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Abstract. In 2015, the second-named author introduced the dot product

graph associated to a commutative ring A. Let A be a commutative ring

with nonzero identity, 1 ≤ n < ∞ be an integer, and R = A × A × · · · × A

(n times). We recall that the total dot product graph of R is the (undirected)

graph TD(R) with vertices R∗ = R \ {(0, 0, . . . , 0)}, and two distinct vertices

x and y are adjacent if and only if x ·y = 0 ∈ A (where x ·y denotes the normal

dot product of x and y). Let Z(R) denote the set of all zero-divisors of R.

Then the zero-divisor dot product graph of R is the induced subgraph ZD(R)

of TD(R) with vertices Z(R)∗ = Z(R) \ {(0, 0, . . . , 0)}. Let U(R) denote the

set of all units of R. Then the unit dot product graph of R is the induced

subgraph UD(R) of TD(R) with vertices U(R). In this paper, we study the

structure of TD(R), UD(R), and ZD(R) when A = Zn or A = GF (pn), the

finite field with pn elements, where n ≥ 2 and p is a prime positive integer.

Mathematics Subject Classification (2020): 13A15, 13B99, 05C99

Keywords: Dot product graph, annihilator graph, total graph, zero-divisor

graph

1. Introduction

Let R be a commutative ring with 1 6= 0. Then Z(R) denote the set of zero-

divisors of R and the group of units of R will be denoted by U(R). As usual, Zn

denotes the ring of integers modulo n. The nonzero elements of S ⊆ R will be

denoted by S∗. Over the past several years, there has been considerable attention

in the literature to associating graphs with commutative rings (and other algebraic

structures) and studying the interplay between ring-theoretic and graph-theoretic

properties (for example, see [1]–[20] and [22]–[26]). In particular, as in [9], the

zero-divisor graph of R is the (simple) graph Γ(R) with vertices Z(R) \ {0}, and

distinct vertices x and y are adjacent if and only if xy = 0. This concept is due to

Beck [16], who let all the elements of R be vertices and was mainly interested in
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coloring. The zero-divisor graph of a ring R has been studied extensively by many

authors.

In 2015, Badawi [15] introduced the dot product graph associated to a commuta-

tive ring A. Let A be a commutative ring with nonzero identity, 1 ≤ n <∞ be an in-

teger, and R = A×A×· · ·×A (n times). We recall from [1] that the total dot product

graph of R is the (undirected) graph TD(R) with vertices R∗ = R \ {(0, 0, . . . , 0)},
and two distinct vertices x and y are adjacent if and only if x · y = 0 ∈ A (where

x · y denotes the normal dot product of x and y). Let Z(R) denote the set of all

zero-divisors of R. Then the zero-divisor dot product graph of R is the induced

subgraph ZD(R) of TD(R) with vertices Z(R)∗ = Z(R)\{(0, 0, . . . , 0)}. Let U(R)

denote the set of all units of R. Then the unit dot product graph of R is the induced

subgraph UD(R) of TD(R) with vertices U(R). Let p ≥ 2 be a prime integer,

n ≥ 1, A = GF (pn) be the finite field with pn elements, and R = A×A. In Section

2 of this paper, we study the structure of ZD(R), UD(R), and TD(R). Let n ≥ 2,

A = Zn, and R = A × A. In Section 3 of this paper, we study the structure of

UD(R). In Section 4, we study some induced subgraphs of ZD(Zn × Zn), where

n ≥ 2. In Section 5, we introduce the equivalence unit dot product of R, EUD(R)

and we show that UD(R), can be recovered from EUD(R).

Let G be a graph. Two vertices v1, v2 of G are said to be adjacent in G if v1, v2

are connected by an edge (line segment) of G and we write v1−v2. A finite sequence

of edges from a vertex v1 of G to a vertex v2 of G is called a path of G and we

write v1 − a1 − a2 − · · · − ak − v2, where k < ∞ and the ai, 1 ≤ i ≤ k, are some

distinct vertices of G. Hence it is clear that every edge of G is a path of G, but

not every path of G is an edge of G. We say that G is connected if there is a path

between any two distinct vertices of G. At the other extreme, we say that G is

totally disconnected if no two vertices of G are adjacent. We denote the complete

graph on n vertices by Kn, recall that a graph G is called complete if every two

vertices of G are adjacent and the complete bipartite graph on m and n vertices

by Km,n (recall that Km,n is the graph with two sets of vertices, say V1, V2, such

that |V1| = n, |V2| = m, V1 ∩ V2 = ∅, every two vertices in V1 are not adjacent,

every two vertices in V2 are not adjacent, and every vertex in V1 is adjacent to

every vertex in V2). We will sometimes call a K1,n a star graph. We say that two

(induced) subgraphs G1 and G2 of G are disjoint if G1 and G2 have no common

vertices and no vertex of G1 (resp., G2) is adjacent (in G) to any vertex not in G1

