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Abstract. Let R be a ring, n be an non-negative integer and d be a positive

integer or∞. A right R-module M is called (n, d)∗-projective if Ext1R(M,C) =

0 for every n-copresented right R-module C of injective dimension≤ d; a ring R

is called right (n, d)-cocoherent if every n-copresented right R-module C with

id(C) ≤ d is (n+1)-copresented; a ring R is called right (n, d)-cosemihereditary

if whenever 0 → C → E → A → 0 is exact, where C is n-copresented with

id(C) ≤ d, E is finitely cogenerated injective, then A is injective; a ring R

is called right (n, d)-V -ring if every n-copresented right R-module C with

id(C) ≤ d is injective. Some characterizations of (n, d)∗-projective modules

are given, right (n, d)-cocoherent rings, right (n, d)-cosemihereditary rings and

right (n, d)-V -rings are characterized by (n, d)∗-projective right R-modules.

(n, d)∗-projective dimensions of modules over right (n, d)-cocoherent rings are

investigated.
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules

considered are unitary, n is a non-negative integer, d is a positive integer or ∞
unless a special note.

In 1982, V. A. Hiremath [4] defined and studied finitely corelated modules. Fol-

lowing [4], a right R-module M is said to be finitely corelated if there is a short exact

sequence 0 → M → N → K → 0 of right R-modules with N finitely cogenerated,

cofree and K is finitely cogenerated, where a right R-module N is said to be cofree

if it is isomorphic to a direct product of the injective hulls of some simple right

R-modules. Finitely corelated modules are also called finitely copresented modules
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in some literatures such as [7]. Following [12], a right R-module M is said to be

FCP-projective if Ext1R(M,C) = 0 for every finitely copresented right R-module

C. In [12], right V -rings are characterized by FCP-projective right R-modules. We

recall also that R is called right co-semihereditary [6,8,12] if every finitely cogener-

ated factor module of a finitely cogenerated injective right R-module is injective,

R is called right co-coherent [12] if every finitely cogenerated factor module of a

finitely cogenerated injective right R-module is finitely copresented. It is easy to see

that right V -rings, right co-semihereditary rings and right co-coherent rings are the

dual concepts of von Neumann regular rings, right semihereditary rings and right

coherent rings. In this paper, right cocoherent rings will denote right co-coherent

rings in order to facilitate. In [12], right V -rings, right co-semihereditary rings

are characterized by FCP-projective right R-modules, FCP-projective dimensions

of right R-modules over right cocoherent rings are investigated. For example, we

show that a ring R is right co-semihereditary if and only if every submodule of an

FCP-projective right R-module is FCP-projective if and only if every submodule of

a projective right R-module is FCP-projective [12, Theorem 3], a ring R is a right

V -ring if and only if every right R-module is FCP-projective [12, Theorem 4].

In 1999, Xue introduced n-copresented modules and n-cocoherent rings respec-

tively in [9]. According to [9], M is said to be n-copresented if there is an exact

sequence of right R-modules 0 → M → E0 → E1 → · · · → En, where each Ei

is a finitely cogenerated injective module. It is easy to see that a module M is

finitely cogenerated if and only if it is 0-copresented, a module M is finitely cop-

resented if and only if it is 1-copresented. We call any module (−1)-copresented.

n-copresented modules have been studied in [2,9,11]; R is called right n-cocoherent

[9] in case every n-copresented right R-module is (n + 1)-copresented. It is easy

to see that R is right cocoherent if and only if it is right 1-cocoherent. Following

[5], a ring R is called right co-noetherian if every factor module of a finitely cogen-

erated right R-module is finitely cogenerated. By [4, Proposition 17], a ring R is

right co-noetherian if and only if it is right 0-cocoherent. In [11], we extend the

concepts of FCP-projective modules, cosemihereditary rings and V -rings to (n, d)-

projective modules, n-cosemihereditary rings and n-V -rings respectively, right n-

