ON \((m,n)\)-CLOSED IDEALS IN AMALGAMATED ALGEBRA

Mohammed Issoual, Najib Mahdou and Moutu Abdou Salam Moutui

Received: 18 February 2020; Revised: 3 June 2020; Accepted: 7 June 2020

Communicated by Abdullah Harmaneci

Abstract. Let \(R\) be a commutative ring with \(1 \neq 0\) and let \(m\) and \(n\) be integers with \(1 \leq n < m\). A proper ideal \(I\) of \(R\) is called an \((m,n)\)-closed ideal of \(R\) if whenever \(a^m \in I\) for some \(a \in R\) implies \(a^n \in I\). Let \(f: A \to B\) be a ring homomorphism and let \(J\) be an ideal of \(B\). This paper investigates the concept of \((m,n)\)-closed ideals in the amalgamation of \(A\) with \(B\) along \(J\) with respect \(f\) denoted by \(A \triangleright◁ f J\). Namely, Section 2 investigates this notion to some extensions of ideals of \(A\) to \(A \triangleright◁ f J\). Section 3 features the main result, which examines when each proper ideal of \(A \triangleright◁ f J\) is an \((m,n)\)-closed ideal. This allows us to give necessary and sufficient conditions for the amalgamation to inherit the radical ideal property with applications on the transfer of von Neumann regular, \(\pi\)-regular and semisimple properties.

Mathematics Subject Classification (2020): 13F05, 13A15, 13E05, 13F20, 13C10, 13C11, 13F30, 13D05

Keywords: \((m,n)\)-closed ideal, radical ideal, semi-\(n\)-absorbing ideal, amalgamated algebra, von Neumann regular ring, \(\pi\)-regular ring, semisimple ring

1. Introduction

We assume throughout the whole paper that all rings are commutative with \(1 \neq 0\). The notion of \((m,n)\)-closed ideal was introduced and defined by Anderson and Badawi in [2], as follow: Let \(R\) be a ring and \(m\) and \(n\) be two positive integers with \(1 \leq n < m\). A proper ideal \(I\) of \(R\) is called an \((m,n)\)-closed ideal of \(R\) if whenever \(a^m \in I\) for some \(a \in R\) implies \(a^n \in I\). Also, an ideal \(I\) of \(R\) is a semi-\(n\)-absorbing ideal of \(R\) if and only if \(I\) is an \((n+1,n)\)-closed ideal of \(R\). Recall that an ideal \(I\) of \(R\) is a radical ideal if and only if \(I\) is a \((2,1)\)-closed ideal. Among other things, they gave the basic properties of semi-\(n\)-absorbing ideals and \((m,n)\)-closed ideals and they also determined when every proper ideal of \(R\) is \((m,n)\)-closed for integers \(1 \leq n < m\). Further, they gave several examples illustrating their results. Recall that a proper ideal \(I\) of \(R\) is called an \(n\)-absorbing ideal of \(R\) as in [1] if \(a_1, a_2, \ldots, a_{n+1} \in R\) and \(a_1 a_2 \cdots a_{n+1} \in I\), then there are \(n\) of the \(a_i\)’s whose product is in \(I\). Notice that an \(n\)-absorbing ideal is an \((m,n)\)-closed for every
positive integer \(m \). In [4], the authors studied the notions of \(n \)-absorbing ideals, strongly \(n \)-absorbing ideals and \((m, n)\)-closed ideals in the trivial ring extension. Let \(A \) be a commutative ring and \(E \) be an \(A \)-module. The trivial ring extension of \(A \) by \(E \) (also called the idealization of \(E \) over \(A \)) is the ring \(R := A \rtimes E \) whose underlying group is \(A \times E \) with multiplication given by \((a, e)(a', e') = (aa', ae' + a'e)\).

Trivial ring extensions have been studied extensively. Considerable work, part of which is summarized in Glaz's book [12] and Huckaba's book [13], has been concerned with trivial ring extension; these extensions have been useful for solving many open problems and conjectures in both commutative and non-commutative ring theory. See for instance [3, 10, 12, 13]. We recall that if \(I \) is a proper ideal of \(A \), then \(I \rtimes E \) is an ideal of \(A \rtimes E \). And if \(F \) is a submodule of \(E \) such that \(IE \subset F \), then \(I \rtimes F \) is an ideal of \(A \rtimes E \). The ideals of \(A \rtimes E \) are not all of the form \(I \rtimes E \) or \(I \rtimes F \), but if \(A \) is an integral domain, and \(E \) an \(A \)-module divisible, the ideals of \(A \rtimes E \) are of the form \(I \rtimes E \) or \(0 \rtimes F \), where \(I \) is an ideal of \(A \) and \(F \) a submodule of \(E \).