(resp., G2). Assume that a graph G = G1 ∪G2 ∪ · · · ∪Gn, where each vertex of Gi
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is not connected to a vertex of Gj for every 1 ≤ i, j ≤ n with i 6= j. Then we say

that G is the disjoint union of G1, . . . , Gn.

2. The structure of UD(R = A×A) when A is a field

Let p be a positive prime number, n ≥ 2. Then A = GF (pn) denotes the finite

field with pn elements. Let R = A × A. Then TD(R) is not connected by [15,

Theorem 2.1]. The first two results give a complete description of the structure of

UD(R) and TD(R).

Theorem 2.1. Let n ≥ 1, m = 2n − 1 and R = GF (2n)×GF (2n). Then

(1) ZD(R) = Γ(R) = Km,m.

(2) UD(R) is the disjoint union of one Km and (2(n−1) − 1) Km,m’s.

(3) TD(R) is the disjoint union of one Km and 2(n−1) Km,m’s.

Proof. (1) The result is clear by [15, Theorem 2.1], [9, Theorem 2.1], and [10,

Theorem 2.2].

(2) Let A = GF (2n). Then R = A× A. Let v1, v2 ∈ U(R). Since R is a vector

space over A, v1 = u(1, a) ∈ R and v2 = v(1, b) ∈ R for some u, v, a, b ∈ A∗. Hence

v1 is adjacent to v2 if and only if v1 · v2 = uv + uvab = 0 in A if and only if

b = −a−1 = a−1 in A . Thus for each a ∈ U(A) = A∗, let Xa = {u(1, a) | u ∈ A∗}
and Ya = {u(1, a−1) | u ∈ A∗}. It is clear that |Xa| = |Ya| = 2n − 1. Let a = 1.

Since char(A) = char(R) = 2, Xa = Ya and the dot product of every two distinct

vertices in Xa is zero. Hence every two distinct vertices in Xa are adjacent. Thus

the vertices in Xa form the graph Km that is a complete subgraph of TD(R).

Let a ∈ U(A) such that a 6= 1. Since a2 6= 1 for each a ∈ U(A) \ {1}, we have

Xa ∩ Ya = ∅, every two distinct vertices in Xa are not adjacent, and every two

distinct vertices in Ya are not adjacent. Since char(A) = char(R) = 2, it is clear

that every vertex in Xa is adjacent to every vertex in Ya. Thus the vertices in

Xa∪Ya form the graph Km,m that is a complete bi-partite subgraph of TD(R). By

construction, there are exactly (2n − 2)/2 = 2n−1 − 1 disjoint complete bi-partite

Km,m subgraphs of TD(R). Hence UD(R) is the disjoint union of one complete

subgraph Km and (2n−1 − 1) complete bi-partite Km,m subgraphs.

(3) The claim follows from (1) and (2). �

Theorem 2.2. Let p ≥ 3 be a positive prime integer, n ≥ 1, m = pn − 1, and let

R = GF (pn)×GF (pn). Then

(1) ZD(R) = Γ(R) = Km,m.

(2) If 4 - m, then UD(R) is the disjoint union of m/2 Km,m’s.
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(3) If 4 | m, then UD(R) is the disjoint union of two Km’s and (m − 2)/2

Km,m’s.

(4) If 4 - m, then TD(R) is the disjoint union of (m+ 2)/2 Km,m’s.

(5) If 4 | m, then TD(R) is the disjoint union of two Km’s and m/2 Km,m’s.

Proof. (1) The result is clear by [15, Theorem 2.1], [9, Theorem 2.1], and [10,

Theorem 2.2].