V -rings and right n-cosemihereditary rings are characterized by (n, 0)-projective

right R-modules, (n, 0)-projective dimensions of right R-modules over right n-

cocoherent rings are investigated. Following [11], a right R-module M is called

(n, d)-projective if Extd+1
R (M,A) = 0 for every n-copresented right R-module A; a

ring R is called right n-cosemihereditary if every submodule of a projective right
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R-module is (n, 0)-projective, a ring R is called a right n-V -ring if every right R-

module is (n, 0)-projective. Clearly, a right R-module M is FCP-projective if and

only if it is (1, 0)-projective, a ring R is right cosemihereditary if and only if it is

right 1-cosemihereditary, a ring R is a right V -ring if and only if it is a right 0-V -ring

if and only if it is a right 1-V -ring. Characterizations of n-cosemihereditary rings

and n-V -rings can be found in [11, Theorem 3.7] and [11, Theorem 3.9], respectively.

In this paper, we generalize the concepts of (n, 0)-projective modules, n-cocoherent

rings, n-cosemihereditary rings, n-V -rings to (n, d)∗-projective modules, (n, d)-

cocoherent rings, (n, d)-cosemihereditary rings and (n, d)-V -rings respectively. (n, d)-

cosemihereditary rings, (n, d)-V -rings will be characterized by (n, d)∗-projective

modules, (n, d)∗-projective dimensions of modules over (n, d)-cocoherent rings will

be investigated. As corollaries, some new characterizations of right V -rings will be

given.

2. (n, d)∗-Projective modules and (n, d)-cocoherent rings

We start with the following definition.

Definition 2.1. A right R-module M is said to be (n, d)∗-projective if Ext1R(M,C) =

0 for every n-copresented right R-module C with id(C) ≤ d. A right R-module C

is said to be (n, d)∗-injective if Ext1R(M,C) = 0 for every (n, d)∗-projective right

R-module M .

Remark 2.2. (1) It is easy to see that if a module M is (n, d)∗-projective,

then it is (n′, d′)∗-projective for any n′ ≥ n and d′ ≤ d.

(2) A module M is (n, 0)-projective if and only if it is (n,∞)∗-projective.

Recall that a short exact sequence of right R-modules 0→ A→ B → C → 0 is

said to be n-copure [11] if every n-copresented module is injective with respect to

this sequence.

Definition 2.3. A short exact sequence of right R-modules 0→ A→ B → C → 0

is said to be (n, d)-copure if every n-copresented module with injective dimension

≤ d is injective with respect to this sequence.

Remark 2.4. A short exact sequence of right R-modules 0→ A→ B → C → 0 is

n-copure if and only if it is (n,∞)-copure.

Theorem 2.5. Let M be a right R-module. Then the following statements are

equivalent:

(1) M is (n, d)∗-projective.
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(2) M is projective with respect to the exact sequence 0→ C → B → A→ 0 of

right R-modules, where C is n-copresented and id(C) ≤ d.

(3) If E′ is an (n−1)-copresented factor module of a finitely cogenerated injec-

tive right R-module E and id(E′) ≤ d−1, then every right R-homomorphism

f from M to E′ can be lifted to a homomorphism from M to E.

(4) Every exact sequence 0→M ′′ →M ′ →M → 0 is (n, d)-copure.

(5) There exists an (n, d)-copure exact sequence 0 → K → P → M → 0 of

right R-modules with P projective.

(6) There exists an (n, d)-copure exact sequence 0 → K → P → M → 0 of

right R-modules with P (n, d)∗-projective.

(7) M is projective with respect to every exact sequence 0→ C → B → A→ 0

of right R-modules with C (n, d)∗-injective.

(8) M is projective with respect to every exact sequence 0→ C → E → A→ 0

of right R-modules with C (n, d)∗-injective and E injective.

Proof. (1)⇒ (2) By the exact sequence

Hom(M,B)→ Hom(M,A)→ Ext1R(M,C) = 0.

