-clean. It is obvious that $T_n(R)$ is Zhou nil-clean.

Let $x \in N(T_n(R))$. Then $\overline{x} \in N(T_n(R)/I)$. Given any chain $x_1 = x, x_2, x_3, \ldots$ in $T_n(R)$ with $x_{m+1} \in x_m T_m(R) x_m$, we get a chain $\overline{x_1} = \overline{x}, \overline{x_2}, \overline{x_3}, \ldots$ in $T_m(R)/I$ with $\overline{x_{m+1}} \in \overline{x_m}(T_m(R)/I)\overline{x_m}$. As $\overline{x} \in T_n(R)/I$ is strongly nilpotent, we see that $\overline{x_k} = 0$ for some $k \in \mathbb{N}$, i.e., $x_k \in I$. Since $I^n = 0$, we see that $x_{k+n} \in I^n = 0$, and so $x \in T_n(R)$ is strongly nilpotent. Hence, $T_n(R)$ is 2-primal, as asserted.

(3) \Rightarrow (2) This is obvious.

(2) \Rightarrow (1) Clearly, R is isomorphic to a subring of $T_n(R)$, thus we obtain the result by Theorem 3.3. \square

Theorem 3.8. Let R be a 2-primal Zhou nil-clean ring. Then every square matrix over R is the sum of a nilpotent and linear combination of two idempotent matrices.

Proof. Since R is a Zhou nil-clean ring, it follows by [7, Theorem 2.11] that $J(R)$ is nil and $R/J(R)$ has the identity $x = x^5$. Hence, $R/J(R)$ is Zhou nil-clean of bounded index 5. By virtue of Theorem 2.5, every matrix in $M_n(R/J(R))$ is the sum of a nilpotent and linear combination of two idempotent matrices. Clearly, $J(R) \subseteq N(R) = P(R) \subseteq J(R)$, we have $J(R) = P(R)$. Therefore $M_n(J(R)) = M_n(P(R)) = P(M_n(R))$ is nil. It follows from $M_n(R/J(R)) \cong M_n(R)/M_n(J(R))$ that every matrix in $M_n(R)$ is the sum of a nilpotent and linear combination of two idempotent matrices. \square

Corollary 3.9. Let R be a commutative Zhou nil-clean ring. Then every square matrix over R is the sum of a nilpotent and linear combination of two idempotent matrices.

Proof. Since every commutative ring is 2-primal, we obtain the result by Theorem 3.8. \square

Acknowledgement. The author would like to thank the referee for the valuable suggestions and comments.
References

Marjan Sheibani Abdolyousefi
Women's University of Semnan (Farzangan)
Semnan, Iran
e-mail: sheibani@fgnsemae.ac.ir