(2) Let A = GF (pn). Then R = A× A. Let v1, v2 ∈ U(R). Since R is a vector

space over A, v1 = u(1, a) ∈ R and v2 = v(1, b) ∈ R for some u, v, a, b ∈ A∗.

Hence v1 is adjacent to v2 if and only if v1 · v2 = uv + uvab = 0 in A if and only

if b = −a−1 in A. Since R is a vector space over A, for each a ∈ U(A) = A∗,

let Xa = {u(1, a) | u ∈ A∗} and Ya = {u(1,−a−1) | u ∈ A∗}. It is clear that

|Xa| = |Ya| = m = pn − 1. Since 4 - m, U(A) = A∗ has no elements of order 4.

Thus a2 6= −1 for each a ∈ U(A). Hence Xa∩Ya = ∅; so every two distinct vertices

in Xa are not adjacent, and every two distinct vertices in Ya are not adjacent. By

construction of Xa and Ya, it is clear that every vertex in Xa is adjacent to every

vertex in Ya. Thus the vertices in Xa ∪Ya form the graph Km,m that is a complete

bi-partite subgraph of TD(R). By construction, there are exactly m/2 disjoint

complete bi-partite Km,m subgraphs of TD(R). Hence UD(R) is the disjoint union

of m/2 Km,m’s.

(3) Note that |U(A)| = m. Since U(A) = A∗ is cyclic and 4 | m, U(A) has

exactly one subgroup of order 4. Thus U(A) has exactly two elements of order 4,

say b, c. Since a ∈ U(A) is of order 4 if and only if a2 = −1, it is clear that x2 = −1

for some x ∈ U(A) if and only if x = b, c. Let Xb = {u(1, b) | u ∈ U(A)} and let

Xc = {u(1, c) | u ∈ U(A)}. It is clear that |Xb| = |Xc| = m. Let H = {b, c}. Then

the dot product of every two distinct vertices in Xh is zero for each h ∈ H. Thus

every two distinct vertices in Xh are adjacent for every h ∈ H. Thus for each h ∈ H,

the vertices in Xh form the graph Km that is a complete subgraph of TD(R). Let

a ∈ U(A) \ H, Xa = {u(1, a) | u ∈ A∗}, and Ya = {u(1,−a−1) | u ∈ A∗}. It

is clear that |Xa| = |Y a| = m. Since a 6∈ H, we have Xa ∩ Ya = ∅, every two

distinct vertices in Xa are not adjacent, and every two distinct vertices in Ya are

not adjacent. By construction, it is clear that every vertex in Xa is adjacent to

every vertex in Ya. Thus the vertices in Xa ∪ Ya form the graph Km,m that is

a complete bi-partite subgraph of TD(R). By construction, there are (m − 2)/2

disjoint Km,m subgraphs. Hence UD(R) is the disjoint union of two Km’s and

(m− 2)/2 Km,m’s.

(4) The claim follows from (1) and (2).
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(5) The claim follows from (1) and (3). �

In view of Theorem 2.2, we have the following corollary.

Corollary 2.3. Let p ≥ 3 be a prime positive integer, and let R = Zp ×Zp. Then

(1) ZD(R) = Γ(R)= Kp−1,p−1.

(2) If 4 - p− 1, then UD(R) is the disjoint union of (p− 1)/2 Kp−1,p−1.

(3) If 4 | p− 1, then UD(R) is the disjoint union of two Kp−1’s and (p− 3)/2

Kp−1,p−1’s.

(4) If 4 - p− 1, then TD(R) is the disjoint union of (p+ 1)/2 Kp−1,p−1’s.

(5) If 4 | p− 1, then TD(R) is the disjoint union of two Kp−1’s and (p− 1)/2

Kp−1,p−1’s.

Example 2.4. Let A = Z2[X]
(X2+X+1) . Then A is a finite field with 4 elements. Let

v = X + (X2 + X + 1) ∈ A. Since (A∗, .) is a cyclic group and A∗ =< v >, we

have A = {0, v, v2, v3 = 1 + (X2 + X + 1)}. Let R = A × A. Then the UD(R) is

the disjoint union of one K3 and one K3,3 by Theorem 2.1(2). The following is the

graph of UD(R).

(v, v)

(v2, v2) (v3, v3) (v3, v) (v, v2) (v2, v3)

(v3, v2) (v, v3) (v2, v)

Example 2.5. Let A = Z5 and R = A× A. Then UD(R) is the disjoint union of

two K4 and one K4,4 by Corollary 2.3(3). The following is the graph of UD(R).