Let \((A, B)\) be a pair of rings, \(f : A \to B \) be a ring homomorphism and \(J \) be an ideal of \(B \). In this setting, we can consider the following subring of \(A \times B \):

\[A \rhd_f J := \{(a, f(a) + j) \mid a \in A, j \in J\} \]

called the amalgamation of \(A \) and \(B \) along \(J \) with respect to \(f \), introduced and studied by D'Anna, Finocchiaro and Fontana in [9,10]. In particular, they have studied amalgamations in the frame of pullbacks which allowed them to establish numerous (prime) ideal and ring-theoretic basic properties for this new construction. This construction is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied by D'Anna and Fontana in [7,8]). The interest of amalgamation resides, partly, in its ability to cover several basic constructions in commutative algebra, including pullbacks and trivial ring extensions (also called Nagata's idealizations) (cf. [16, page 2]). Moreover, other classical constructions (such as the \(A + XB[X] \), \(A + XB[[X]] \) and the \(D + M \) constructions) can be studied as particular cases of the amalgamation ([9, Examples 2.5 and 2.6]) and other classical constructions, such as the CPI extensions (in the sense of Boisen and Sheldon [5]) are strictly related to it ([9, Example 2.7 and Remark 2.8]). In [9], the authors studied the basic properties of this construction (e.g., characterizations for \(A \rhd_f J \) to be a Noetherian ring, an integral domain, a reduced ring) and they characterized those distinguished pullbacks that can be expressed as an amalgamation. Moreover, in [10], they pursued the investigation on the structure of the rings of the form \(A \rhd_f J \), with particular attention to the prime spectrum, to the chain properties...
and to the Krull dimension. For more details on amalgamation rings, we refer the reader to [11], [14], [15].

In this paper, we study the notion of \((m, n)\)-closed ideals in the amalgamation of \(A\) with \(B\) along \(J\) with respect \(f\) denoted by \(A \bowtie^f J\). For any ring \(R\), we denote by \(\text{Nil}(R)\) (resp., \(\text{dim}(R)\)), the set of nilpotent elements of \(R\) (resp., the Krull dimension of \(R\)).

2. On some \((m, n)\)-closed ideals of amalgamation \(A \bowtie^f J\)

To avoid unnecessary repetition, let us fix notation for the rest of the paper. Let \((A, B)\) be a pair of rings, \(f : A \to B\) be a ring homomorphism and \(J\) be an ideal of \(B\). All along this paper, \(A \bowtie^f J\) will denote the amalgamation of \(A\) and \(B\) along \(J\) with respect to \(f\). Let \(I\) be an ideal of \(A\) and \(K\) be an ideal of \(f(A) + J\). Notice that \(I \bowtie^f J := \{(i, f(i) + j)/i \in I, j \in J\}\) and \(\overline{K}^f := \{(a, f(a) + j)/a \in A, j \in J, f(a) + j \in K\}\) are ideals of \(A \bowtie^f J\). Our first result gives a characterization about when the ideals \(I \bowtie^f J\) and \(\overline{K}^f\) are \((m, n)\)-closed ideals of \(A \bowtie^f J\), for all positive integers \(m\) and \(n\), with \(1 \leq n < m\).

Proposition 2.1. Under the above notations, the following statements hold:

1. \(I \bowtie^f J\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\) if and only if \(I\) is an \((m, n)\)-closed ideal of \(A\).

2. \(\overline{K}^f\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\) if and only if \(K\) is an \((m, n)\)-closed ideal of \(f(A) + J\).

Proof. (1) Assume that \(I \bowtie^f J\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\) for \(m\) and \(n\) two positive integers with \(1 \leq n < m\). Let \(a^m \in I\), with \(a \in A\). Clearly \((a, f(a))^m \in I \bowtie^f J\). Since \(I \bowtie^f J\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\), we have \((a, f(a))^m \in I \bowtie^f J\) and so \(a^n \in I\). Hence, \(I\) is an \((m, n)\)-closed ideal of \(A\). Conversely, assume that \(I\) is an \((m, n)\)-closed ideal of \(A\). Let \(x^m = (a, f(a) + j)^m \in I \bowtie^f J\) with \(x = (a, f(a) + j) \in A \bowtie^f J\). Clearly, \(a^m \in I\). Since \(I\) is an \((m, n)\)-closed ideal of \(A\), we have \(a^n \in I\). One can easily check that \(x^n = (a^n, (f(a) + j)^n) \in I \bowtie^f J\), as desired.