(2)⇒ (3) Since E is finitely cogenerated injective and E′ is (n− 1)-copresented

with id(E′) ≤ d − 1, the kernel K of the natural epimorphism E → E′ is n-

copresented and id(K) ≤ d. So (3) follows immediately from (2).

(3)⇒ (1) For any n-copresented module C with id(C) ≤ d, there exists an exact

sequence 0→ C → E → E′ → 0, where E is finitely cogenerated injective, E′ is (n−
1)-copresented , and id(E′) ≤ d−1. Hence we get an exact sequence Hom(M,E)→
Hom(M,E′)→ Ext1R(M,C)→ Ext1R(M,E) = 0, and thus Ext1R(M,C) = 0 by (3).

(1)⇒ (4) Assume (1). Then we have an exact sequence

Hom(M ′, C)→ Hom(M ′′, C)→ Ext1R(M,C) = 0

for every n-copresented module C with id(C) ≤ d, and so (4) follows.

(4)⇒ (5)⇒ (6) are obvious.

(6)⇒ (1) By (6), we have an (n, d)-copure exact sequence 0→ K
f→ P →M →

0 of right R-modules with P (n, d)∗-projective, and so, for each n-copresented

module C with id(C) ≤ d, we have an exact sequence Hom(P,C)
f∗

→ Hom(K,C)→
Ext1R(M,C) → Ext1R(P,C) = 0 with f∗ epic. This implies that Ext1R(M,C) = 0,

and therefore (1) follows.

(1)⇒ (7)⇒ (8)⇒ (1) are similar to the proofs of (1)⇒ (2)⇒ (3)⇒ (1). �
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Definition 2.6. (1) The (n, d)∗-projective dimension of a module MR is defined

by

(n, d)∗ − pd(MR) = inf{m : Extm+1
R (M,C) = 0 for every n-copresented module C

with id(C) ≤ d}

(2) r. (n, d)∗-PD(R) is defined by

r. (n, d)∗-PD(R) = sup{(n, d)∗-pd(M) : M is a right R-module}.

Definition 2.7. A ring R is called right (n, d)-cocoherent, if every n-copresented

right R-module with injective dimension ≤ d is (n + 1)-copresented.

Remark 2.8. (1) It is easy to see that if a ring R is right (n, d)-cocoherent,

then it is right (n′, d′)-cocoherent for any n′ ≥ n and d′ ≤ d.

(2) Every ring R is right (n, 1)-cocoherent.

(3) A ring R is right n-cocoherent if and only if it is right (n,∞)-cocoherent.

Lemma 2.9. Let R be a right (n,d)-cocoherent ring and M a right R-module. Then

the following statements are equivalent:

(1) (n, d)∗-pd(M) ≤ k.

(2) Extk+1
R (M,C) = 0 for all n-copresented modules C with id(C) ≤ d.

Proof. (1) ⇒ (2) Use induction on k. Clear if (n, d)∗-pd(M) = k. If (n, d)∗-

pd(M) ≤ k− 1. Since C is n-copresented, there exists an exact sequence 0→ C →
E → E′ → 0, where E is finitely cogenerated injective, and E′ is (n−1)-copresented.

Since id(C) ≤ d, we have id(E′) ≤ d . But R is right (n, d)-cocoherent, C is (n+1)-

copresented, so E′ is n-copresented, and thus Extk+1
R (M,A) ∼= ExtkR(M,E′) = 0 by

induction hypothesis.

(2)⇒ (1) is clear. �

Corollary 2.10. Let R be a right (n,d)-cocoherent ring and let MR be (n, d)∗-

projective. Then ExtkR(M,C) = 0 for all n-copresented modules C with id(C) ≤ d

and all positive integers k.