(1, 2)

(2, 4) (3, 1)

(4, 3) (1, 3)

(2, 1) (3, 4)

(4, 2)

(1, 1) (2, 2) (3, 3) (4, 4)

(1, 4) (2, 3) (3, 2) (4, 1)

3. Unit dot product graph of R = Zn × Zn

Let n > 1 and write n = pk1
1 · · · pkm

m , where the pi’s are distinct prime positive

integers. Then U(Zn) = {1 ≤ a < n |a is an integer and gcd(a, n) = 1}. It is
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known that U(Zn) is a group under multiplication modulo n and |U(Zn)| = φ(n) =

(p1 − 1)pk1−1
1 (p2 − 1)pk2−1

2 · · · (pm − 1)pkm−1
m .

The following lemma is needed.

Lemma 3.1. Let n be a positive integer and write n = pk1
1 p

k2
2 · · · pkr

r , where the

pi’s are distinct prime positive integers. Then

(1) If 4 | n, then a2 6≡ n− 1 (mod n) for each a ∈ U(Zn).

(2) If 4 - n, then x2 ≡ n − 1 (mod n) has a solution in U(Zn) if and only

if 4 | (pi − 1) for each odd prime factor pi of n. Furthermore, if x2 ≡
n − 1 (mod n) has a solution in U(Zn), then it has exactly 2r−1 distinct

solutions in U(Zn) if n is even and it has exactly 2r distinct solutions in

U(Zn) if n is odd.

Proof. (1) Suppose that 4 | n. Then n ≥ 4. Since 4 - (n − 2), n − 1 6≡ 1 (mod 4)

and thus a2 6≡ n− 1 (mod n) for each a ∈ U(Zn) by [19, Theorem 5.1].

(2) Suppose that 4 - n. Then a2 ≡ n−1 (mod n) for some a ∈ U(Zn) if and only

if a2 ≡ n−1 (mod pi) for each odd prime factor pi of n by [19, Theorem 5.1]. Thus

a2 ≡ n−1 (mod n) for some a ∈ U(Zn) if and only if (a mod pi)
2 ≡ pi−1 (mod pi)

for each odd prime factor pi of n. Since U(Zpi) = Z∗
pi

= {1, . . . , pi − 1} for each

prime factor pi of n, we have |U(Zpi
)| = pi− 1. For each x ∈ U(Zpi

), 1 ≤ i ≤ r, let

|x| denotes the order of x in U(Zpi
). Let pi, 1 ≤ i ≤ r, be an odd prime factor of

n. Since |pi − 1| = 2 in U(Zpi
), b2 = pi − 1 in U(Zpi

) for some b ∈ U(Zpi
) if and

only if |b| = 4 in U(Zpi). Since |U(Zpi)| = pi − 1, we conclude that b2 = pi − 1 in

U(ZPi) for some b ∈ U(Zpi) if and only if 4 | (pi − 1). Thus x2 ≡ n − 1 (mod n)

has a solution in U(Zn) if and only if 4 | (pi − 1) for each odd prime pi factor of n.

Suppose that x2 ≡ n− 1 (mod n) has a solution in U(Zn). We consider two cases:

Case 1. Suppose that n is an even integer. Then there are exactly r − 1 distinct

odd prime factors of n. Since 4 - n, x2 ≡ n − 1 (mod n) has exactly 2r−1 distinct

solutions in U(Zn) by [19, Theorem 5.2]. Case 2. Suppose that n is an odd integer.

Then there are exactly r distinct odd prime factors of n. Thus x2 ≡ n− 1 (mod n)

has exactly 2r distinct solutions in U(Zn) by [19, Theorem 5.2]. �

Let A = Zn, where n is not prime. Then TD(A × A) is connected by [15,

Theorem 2.3 ]. In the following result, we show that UD(A × A) is disconnected,

and we give a complete description of the structure of UD(A×A).

Theorem 3.2. Let n ≥ 3 be an integer, R = Zn × Zn and φ(n) = m. Write

n = pk1
1 p

k2
2 · · · pkr

r , where the pi’s are distinct prime positive integers, 1 ≤ i ≤ r.