(2) Suppose that \(\overline{K}^f\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\). We claim that \(K\) is an \((m, n)\)-closed ideal of \(f(A) + J\). Indeed, let \((f(a) + j)^m \in K\) with \((f(a) + j) \in f(A) + J\). Then \((a^m, (f(a) + j)^m) \in \overline{K}^f\). Since \(\overline{K}^f\) is an \((m, n)\)-closed ideal, \((a, f(a) + j)^n \in \overline{K}^f\). Therefore, \((f(a) + j)^n \in K\). Hence, \(K\) is an \((m, n)\)-closed ideal of \(f(A) + J\). Conversely, assume that \(K\) is an \((m, n)\)-closed ideal of \(f(A) + J\). Let \((a, f(a) + j)^m \in \overline{K}^f\) with \((a, f(a) + j) \in A \bowtie^f J\).
Obviously, \(f(a) + j \in f(A) + J \) and \((f(a) + j)^m \in K\) which is an \((m, n)\)-closed ideal. So, \((a^n, (f(a) + j)^n) \in \overline{K}^f\). Hence, \(\overline{K}^f\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\), as desired.

The following corollary is an immediate consequence of Proposition 2.1.

Corollary 2.2. Under the above notations, the following statements hold:

1. \(I \bowtie^f J\) is a radical ideal of \(A \bowtie^f J\) if and only if \(I\) is a radical ideal of \(A\).
2. \(I \bowtie^f J\) is a semi-\(n\)-absorbing ideal of \(A \bowtie^f J\) if and only if \(I\) is a semi-\(n\)-absorbing ideal of \(A\).
3. \(\overline{K}^f\) is a semi-\(n\)-absorbing ideal of \(A \bowtie^f J\) if and only if \(K\) is a semi-\(n\)-absorbing ideal of \(f(A) + J\).
4. \(\overline{K}^f\) is a radical ideal of \(A \bowtie^f J\) if and only if \(K\) is a radical ideal of \(f(A) + J\).

Let \(I\) be a proper ideal of \(A\). The (amalgamated) duplication of \(A\) along \(I\) is a special amalgamation given by

\[
A \bowtie^f I := A \bowtie^f \text{id}_A I = \{(a, a + i) \mid a \in A, i \in I\}.
\]

The next corollary is an immediate consequence of Proposition 2.1 and Corollary 3.5 on the transfer of \((m, n)\)-closed ideal property to duplications.

Corollary 2.3. Let \(A\) be a ring and \(I\) be an ideal of \(A\). Consider \(K\) an ideal of \(A\). Then the following statements hold:

(1) \(K \bowtie I\) is an \((m, n)\)-closed ideal of \(A \bowtie I\) if and only if \(I\) is an \((m, n)\)-closed ideal of \(A\).
(2) \(K \bowtie I\) is a semi-\(n\)-absorbing ideal of \(A \bowtie I\) if and only if \(I\) is a semi-\(n\)-absorbing ideal of \(A\).
(3) \(K \bowtie I\) is a radical ideal of \(A \bowtie I\) if and only if \(I\) is a radical ideal of \(A\).

Let \(I\) (resp., \(K\)) be an ideal of \(A\) (resp., \(f(A) + J\)). Observe that

\[
\overline{I \times K}^f := \{(a, f(a) + j) \mid j \in J, a \in I, f(a) + j \in K\}
\]

is an ideal of \(A \bowtie^f J\). The following proposition establishes a partial result about when the ideal \(\overline{I \times K}^f\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\).

Proposition 2.4. Let \(m_1, n_1, m_2\) and \(n_2\) be positive integers such that \(m_1 < n_1\) and \(m_2 < n_2\). Under the above notations: If \(I\) is an \((m_1, n_1)\)-closed ideal of \(A\) and \(K\) is an \((m_2, n_2)\)-closed ideal of \(f(A) + J\), then \(\overline{I \times K}^f\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\) for all positive \(m \leq \min(m_1, m_2)\) and \(n \geq \max(n_1, n_2)\).
Proof. Assume that I is an (m_1, n_1)-closed ideal of A and K is an (m_2, n_2)-closed ideal of $f(A) + J$. Notice that $I \times K$ is an (m, n)-closed ideal of $A \times (f(A) + J)$ for all positive $m \leq \min(m_1, m_2)$ and $n \geq \max(n_1, n_2)$. Since $A \bowtie J \subset A \times (f(A) + J)$, by [2, Corollary 2.11(1)], it follows that $I \times K$ is an (m, n)-closed ideal of $A \bowtie J$ for all positive $m \leq \min(m_1, m_2)$ and $n \geq \max(n_1, n_2)$, as desired. \qed

As a direct consequence of Proposition 2.4, we obtain the following corollary:

Corollary 2.5.

1. If I is a semi-n-absorbing ideal of A and K is a semi-n-absorbing ideal of $f(A) + J$, then $I \times K$ is a semi-n-absorbing ideal of $A \bowtie J$.

2. If I is a radical ideal of A and K is a radical ideal of $f(A) + J$, then $I \times K$ is a radical ideal of $A \bowtie J$.

Let $f : A \rightarrow B$ be a ring homomorphism and J be an ideal of B. Consider an ideal I (resp., H) of A (resp., $f(A) + J$) such that $f(I)J \subseteq H \subseteq J$. Observe that $I \bowtie H := \{(i, f(i) + h) / i \in I, h \in H\}$ is an ideal of $A \bowtie J$.