Corollary 2.11. Let R be a right (n,d)-cocoherent ring and let M be a right R-

module. If the sequence 0 → Pk
dk→ Pk−1

dk−1→ · · · → P0
d0→ M → 0 is exact

with P0, . . . , Pk−1 (n, d)∗-projective, then Extk+1
R (M,C) ∼= Ext1R(Pk, C) for any n-

copresented modules C with id(C) ≤ d.

Proof. Since R is right (n, d)-cocoherent and P0, P1, . . . , Pk−1 are (n, d)-projective,

by Corollary 2.10, we have

Extk+1
R (M,C) ∼= ExtkR(Ker(d0), C) ∼= Extk−1R (Ker(d1), C) ∼= · · · ∼=
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Ext1R(Ker(dk−1), C) ∼= Ext1R(Pk, C). �

Theorem 2.12. Let R be a right (n, d)-cocoherent ring and M be a right R-module.

Then the following statements are equivalent:

(1) (n, d)∗-pd(MR) ≤ k.

(2) Extk+l
R (M,C) = 0 for all n-copresented modules C with id(C) ≤ d and all

positive integers l.

(3) Extk+1
R (M,C) = 0 for all n-copresented modules C with id(C) ≤ d.

(4) If the sequence 0 → Pk → Pk−1 → · · · → P0 → M → 0 is exact with

P0, . . . , Pk−1 (n, d)∗-projective, then Pk is also (n, d)∗-projective.

(5) There exists an exact sequence 0 → Pk → Pk−1 → · · · → P0 → M → 0 of

right R-modules with P0, . . . , Pk−1, Pk (n, d)∗-projective.

Proof. (1)⇒ (2) Assume (1). Then (n, d)−pd(MR) ≤ k+ l−1, and so (2) follows

from Lemma 2.9.

(2) ⇒ (3) and (4) ⇒ (5) are obvious. (3) ⇒ (4) and (5) ⇒ (1) by Corollary

2.11. �

3. (n, d)-Cosemihereditary rings and (n, d)-V -rings

As the beginning of this section, we extend the concept of n-cosemihereditary

rings as follows.

Definition 3.1. A ring R is called right (n, d)-cosemihereditary, if for every finitely

cogenerated injective right R-module E, each (n−1)-copresented factor module E′

of E with id(E′) ≤ d − 1 is injective. A ring R is called right cohereditary if it is

right (0,∞)-cosemihereditary.

Remark 3.2. (1) It is easy to see that if a ring R is right (n, d)-cosemihereditary,

then it is right (n′, d′)-cosemihereditary for any n′ ≥ n and d′ ≤ d.

(2) Every ring R is right (n, 1)-cosemihereditary.

(3) A ring R is right n-cosemihereditary if and only if it is right (n,∞)-

cosemihereditary.

(4) A ring R is right cohereditary if and only if every factor module of a finitely

cogenerated injective right R-module is injective.

(5) A ring R is right cosemihereditary if and only if it is right (1,∞)-

cosemihereditary.

Theorem 3.3. The following statements are equivalent for a ring R:

(1) R is a right (n,d)-cosemihereditary ring.
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(2) R is right (n,d)-cocoherent and r.(n, d)∗-PD(R) ≤ 1.

(3) Ext2R(M,C) = 0 for any right R-module M and any n-copresented right

R-module C with id(C) ≤ d.

(4) Every submodule of an (n, d)∗-projective right R-module is (n, d)∗-projective.

(5) Every submodule of a projective right R-module is (n, d)∗-projective.

Proof. (1)⇒ (2) Let C be an n-copresented right R-module with injective dimen-

sion ≤ d. Then there exists an exact sequence 0→ C → E → E′ → 0, where E is

finitely cogenerated injective, E′ is (n − 1)-copresented and id(E′) ≤ d − 1. Since

R is right (n, d)-cosemihereditary, E′ is finitely cogenerated injective, and so C is

(n + 1)-copresented, it shows that R is right (n, d)-cocoherent. Now let M be a

right R-module. Then for any n-copresented right R-module C with id(C) ≤ d,

we have an exact sequence 0→ C → E → E′ → 0 of right R-modules, where E is

finitely cogenerated injective, E′ is (n − 1)-copresented and id(E′) ≤ d − 1. Since

R is right (n, d)-cosemihereditary, by the above proof, E′ is injective. Thus the

exact sequence 0 = Ext1R(M,E′) → Ext2R(M,C) → Ext2R(M,E) = 0 implies that

Ext2R(M,C) = 0. This follows that r.(n, d)∗-PD(R) ≤ 1.