Then
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(1) If 4 | n, then UD(R) is the disjoint union of m/2 Km,m’s.

(2) If 4 - n and 4 - (pi−1) for at least one of the pi’s in the prime factorization

of n, then UD(R) is the disjoint union of m/2 Km,m’s.

(3) If 4 - n and 4 | (pi − 1) for all the odd pi’s in the prime factorization of n,

then we consider two cases:

Case I. If n is even, then UD(R) is the disjoint union of (m/2)− 2r−2

Km,m’s and 2r−1 Km’s.

Case II. If n is odd, then UD(R) is the disjoint union of (m/2)− 2r−1

Km,m’s and 2r Km’s.

Proof. Let A = Zn. Then R = A×A. Note that UD(R) has exactly m2 vertices.

Let v1, v2 ∈ U(R). Since R is a vector space over A, v1 = u(1, a) ∈ R and

v2 = v(1, b) ∈ R for some u, v, a, b ∈ U(A). Hence v1 is adjacent to v2 if and only if

v1 · v2 = uv+ uvab = 0 in A if and only if b = −a−1 in A. Thus for each a ∈ U(A),

let Xa = {u(1, a) | u ∈ U(A)} and Ya = {u(1,−a−1) | u ∈ U(A)}. It is clear that

|Xa| = |Ya| = m.

(1) Since 4 | n, a2 6≡ n − 1 (mod n) for each a ∈ U(Zn) by Lemma 3.1(1).

Hence Xa∩Ya = ∅; so every two distinct vertices in Xa are not adjacent, and every

two distinct vertices in Ya are not adjacent. By construction of Xa and Ya, it is

clear that every vertex in Xa is adjacent to every vertex in Ya. Thus the vertices in

Xa∪Ya form the graph Km,m that is a complete bi-partite subgraph of TD(R). By

construction, there are exactly m/2 disjoint complete bi-partite Km,m subgraphs

of TD(R). Hence UD(R) is the disjoint union of m/2 Km,m’s.

(2) Write n = pk1
1 p

k2
2 · · · pkr

r , where the pi’s are distinct prime positive integers.

Since 4 - n and 4 - (pi − 1) for at least one of the pi’s, a
2 6≡ n − 1 (mod n) for

each a ∈ U(Zn) by Lemma 3.1. Thus by the same argument as in (1), UD(R) is

the disjoint union of m/2 Km,m’s.

(3) Write n = pk1
1 p

k2
2 · · · pkr

r , where the pi’s are distinct prime positive integers.

Suppose that 4 - n and 4 | pi − 1 for all the odd pi’s in the prime factorization of

n. Let B = {b ∈ U(Zn) | b2 = n− 1 in U(Zn)} and C = {c ∈ U(Zn) | c2 6= n− 1 in

U(Zn)}. We consider two cases: Case I. Suppose that n is even. Then |B| = 2r−1

by Lemma 3.1(2) and hence |C| = m−2r−1. For each a ∈ B, we have Xa = Ya and

hence the dot product of every two distinct vertices in Xa is zero. Thus the vertices

in Xa form the graph Km that is a complete subgraph of TD(R). Hence UD(Zn)

has exactly 2r−1 disjoint Km’s. For each a ∈ C, we have Xa ∩Ya = ∅; so every two

distinct vertices in Xa are not adjacent, and every two distinct vertices in Ya are not

adjacent. By construction, it is clear that every vertex in Xa is adjacent to every
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vertex in Ya. Thus the vertices in Xa ∪Ya form the graph Km,m that is a complete

bi-partite subgraph of TD(R). Thus UD(Zn) has exactly m−2r−1

2 = m
2 − 2r−2

disjoint Km,m’s. Case II. Suppose that n is odd. Then |B| = 2r by Lemma 3.1(2)

and hence |C| = m − 2r. For each a ∈ B, we have Xa = Ya and hence the dot

product of every two distinct vertices in Xa is zero. Thus the vertices in Xa form

the graph Km that is a complete subgraph of TD(R). Hence UD(Zn) has exactly

2r disjoint Km’s. For each a ∈ C, we have Xa ∩ Ya = ∅, every two distinct vertices

in Xa are not adjacent, and every two distinct vertices in Ya are not adjacent.