Remark 2.6. Under the above notations. Let m and n be two integers with $1 \leq n < m$. If $I \bowtie H$ is an (m, n)-closed ideal of $A \bowtie J$, then by using similar argument as statement (1) of Proposition 2.1, it follows that I is an (m, n)-closed ideal of A. The converse is not true, in general, as shown by the next example which exhibits an ideal I that is a $(2, 1)$-closed ideal of A such that $f(I)J \subseteq H \subset J$ but $I \bowtie H$ is not a $(2, 1)$-closed ideal of $A \bowtie J$.

Example 2.7. Let $A := \mathbb{Z}$ be the ring of integers, $B := \mathbb{Q}[[X]]$ be the ring of formal power series over \mathbb{Q} in an indeterminate X, $f : \mathbb{Z} \hookrightarrow \mathbb{Q}[[X]]$ be the natural embedding and $J := XQ[[X]]$. Let $H = \{XP(X) : P \in f(A) + J = \mathbb{Z} + XQ[[X]]\}$. Obviously, H is an ideal of $f(A) + J = \mathbb{Z} + XQ[[X]]$. Note that $I := 0$ is a prime ideal of A and so is an $(m, 1)$-closed ideal of A for all positive integer m. Since $f(I)J = 0 \subset H \subset J$, $0 \bowtie H$ is an ideal of $\mathbb{Z} \bowtie XQ[[X]]$. We claim that $0 \bowtie H$ is not a $(2, 1)$-closed ideal of $\mathbb{Z} \bowtie XQ[[X]]$. Indeed, $0 \bowtie H = \{(0, XP(X)) : P(X) \in \mathbb{Z} + XQ[[X]]\}$, we have $(0, \sqrt{2}X)^2 = (0, 2X^2) \subset 0 \bowtie H$ but $(0, \sqrt{2}X) \notin 0 \bowtie H$. Hence, $0 \bowtie H$ is not a $(2, 1)$-closed ideal of $\mathbb{Z} \bowtie XQ[[X]]$.

Now, we examine about when the ideal $I \bowtie H$ is an (m, n)-closed ideal of $A \bowtie J$.

Proposition 2.8. Let $f : A \to B$ be a ring homomorphism and J be an ideal of B. Let H be an ideal of $f(A) + J$ such that $f(I)J \subseteq H \subseteq J$. Then the following statements hold:

1. If $I \asymp f H$ is an (m, n)-closed ideal of $A \asymp f J$, then I is an (m, n)-closed ideal of A, for all positive integers m and n, with $1 \leq n < m$.

2. Assume that I is an $(m, 1)$-closed ideal of A and $x^n \in H$ for every $x \in J$ with $n \geq 1$ a positive integer. Then $I \asymp f H$ is an (m, n)-closed ideal of $A \asymp f J$.

Proof. (1) From Remark 2.6.

(2) Assume that I is an $(m, 1)$-closed ideal of A. We claim that $I \asymp f H$ is an (m, n)-closed ideal of $A \asymp f J$. Let $x^m = (a, f(a) + j)^m \in I \asymp f H$ for some $x = (a, f(a) + j) \in A \asymp f J$. Then $a^m \in I$. Since I is an $(m, 1)$-closed ideal of A, we have $a \in I$ and so $a^i \in I$ for every positive integer $1 \leq i \leq m$. Let $h = \sum_{i=1}^{n-1} \binom{n}{i} f(a^i)j^{n-i} + j^n$. Observe that for every positive integer $i \leq n - 1$, we have $f(a^i)j^{n-i} \in H$ (as $(a, f(a) + j)^m \in I \asymp f H$). Since $j^n \in H$ for every $j \in J$, by using the Binomial theorem, it follows that $x^n = (a^n, f(a^n) + h) \in I \asymp f H$. Hence, $I \asymp f H$ is an (m, n)-closed ideal of $A \asymp f J$, as desired. \hfill \Box

The following corollary is a consequence of Proposition 2.8.

Corollary 2.9. Let $f : A \to B$ be a homomorphism of rings and J be an ideal of B. Assume that I is a $(m, 1)$-closed ideal of A and $x^n \in (f(I)B)J$ for every $x \in J$, with $n \geq 1$ a positive integer. Then the extension ideal of I to $A \asymp f J$, denoted by $I^c := I \asymp f (f(I)B)J$ is an (m, n)-closed ideal of $A \asymp f J$, for all positive integers m and n, with $1 \leq n < m$.

Proof. Applying Proposition 2.8 with $H := (f(I)B)J$, it follows that I^c is an (m, n)-closed ideal of $A \asymp f J$, as desired. \hfill \Box

Next, we show how one may use Proposition 2.8 to construct original example of (m, n)-closed ideals of the form $I \asymp f H$ of amalgamation $A \asymp f J$.