(2)⇒ (3) It follows from Theorem 2.12.

(3) ⇒ (4) Let M be an (n, d)∗-projective right R-module and K be its sub-

module. Then for any n-copresented module C with id(C) ≤ d, we have an exact

sequence 0 = Ext1R(M,C) → Ext1R(K,C) → Ext2R(M/K,C) = 0 by (3), it follows

that Ext1R(K,C) = 0, as required.

(4)⇒ (5) It is obvious.

(5)⇒ (1) Let E′ be an (n−1)-copresented factor module of a finitely cogenerated

injective right R-module E and id(E′) ≤ d− 1. Let f be an epimorphism from E

to E′. Then for any projective right R-module P and any submodule K of P , K is

(n, d)∗-projective by (4). So for any n-copresented right R-module C with id(C) ≤
d, we have an exact sequence 0 = Ext1R(K,C)→ Ext2R(P/K,C)→ Ext2R(P,C) = 0,

which implies that Ext2R(P/K,C) = 0. Note that Ker(f) is n-copresented and

id(Ker(f)) ≤ d, we get an exact sequence 0 = Ext1R(P/K,E)→ Ext1R(P/K,E′)→
Ext2R(P/K,Ker(f)) = 0, and then Ext1R(P/K,E′) = 0, which shows that E′R is PR-

injective from the exact sequence Hom(P,E′) → Hom(K,E′) → Ext1R(P/K,E′).

Therefore, E′ is injective. �

Our following Corollary 3.4 improves [11, Theorem 3.7] partly.

Corollary 3.4. The following statements are equivalent for a ring R:

(1) R is a right n-cosemihereditary ring.
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(2) R is right n-cocoherent and r.(n, 0)-PD(R) ≤ 1.

(3) Ext2R(M,C) = 0 for any right R-module M and any n-copresented right

R-module C.

(4) Every submodule of an (n, 0)-projective right R-module is (n, 0)-projective.

(5) Every submodule of a projective right R-module is (n, 0)-projective.

Corollary 3.5. The following statements are equivalent for a ring R:

(1) R is a right cosemihereditary ring.

(2) R is right cocoherent and r.FCP -PD(R) ≤ 1.

(3) Ext2R(M,C) = 0 for any right R-module M and any finitely copresented

right R-module C.

(4) Every submodule of an FCP-projective right R-module is FCP-projective.

(5) Every submodule of a projective right R-module is FCP-projective.

Corollary 3.6. The following statements are equivalent for a ring R:

(1) R is a right cohereditary ring.

(2) R is right co-noetherian and r.FCG-PD(R) ≤ 1.

(3) Ext2R(M,C) = 0 for any right R-module M and any finitely cogenerated

right R-module C.

(4) Every submodule of an FCG-projective right R-module is FCG-projective.

(5) Every submodule of a projective right R-module is FCG-projective.

Next we extend the concept of right n-V -rings as follows.

Definition 3.7. A ring R is called right (n, d)-V -ring if every right R-module is

(n, d)∗-projective.

Remark 3.8. (1) It is easy to see that if n′ ≥ n and d′ ≤ d, then a right

(n, d)-V -ring is a right (n′, d′)-V -ring.

(2) A ring R is a right n-V -ring if and only if it is a right (n,∞)-V -ring.

Now we give some characterizations of right (n, d)-V -rings.

Theorem 3.9. The following conditions are equivalent for a ring R:

(1) R is a right (n, d)-V -ring.