By construction, it is clear that every vertex in Xa is adjacent to every vertex in

Ya. Thus the vertices in Xa ∪ Ya form the graph Km,m that is a complete bi-

partite subgraph of TD(R). Thus UD(Zn) has exactly m−2r

2 = m
2 − 2r−1 disjoint

Km,m’s. �

Recall that a graph G is called completely disconnected if every two vertices of

G are not connected by an edge in G.

Theorem 3.3. Let n ≥ 4 be an even integer, and let R = Zn × Zn × · · · × Zn (k

times), where k is an odd positive integer. Then UD(R) is completely disconnected.

Proof. Let x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ U(R). Then xi, yi ∈ U(Zn) for

every i, 1 ≤ i ≤ k. Since n is an even integer, xi and yi are odd integers for every

i, 1 ≤ i ≤ k. Hence, since k is an odd integer, x · y = x1y1 + · · · + xkyk is an odd

integer, and thus x · y = x1y1 + · · ·+ xkyk 6= 0 in Zn, since n is even. Thus UD(R)

is completely disconnected. �

Theorem 3.4. Let n ≥ 4 be an even integer, and let R = Zn × Zn. Then the

vertex (n/2, n/2) in ZD(R) is adjacent to every vertex in UD(R).

Proof. It is clear that (n
2 ,

n
2 ) is a vertex of ZD(R). Let u ∈ U(Zn). Since n is

even, u is an odd integer. Thus u− 1 = 2m for some integer m. Hence n
2 (u− 1) =

n
2 (2m) = mn = 0 ∈ Zn. Thus n

2u = n
2 in Zn. Now let (a, b) ∈ U(R). Then

a, b ∈ U(Zn) are odd integers. Hence (a, b)(n
2 ,

n
2 ) = n

2 + n
2 = n = 0 ∈ Zn. Thus the

vertex (n/2, n/2) in ZD(R) is adjacent to every vertex in UD(R). �

Example 3.5. Let A = Z8 and R = A× A. Then UD(R) is the disjoint union of

two K4,4 by Theorem 3.2(1). The following is the graph of UD(R).
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(1, 1) (3, 3) (5, 5) (7, 7) (1, 3) (3, 1) (5, 7) (7, 5)

(1, 7) (3, 5) (5, 3) (7, 1) (1, 5) (3, 7) (5, 1) (7, 3)

Example 3.6. Let A = Z10 and R = A × A. Then UD(R) is the disjoint union

of two K4 and one K4,4 by Theorem 3.2(3, Case I). The following is the graph of

UD(R).

(1, 3)

(3, 9) (7, 1)

(9, 7) (1, 7)

(3, 1) (7, 9)

(9, 3)

(1, 1) (3, 3) (7, 7) (9, 9)

(1, 9) (3, 7) (7, 3) (9, 1)

4. Subgraphs of the zero-divisor dot product graph of Zn × Zn

For an integer n ≥ 2, let R1 = {(u1, z1) | u1 ∈ U(Zn) and z1 ∈ Z(Zn)} and

R2 = {(z2, u2) | u2 ∈ U(Zn) and z2 ∈ Z(Zn)}. It is clear that R1 ⊂ Z(Zn × Zn)

and R2 ⊂ Z(Zn×Zn). In this section, we study the induced subgraph ZD(R1∪R2)

of ZD(Zn × Zn) with vertices R1 ∪R2.

Theorem 4.1. Let n ≥ 2, R = Zn × Zn, and φ(n) = m. Then

(1) If n is prime, then ZD(R1 ∪R2) = ZD(Zn × Zn) = Γ(R) = Kn−1,n−1.

(2) If n is not prime, then ZD(R1 ∪ R2) is the disjoint union of of (n − m)

Km,m’s.

Proof. (1) Suppose that n is prime. Then it is clear that R1 ∪R2 = Z(Zn × Zn).

If n = 2, then it is trivial to see that ZD(R1∪R2) = ZD(Zn×Zn) = Γ(R) = K1,1.

If n ≥ 3, then the claim is clear by Corollary 2.3(1).

(2) Let A = Zn. Suppose that n is not prime. It is clear that every two

vertices in Ri are not adjacent for every i ∈ {1, 2}. Let v1 ∈ R1 and v2 ∈ R2.