Example 2.10. Let A be a ring, E be an A-module and $B := A \otimes E$ be the trivial ring extension of A by E. Let I be an ideal of A and F be a submodule of E such that $IE \subseteq F$, and $J := I \otimes E$ be an ideal of B. Consider the ring homomorphism $f : A \hookrightarrow B$ defined by $f(a) = (a, 0)$. Notice that $H := I \otimes F$ is an ideal of $f(A) + J = A \otimes 0 + I \otimes E = (A + I) \otimes E = A \otimes E$ and
Let n be a positive integer and let $(i, e) \in J$. Clearly, $(i, e)^n = (i^n, m^{n-1}e) \in H$. By Proposition 2.8, we conclude that I is an $(m,1)$-closed ideal of A if and only if $I \trianglelefteq J$ is an (m, n)-closed ideal of $A \trianglelefteq J$ for every positive integer $1 \leq n < m$. (For instance, if I is a prime ideal of A, then $I \trianglelefteq J$ is an $(m,1)$-closed ideal of $A \trianglelefteq J$ for every positive integer $m \geq 1$. Therefore, $I \trianglelefteq J$ is a radical ideal of $A \trianglelefteq J$.)

Now, we give a characterization of (m,n)-closed ideals of the form $I \trianglelefteq J$ in the case (A, M) is local and J an ideal of B such that $f(M)J = 0$.

Theorem 2.11. Let A be a local ring with maximal ideal M, $f : A \to B$ be a ring homomorphism and J be an ideal of B such that $f(M)J = 0$. Let I be a proper ideal of A. Consider an ideal H of $f(A) + J$ such that $H \subset J$ and $x^n \in H$ for every $x \in J$. Then the following statements are equivalent:

1. $I \trianglelefteq J$ is an (m,n)-closed ideal of $A \trianglelefteq J$ for every positive integer $1 \leq n < m$.
2. I is an (m,n)-closed ideal of A for every positive integer $1 \leq n < m$.

Proof. Notice that $I \trianglelefteq J$ is an ideal of $A \trianglelefteq J$ since $f(I)J = 0 \subset H$.

(1) \Rightarrow (2) Assume that $I \trianglelefteq J$ is an (m,n)-closed ideal of $A \trianglelefteq J$ for every positive integer $1 \leq n < m$. Then by Remark 2.6, it follows that I is an (m,n)-closed ideal of A for every positive integer $1 \leq n < m$.

(2) \Rightarrow (1) Let $x = (a, f(a) + j) \in A \trianglelefteq J$ such that $x^n \in I \trianglelefteq J$. Then a^n is an element of I which is an (m,n)-closed ideal of A. Therefore, $a^n \in I$. Let $1 \leq l \leq n - 1$. Two cases are then possible:

Case 1: $a^l \in M$. Then $(a^l)\gamma^{n-l} = 0$ and so by using the Binomial theorem, it follows that $(a, f(a) + j)^n = (a^n, f(a^n) + j^n) \in I \trianglelefteq J$.

Case 2: $a^l \notin M$. Then a^n is invertible in A and so $a^n \in I$ is invertible, which is a contradiction since I is a proper ideal of A. So, $x^n = (a^n, (f(a) + j)^n) \in I \trianglelefteq J$. Hence, in all cases, $I \trianglelefteq J$ is an (m,n)-closed ideal of $A \trianglelefteq J$.

Before giving an explicit example of Theorem 2.11, we establish the following lemma which will be useful.

Lemma 2.12. Let (A, M) be local ring such that $M^n = 0$, where n is a positive integer. Then every ideal of A is an n-absorbing ideal of A. In particular, every proper ideal of A is an (m,n)-ideal of A, for every positive integer $1 \leq n < m$.

3. When every proper ideal of amalgamation of $A \triangleleft J$ is an (m,n)-closed ideal of A

Proof. Let I be a proper ideal of A. Let $a_1, \ldots, a_{n+1} \in A$ such that $\prod_{i=1}^{n+1} a_i \in I$. Two cases are then possible:

Case 1: There exists $j \in \{1, \ldots, n+1\}$ such that $a_j \notin M$. Then a_j is invertible and so it follows that $\prod_{i=1, i \neq j}^{n+1} a_i \in I$, as desired.

Case 2: For every $j \in \{1, \ldots, n+1\}$, $a_j \in M$. So, for every $j \in \{1, \ldots, n+1\}$, a_j is not invertible in A. Therefore, $\prod_{i=1}^{n} a_i = 0 \in I$. Thus in all cases, I is an n-absorbing ideal of A. In particular, I is an (m,n)-closed ideal of A. □

Next, we show how one may use Theorem 2.11 and Lemma 2.12 to construct original examples of (m,n)-closed ideals of the form $I \triangleright J \ H$.