(2) Every (n− 1)-copresented right R-module with injective dimension ≤ d− 1

is (n, d)∗-projective.

(3) R is right (n, d)-cosemihereditary and E(S) is (n, d)∗-projective for every

simple right R-module S.
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(4) R is right (n, d)-cocoherent and for every finitely cogenerated injective right

R-module E, every n-copresented factor module E′ of E with id(E′) ≤ d−1

is (n, d)∗-projective.

(5) For every finitely cogenerated injective right R-module E, every (n − 1)-

copresented factor module E′ of E with id(E′) ≤ d− 1 is (n, d)∗-projective.

(6) Every n-copresented right R-module with injective dimension ≤ d is injec-

tive.

Proof. (1)⇒ (2) and (6)⇒ (1) are obvious.

(2) ⇒ (3) Assume (2). Then it is clear that E(S) is (n, d)∗-projective for every

simple right R-module S. Let E be a finitely cogenerated injective module and E′

an (n−1)-copresented factor module of E with id(E′) ≤ d−1. By (2), E′ is (n, d)∗-

projective, so by Theorem 2.5(3), we have that E′ is isomorphic to a direct summand

of E and hence E′ is injective. Therefore, R is right (n, d)-cosemihereditary.

(3)⇒ (4) Assume (3). Since R is right (n, d)-cosemihereditary, it is right (n, d)-

cocoherent by Theorem 3.3. Now let E be a finitely cogenerated injective right R-

module and E′ an (n−1)-copresented factor module of E with id(E′) ≤ d−1. Since

R is right (n, d)-cocoherent, E′ is n-copresented and hence finitely cogenerated.

Thus, the injective envelope E(E′) of E′ is a finitely cogenerated injective module,

and so E(E′) ∼= ⊕k
i=1E(Si) for some simple modules Ei, i = 1, 2, . . . , k. Since each

Ei is (n, d)∗-projective by (3), E(E′) is also (n, d)∗-projective. Observing that R is

right (n, d)-cosemihereditary, by Theorem 3.3, E′ is also (n, d)∗-projective.

(4) ⇒ (5) Let E be a finitely cogenerated injective module and E′ an (n − 1)-

copresented factor module of E with id(E′) ≤ d − 1. Since R is right (n, d)-

cocoherent, E′ is n-copresented. By (4), E′ is (n, d)∗-projective.

(5) ⇒ (6) Let C be an n-copresented right R-module with id(C) ≤ d. Then

there exists an exact sequence 0→ C → E → E′ → 0 of right R-modules, where E

is finitely cogenerated injective, E′ is (n − 1)-copresented and id(E′) ≤ d − 1. By

(5), E′ is (n, d)∗-projective, so E′ is projective respect to this exact sequence by

Theorem 2.5(3). This follows that C is isomorphic to a direct summand of E, and

therefore C is injective. �

Recall that a right R-module M is called FCG-projective [11] if Ext1R(M,A) = 0

for every finitely cogenerated right R-module A. By Remark 2.2, a right R-module

is FCG-projective if and only if it is (0,∞)∗-projective, a right R-module is FCP-

projective if and only if it is (1,∞)∗-projective, every FCG-projective module is

FCP-projective.
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Corollary 3.10. The following conditions are equivalent for a ring R:

(1) R is a right V -ring.

(2) R is a right (0,∞)-V -ring.

(3) R is a right (1,∞)-V -ring.

(4) Every right R-module is FCG-projective.

(5) R is right cohereditary and E(S) is FCG-projective for every simple right

R-module S.

(6) R is right co-noetherian and for every finitely cogenerated injective right

R-module E, every finitely cogenerated factor module E′ of E is FCG-

projective.

(7) For every finitely cogenerated injective right R-module E , every factor mod-

ule E′ of E is FCG-projective.

(8) Every finitely cogenerated right R-module is injective.