Then v1 = u(1, a) ∈ R1 and v2 = v(b, 1) ∈ R2 for some u, v ∈ U(A) and some

a, b ∈ Z(A). Then v1 is adjacent to v2 if and only if v1 · v2 = uvb+ uva = 0 in A if

and only if b = −a in A. Hence for each a ∈ Z(A), let Xa = {u(1, a) | u ∈ U(A)}
and Ya = {u(−a, 1) | u ∈ U(A)}. It is clear that |Xa| = |Ya| = m. For each
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a ∈ Z(A), Xa ∩ Ya = ∅, every two distinct vertices in Xa are not adjacent, and

every two distinct vertices in Ya are not adjacent. By construction, it is clear that

every vertex in Xa is adjacent to every vertex in Ya. Thus the vertices in Xa ∪ Ya
form the graph Km,m that is a complete bi-partite subgraph of ZD(R). Since

|R1| = |R2| = m(n−m) and R1 ∩ R2 = ∅, we have |R1 ∪ R2| = 2m(n−m). Thus

ZD(R1 ∪R2) is the disjoint union of of (n−m) Km,m’s. �

5. Equivalence dot product graph

Let A = Zn and R = A × A. Define a relation ∼ on U(R) such that x ∼ y,

where x, y ∈ U(R), if x = (c, c)y for some (c, c) ∈ U(R). It is clear that ∼ is an

equivalence relation on U(R). If S is an equivalence class of U(R), then there is an

a ∈ U(A) such that S = (1, a) = {u(1, a) | u ∈ U(Zn)}. Let E(U(R)) be the set of

all distinct equivalence classes of U(R). We define the equivalence unit dot product

graph of U(R) to be the (undirected) graph EUD(R) with vertices E(U(R)), and

two distinct vertices X and Y are adjacent if and only if a · b = 0 ∈ A for every

a ∈ X and every b ∈ Y (where a · b denote the normal dot product of a and b). We

have the following results.

Theorem 5.1. Let n ≥ 1, m = 2n−1 and R = GF (2n)×GF (2n). Then EUD(R)

is the disjoint union of one K1 and (2(n−1) − 1) K1,1’s.

Proof. Let A = GF (2n). For each a ∈ U(A), let Xa and Ya be as in the proof of

Theorem 2.1. Then Xa, Ya ∈ E(U(R)). Since |X| = m for each X ∈ E(U(R)), we

conclude that each Km of UD(R) is a K1 of EUD(R) and each Km,m of UD(R)

is a K1,1 of EUD(R). Hence the claim follows by the proof of Theorem 2.1. �

Theorem 5.2. Let p ≥ 3 be a positive prime integer, n ≥ 1, m = pn − 1, and let

R = GF (pn)×GF (pn). Then

(1) If 4 - m, then EUD(R) is the disjoint union of m/2 K1,1’s.

(2) If 4 | m, then EUD(R) is the disjoint union of two K1’s and (m − 2)/2

K1,1’s.

Proof. Let A = GF (pn). For each a ∈ U(A), let Xa and Ya be as in the proof of

Theorem 2.2. Then Xa, Ya ∈ E(U(R)). Since |X| = m for each X ∈ E(U(R)), we

conclude that each Km of UD(R) is a K1 of EUD(R) and each Km,m of UD(R)

is a K1,1 of EUD(R). Hence the claim follows by the proof of Theorem 2.2. �
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Theorem 5.3. Let n ≥ 3 be an integer, R = Zn × Zn and φ(n) = m. Write

n = pk1
1 p

k2
2 · · · pkr

r , where the pi’s are distinct prime positive integers, 1 ≤ i ≤ r.

Then

(1) If 4 | n, then EUD(R) is the disjoint union of m/2 K1,1’s.

(2) If 4 - n and 4 - (pi−1) for at least one of the pi’s in the prime factorization

of n, then EUD(R) is the disjoint union of m/2 K1,1’s.

(3) If 4 - n and 4 | (pi − 1) for all the odd pi’s in the prime factorization of n,

then we consider two cases:

Case I. If n is even, then EUD(R) is the disjoint union of (m/2)−2r−2

K1,1’s and 2r−1 K1’s.

Case II. If n is odd, then EUD(R) is the disjoint union of (m/2)−2r−1

K1,1’s and 2r K1’s.