Example 2.13. Let (A, M) be a local ring with a maximal ideal M such that $M^n = 0$, and E be an $\frac{A}{M}$-vector space. Consider the ring homomorphism $f : A \rightarrow B := A \times E$ defined by $f(a) = (a, 0)$, for every $a \in A$. Let $J := M \times E$ be an ideal of B and $H = I \times E$ be an ideal of $f(A) + J$, where $I \subseteq M$ is an ideal A with m and n two positive integers such that $2 \leq n \leq m$. One can easily check that $J^n = 0$ and for every ideal I of A, we get $f(I)J = (I \times E)(M \times E) \subseteq H$, and $J^n \subseteq H$. Hence, by Theorem 2.11, the ideal $I \triangleright J$ is an (m,n)-closed ideal of $A \triangleright J$ since I is an n-absorbing ideal of A (by Lemma 2.12).

We denote by $\text{Char}(R)$, the characteristic of a ring R. We close this section by giving a characterization of (m,n)-closed ideals of the form $I \triangleright J$ under the condition “$\text{Char}(f(A) + J) = n$”.

Proposition 2.14. Let $f : A \rightarrow B$ be a ring homomorphism and J be an ideal of B. Assume that $\text{char}(f(A) + J) = n$. Let H be an ideal of $f(A) + J$ such that $f(I)J \subset H \subset J$ and for every $j \in J$, $j^n \in H$. Then $I \triangleright J$ is an (m,n)-closed ideal of $A \triangleright J$ if and only if I is an (m,n)-closed ideal of A, for all positive integer $m \geq n$.

Proof. Assume that I is an (m,n)-closed ideal of A, for all positive integer $m \geq n$.

Let $(a, f(a) + j)^m \in I \triangleright J$ for every $(a, f(a) + j) \in A \triangleright J$. From assumption, it follows that $a^n \in I$. Using the fact that $\text{char}(f(A) + J) = n$ and $j^n \in H$, then $(a, f(a) + j)^n = (a^n, f(a^n) + j^n) \in I \triangleright J$. Hence, $I \triangleright J$ is an (m,n)-closed ideal of $A \triangleright J$. The converse is trivial via Remark 2.6. □

3. When every proper ideal of amalgamation $A \triangleright J$ is an (m,n)-closed ideal?

The following result gives a characterization about when every proper ideal of the amalgamation $A \triangleright J$ is an (m,n)-closed ideal, for some integers $1 \leq n < m$.
Theorem 3.1. Assume that $f^{-1}(J)$ is a radical ideal of A. Then every proper ideal of $A \triangleright J$ is an (m, n)-closed ideal of $A \triangleright J$ if and only if the following statements hold:

(i) Every proper ideal of A is an (m, n)-closed ideal of A.

(ii) Every proper ideal of $f(A) + J$ is an (m, n)-closed ideal of $f(A) + J$.

The proof of this theorem requires the following lemmas.

Lemma 3.2. [2, Theorem 2.14] Let R be a commutative ring and m and n integers with $1 \leq n < m$. Then the following statements are equivalent.

1. Every proper ideal of R is an (m, n)-closed ideal of R.
2. $\dim(R) = 0$ and $w^n = 0$ for every $w \in \text{Nil}(R)$.

Lemma 3.3. [6, Lemma 2.10] Let $f : A \to B$ be a ring homomorphism and J be an ideal of B. Then:

\[
\text{Nil}(A \triangleright J) := \{(a, f(a) + j)/a \in \text{Nil}(A), j \in \text{Nil}(B) \cap J\}.
\]

Lemma 3.4. [10, Proposition 4.1] Let $f : A \to B$ be a ring homomorphism and J be an ideal of B. Then: $\dim(A \triangleright J) = \text{Max}(\dim(A), \dim(f(A) + J))$.

Proof of Theorem 3.1: Assume that every proper ideal of $A \triangleright J$ is an (m, n)-closed ideal of $A \triangleright J$.

(i) By Lemmas 3.2 and 3.4, it follows that $\dim(A \triangleright J) = \text{Max}(\dim(A), \dim(f(A) + J)) = 0$. So, $\dim(A) = 0$. Next, let $a \in \text{Nil}(A)$. Then $(a, f(a)) \in \text{Nil}(A \triangleright J)$. Using the fact that every proper ideal of $A \triangleright J$ is an (m, n)-closed ideal of $A \triangleright J$, then by Lemma 3.2, it follows that $(a, f(a))^n = (0, 0)$. Therefore, $a^n = 0$. Hence, every proper ideal of A is an (m, n)-closed ideal of A.

(ii) With similar argument as (i) above, it follows that $\dim(f(A) + J) = 0$. Let $f(a) + j \in \text{Nil}(f(A) + J)$. Clearly, $f(a)^k \in J$ for some integer $k \geq 1$. So, $a^k \in f^{-1}(J)$ which is radical. Therefore, $a \in f^{-1}(J)$. Consequently, $f(a) + j \in J$.