(9) Every finitely cogenerated right R-module is FCP-projective.

(10) R is right cosemihereditary and E(S) is FCP-projective for every simple

right R-module S.

(11) R is right cocoherent and for every finitely cogenerated injective right R-

module E, every finitely copresented factor module E′ of E is FCP-projective.

(12) For every finitely cogenerated injective right R-module E , every finitely

cogenerated factor module E′ of E is FCP-projective.

(13) Every finitely copresented right R-module is injective.

Proof. (2)⇒ (3) is obvious. By Theorem 3.9, we have

(2)⇔ (4)⇔ (5)⇔ (6)⇔ (7)⇔ (8); and (3)⇔ (9)⇔ (10)⇔ (11)⇔ (12)⇔ (13).

(1) ⇒ (8) Let R be a right V -ring. Then every simple right R-module is injective.

For any finitely cogenerated right R-module M , we have E(M) ∼= E(S1) + · · · +
E(Sn) for some finite set S1, . . . , Sn of simple modules by [1, Proposition 18.18], so

E(M) ∼= S1 + · · ·+ Sn is semisimple. Thus M is a direct summand of E(M), and

therefore M is injective.

(13) ⇒ (1) Let S be any simple right R-module. Suppose S is not injective. Let

x ∈ E(S)\S and let A be a submodule of E(S) maximal with respect to S ⊆ A and

x /∈ A, then 0 6= x + A ∈ ∩{K ≤ E(S)/A | K 6= 0}, which implies that E(S)/A is

finitely cogenerated and whence A is finitely copresented. By (13), A is injective. It

follows that A = E(S), which contradicts the fact that x /∈ A. Hence S is injective

and so R is a right V -ring. �
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Recall that a right R-module M is called n-presented [3] if there is an exact

sequence of right R-modules Fn → Fn−1 → · · · → F1 → F0 → M → 0 where

each Fi is a finitely generated free, equivalently projective right R-module; a left

R-module M is called (n, 0)-flat [10] if TorR1 (A,M) = 0 for every n-presented right

R-module A. A ring R is called right n-regular [10] if every n-presented right R-

module is projective. By [10, Theorem 3.9], a ring R is right n-regular if and only

if every left R-module M is (n, 0)-flat.

Theorem 3.11. Let R be a commutative ring. Then every (n, 0)-projective module

is (n, 0)-flat.

Proof. Let M be an (n, 0)-projective module. To prove M is (n, 0)-flat, we need

prove TorR1 (A,M) = 0 for every n-presented R-module A. Since A is n-presented,

HomR(A,E(S)) is n-copresented for any simple module S. Let 0 → K → P →
M → 0 be an exact sequence of R-modules with P projective. Then by Theorem

2.5, this exact sequence is n-copure. And so we get an exact sequence of R-modules

0→ HomR(M,HomR(A,E(S)))→ HomR(P,HomR(A,E(S)))→

HomR(K,HomR(A,E(S)))→ 0.

By [1, Proposition 20.6, Proposition 20.7], this induces an exact sequence

0→ HomR(M⊗RA,E(S))→ HomR(P⊗RA,E(S))→ HomR(K⊗RA,E(S))→ 0.

Let S0 denote an irredundant set of representatives of the simple R-modules and

let C =
∏

S∈S0
E(S). Then by [1, Corollary 18.16], C is a cogenerator. And we

have an exact sequence of R-modules

0→ HomR(M ⊗R A,C)→ HomR(P ⊗R A,C)→ HomR(K ⊗R A,C)→ 0.

So, by [1, Proposition 18.14], the sequence

0→ K ⊗R A→ P ⊗R A→M ⊗R A→ 0

of R-modules is exact. This shows that TorR1 (A,M) = 0, as required. �

Corollary 3.12. Let R be a commutative n-V -ring. Then it is an n-regular ring.

The following result is well-known.

Corollary 3.13. Let R be a commutative V -ring. Then it is a regular ring.
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