Proof. Let A = Zn. For each a ∈ U(A), let Xa and Ya be as in the proof of

Theorem 3.2. Then Xa, Ya ∈ E(U(R)). Since |X| = m for each X ∈ E(U(R)), we

conclude that each Km of UD(R) is a K1 of EUD(R) and each Km,m of UD(R)

is a K1,1 of EUD(R). Hence the claim follows by the proof of Theorem 3.2. �

Let R1 = {(u1, z1) | u1 ∈ U(Zn) and z1 ∈ Z(Zn)} and R2 = {(z2, u2) | u2 ∈
U(Zn) and z2 ∈ Z(Zn)}, see Section 4. We define a relation ∼ on R1 ∪ R2 such

that x ∼ y, where x, y ∈ R1 ∪ R2, if x = (c, c)y for some (c, c) ∈ U(Zn × Zn). It

is clear that ∼ is an equivalence relation on R1 ∪ R2. By construction of R1 and

R2, it is clear that if x ∼ y for some x, y ∈ R1 ∪ R2, then x, y ∈ R1 or x, y ∈ R2.

Hence if S is an equivalence class of R1 ∪R2, then there is an a ∈ Z(Zn) such that

either S = ((1, a) = {u(1, a) | u ∈ U(Zn)} or S = (a, 1) = {u(a, 1) | u ∈ U(Zn)}.
Let E(R1 ∪R2) be the set of all distinct equivalence classes of R1 ∪R2. We define

the equivalence zero-divisor dot product graph R1∪R2 to be the (undirected) graph

EZD(R1 ∪ R2) with vertices E(R1 ∪ R2), and two distinct vertices X and Y are

adjacent if and only if a · b = 0 ∈ A for every a ∈ X and every b ∈ Y (where a · b
denote the normal dot product of a and b). We have the following result.

Theorem 5.4. Let n ≥ 2, R = Zn × Zn, and φ(n) = m. Then

(1) If n is prime, then EZD(R1 ∪R2) = K1,1.

(2) If n is not prime, then EZD(R1 ∪ R2) is the disjoint union of of (n−m)

K1,1’s.

Proof. (1) If n is prime, then E = {(1, 0), (0, 1)}. Thus EZD(R1 ∪R2) = K1,1.

(2) Suppose that n is not prime, and let A = Zn. For each a ∈ Z(A), let Xa and

Ya be as in the proof of Theorem 4.1. Then Xa, Ya ∈ E(R1 ∪ R2). Since |X| = m
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for each X ∈ E(R1 ∪ R2), we conclude that each Km,m of ZD(R1 ∪ R2) is a K1,1

of EZD(R1 ∪R2). Hence the claim follows by the proof of Theorem 4.1. �

Remark 5.5. (1) Let A = Zn and R = Zn×Zn. Since for each X ∈ E(U(R))

there exists an a ∈ U(A) such that X = (1, a) = {u(1, a) | u ∈ U(A)}, note

that we can recover the graph UD(R) from the graph EUD(R). However,

drawing EUD(R) is much simpler than drawing UD(R).

(2) Since for each X ∈ E(R1 ∪R2) there exists an a ∈ Z(Zn) such that either

X = (1, a) = {u(1, a) | u ∈ U(Zn)} or X = (a, 1) = {u(a, 1) | u ∈
U(Zn)}, note that we can recover the graph ZD(R1 ∪R2) from the graph

EZD(R1 ∪ R2). However, drawing EZD(R1 ∪ R2) is much simpler than

drawing ZD(R1 ∪R2).

Example 5.6. Let A = Z20 and R = A×A. Then EUD(R) is the disjoint union

of 4 K1,1 by Theorem 5.3(1), and thus UD(R) is the disjoint union of 4 K8,8. The

following is the graph of EUD(R).

(1, 1) (1, 3) (1, 7) (1, 11)

(1, 19) (1, 13) (1, 17) (1, 9)

Example 5.7. Let A = Z34 and R = A×A. Then EUD(R) is the disjoint union

of 7 K1,1’s and 2 K1’s by Theorem 5.3(3, Case I), and thus UD(R) is the disjoint

union of 7 K16,16 and 2 K8. The following is the graph of EUD(R).

(1, 1) (1, 3) (1, 5) (1, 9) (1, 23) (1, 19) (1, 29)

(1, 33) (1, 11) (1, 27) (1, 15) (1, 31) (1, 25) (1, 7)

(1, 13) (1, 21)
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