By Lemma 3.3, $(0, f(a) + j) \in \text{Nil}(A \triangleright J)$. Hence, $(0, f(a) + j)^n = (0, 0)$ and so $(f(a) + j)^n = 0$. From Lemma 3.2, it follows that every proper ideal of $f(A) + J$ is an (m, n)-closed ideal of $f(A) + J$. Conversely, assume that every proper ideal of A (resp., $f(A) + J$) is an (m, n)-closed ideal of A (resp., $f(A) + J$). We claim that every proper ideal of $A \triangleright J$ is an (m, n)-closed ideal of $A \triangleright J$. Indeed, by Lemma 3.4, $\dim(A \triangleright J) = \text{Max}(\dim(A), \dim(f(A) + J)) = 0$ since $\dim(A) = \dim(f(A) + J) = 0$. It remains to show that for all $(a, f(a) + j) \in \text{Nil}(A \triangleright J)$, $(a, f(a) + j)^n = 0$. Let $(a, f(a) + j) \in \text{Nil}(A \triangleright J)$. Then $a \in \text{Nil}(A)$ and $f(a) + j \in \text{Nil}(f(A) + J)$. By Lemma 3.2, it follows that $a^n = 0$ and $(f(a) + j)^n = 0$.

\[
\text{Nil}(A \triangleright J) := \{(a, f(a) + j)/a \in \text{Nil}(A), j \in \text{Nil}(B) \cap J\}.
\]

\[
\text{Nil}(A \triangleright J) := \{(a, f(a) + j)/a \in \text{Nil}(A), j \in \text{Nil}(B) \cap J\}.
\]
Therefore, \((a, f(a) + j)^n = 0\). Hence, every proper ideal of \(A \bowtie^f J\) is an \((m, n)\)-closed ideal of \(A \bowtie^f J\), as desired. \(\square\)

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.5. Let \(f : A \rightarrow B\) be a ring homomorphism and \(J\) be an ideal of \(B\). Then the following statements hold:

1. Every proper ideal of \(A \bowtie^f J\) is a radical ideal of \(A \bowtie^f J\) if and only if the following statements hold:
 \begin{itemize}
 \item[(i)] Every proper ideal of \(A\) is a radical ideal of \(A\).
 \item[(ii)] Every proper ideal of \(f(A) + J\) is a radical ideal of \(f(A) + J\).
 \end{itemize}

2. Assume that \(f^{-1}(J)\) is a radical ideal of \(A\). Then every proper ideal of \(A \bowtie^f J\) is a semi-\(n\)-absorbing ideal of \(A \bowtie^f J\) if and only if the following statements hold:
 \begin{itemize}
 \item[(i)] Every proper ideal of \(A\) is a semi-\(n\)-absorbing ideal of \(A\).
 \item[(ii)] Every proper ideal of \(f(A) + J\) is a semi-\(n\)-absorbing ideal of \(f(A) + J\).
 \end{itemize}

Remark 3.6. Observe that the assumption “\(f^{-1}(J)\) is a radical ideal of \(A\)” is omitted in Corollary 3.5(1). Indeed, if every proper ideal of \(A \bowtie^f J\) is a radical ideal of \(A \bowtie^f J\), then \(f^{-1}(J) \times \{0\}\) is a radical ideal of \(A \bowtie^f J\) and so \(f^{-1}(J) \simeq f^{-1}(J) \times \{0\}\) is also a radical ideal of \(A\). Conversely if the statements (i) and (ii) hold, then \(f^{-1}(J)\) is radical ideal of \(A\).

Theorem 3.1 and Corollary 3.5 cover the special case of duplications, as recorded below.

Corollary 3.7. Let \(A\) be a ring and \(I\) be an ideal of \(A\). Then the following statements hold:

1. Assume that \(I\) is a radical ideal of \(A\). Then every proper ideal of \(A \bowtie I\) is an \((m, n)\)-closed ideal of \(A \bowtie I\) if and only every proper ideal of \(A\) is an \((m, n)\)-closed ideal of \(A\).

2. Every proper ideal of \(A \bowtie I\) is a radical ideal of \(A \bowtie I\) if and only every proper ideal of \(A\) is a radical ideal of \(A\).

3. Assume that \(I\) is a radical ideal of \(A\). Then every proper ideal of \(A \bowtie I\) is a semi-\(n\)-absorbing ideal of \(A \bowtie I\) if and only every proper ideal of \(A\) is a semi-\(n\)-absorbing ideal of \(A\).

Theorem 3.1 recovers a known result for trivial ring extensions which is [4, Theorem 6.12].
Corollary 3.8. Let A be an integral domain with quotient field K, E be a K-vector space, and $B := A \otimes E$ be the trivial ring extension of A by E. Then the following statements are equivalent:

1. Every proper ideal of A is an (m,n)-closed ideal of A for some integers $1 \leq n < m$.
2. Every proper ideal of B is an (m,n)-closed ideal of B for some integers $1 \leq n < m$.

Proof. Consider the injective ring homomorphism $f : A \hookrightarrow B$ defined by $f(a) = (a,0)$, for every $a \in A$, $J := 0 \otimes E$ is an ideal of B. Clearly, $f^{-1}(J) = 0$. Therefore, from [9, Proposition 5.1 (3)], $f(A) + J = A \otimes 0 + 0 \otimes E = A \otimes E = B \simeq A \otimes f^0 J$. Since A is an integral domain, $f^{-1}(J) = 0$ is a radical ideal of A. Hence, by Theorem 3.1, we have the desired result. □

As a consequence of Theorem 3.1, we give a complete characterization of those $D + M$ rings such that every proper ideal is (m,n)-closed.

Corollary 3.9. Let M be a maximal ideal of an integral domain T, and D be a subring of T such that $D \cap M = \{0\}$. Then every proper ideal of $D + M$ is an (m,n)-closed ideal of $D + M$ if and only if every proper ideal of D is an (m,n)-closed ideal of D for some integers $1 \leq n < m$.

Proof. Let $f : D \rightarrow T$ be the natural embedding and $J := M$ is the maximal ideal of T. Since $f^{-1}(J) = D \cap M = \{0\}$ (which is radical ideal of D, as 0 is prime ideal of D), it is easy to see that $D + M \simeq D \otimes f^0 M$. Therefore, by Theorem 3.1, it follows that every proper ideal of $D + M$ is an (m,n)-closed ideal of $D + M$ if and only if every proper ideal of $D \otimes f^0 M$ is a (m,n)-closed ideal if and only if every proper ideal of D is an (m,n)-closed ideal of D, for some integers $1 \leq n < m$. □

As an application Theorem 3.1, we give a new characterization for the amalgamation $A \otimes f^0 J$ to be von Neumann regular. Recall that a ring R is von Neumann regular if and only if every proper ideal of R is a radical ideal [2, Theorem 2.13 (2)]. A combination of this fact and Corollary 3.5(1) establishes the transfer of von Neumann regular property to the amalgamation $A \otimes f^0 J$.

Corollary 3.10. Let $f : A \rightarrow B$ be a ring homomorphism and J be an ideal of B. Then $A \otimes f^0 J$ is von Neumann regular if and only if A and $f(A) + J$ are von Neumann regular.
The next result is an application of Corollary 3.10 on the transfer of π-regular property to the amalgamation. Recall that a ring R is π-regular if and only if $R/\text{Nil}(R)$ is von Neumann regular.

Corollary 3.11. Let $f : A \to B$ be a ring homomorphism and J be an ideal of B. Then $A \bowtie f J$ is π-regular if and only if A and $f(A) + J$ are π-regular.

Proof. Set $\overline{A} = A/\text{Nil}(A)$, $\overline{B} = B/\text{Nil}(B)$, $p : B \to \overline{B}$ the canonical projection and $\overline{J} = p(J)$ and let $\overline{f} : \overline{A} \to \overline{B}$, defined by $\overline{f}(\overline{x}) = \overline{f(x)}$. Observe that \overline{f} is well defined. From [6, Proof of Theorem 2.9], we get $A \bowtie \overline{f} J/\text{Nil}(A \bowtie \overline{f} J) \simeq \overline{A} \bowtie \overline{J}$. Consequently, $A \bowtie f J$ is a π-regular ring if and only if $\overline{A} \bowtie \overline{f} \overline{J}$ is von Neumann regular if and only if \overline{A} and $\overline{f(A)} + \overline{J}$ are von Neumann regular (by Corollary 3.10). Hence, the conclusion is straightforward. \hfill \square

As another application of Theorem 3.1, we get necessary and sufficient conditions for an amalgamation to be semisimple.

Corollary 3.12. Let $f : A \to B$ be a ring homomorphism and J be an ideal of B. Then $A \bowtie f J$ is semisimple if and only if A and $f(A) + J$ are semisimple.

Proof. It is well known that semisimple rings collapse with von Neumann regular rings that are Noetherian. A combination of this fact with Corollary 3.10 and [9, Proposition 5.6] (on the transfer of the Noetherian property) leads to the conclusion. \hfill \square

Acknowledgement. The authors would like to express their sincere thanks to the anonymous referee for his/her helpful suggestions and comments.

References

Mohammed Issoual and Najib Mahdou
Laboratory of Modeling and Mathematical Structures
Department of Mathematics
Faculty of Science and Technology of Fez
Box 2202, University S.M. Ben Abdellah Fez, Morocco
e-mails: issoual2@yahoo.fr (M. Issoual)
mahdou@hotmail.com (N. Mahdou)

Moutu Abdou Salam Moutui (Corresponding Author)
Department of Mathematics
College of Science
King Faisal University
P.O. Box 400, Al-Ahsaa 31982, Saudi Arabia
e-mail: mmoutui@kfu.edu.sa