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Abstract. We establish that treed domains are well behaved in Zafrullah’s

sense and have locally polynomial depth 1. For the DW-domains R of Mi-

mouni, such that I−1 6= R for each nontrivial finitely generated ideal I of R,

likewise results are proven. We study some special treed domains and show in

particular that the Nagata ring of an integral domain R is (locally) divided if

and only if R is (locally) divided and quasi-Prüfer. We show that the small

finitistic dimension of a local treed domain is 1 and calculate the small finitistic

dimension of localizations of polynomial rings over a treed domain.
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1. Introduction

A treed domain is an integral domain R, whose incomparable prime ideals are

coprime. In other words, the spectrum Spec(R), endowed with the natural partial

ordering, is a tree. Going-down domains, (locally) divided domains, and i-domains

are treed domains (see [3] and [27] for information on these classes of domains,

mainly investigated by Dobbs and Papick). Note also that Olberding proved that

stable domains are treed [26, Proposition 4.11]. This paper is devoted to the study

of treed domains. We give new properties of these domains, especially about their

grades and homological properties. We also examine how the treed hypothesis acts

on some classes of domains. In order to explain what our aims are, we introduce

some notation. Integral domains considered in this paper are not fields and local

rings may not be Noetherian. We denote by If (R) the set of all finitely generated

ideals I 6= 0 of a ring R and Max(R) is the set of all its maximal ideals. If gr(I,M)

is the classical grade of an ideal I of a ring R on an R-module M , we set gr(I) :=

gr(I, R) and define the depth of a ring R by depth(R) := sup[gr(m) | m ∈ Max(R)].

Dobbs proved recently that depth(Rp) = 1 for each 0 6= p ∈ Spec(R), where R is
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a treed domain [4]. Dobbs’s result may be deduced from a paper by Huckaba and

Papick [17, Lemma 2.1 and Proposition 2.5]. Adapting Hochster’s approach to a

theory of grade [14], Northcott defined the polynomial (or true) grade of an ideal I 6=
R on an R-module M as Gr(I,M) := limn→∞ gr(I[X1, . . . , Xn],M [X1, . . . , Xn])

[25, Chapter 5]. We set Gr(I) := Gr(I, R). Hochster’s equivalent definition is

Gr(I) = sup gr(IS), where S runs over the class of faithfully flat R-algebras S. We

define the polynomial depth of a ring R as p-depth(R) := sup[Gr(m) | m ∈ Max(R)].

Hence, in case R is an integral domain, p-depth(R) = 1 if and only if Gr(m) = 1

for each m ∈ Max(R). Sakaguchi observed that p-depth(V ) = 1, for a valuation

domain V [33, Corollary 5.6]. In this introduction, we only give a sketch of the

paper and refer the reader to the next sections for more information on definitions.

The aim of Section 2 is to proving that a treed domain has polynomial depth 1 (see

Theorem 2.4). We also show that a treed domain is well behaved. In Section 3, we

consider the condition (†), which implies that an integral domain has polynomial

depth 1. This condition is closely linked to Nagata rings and is verified by treed

domains. Theorem 3.4 asserts that this condition on an integral domain R is

equivalent to I−1 6= R for each I ∈ If (R) \ {R}. In other words, R is a DW-

domain of Mimouni [23]. In Section 4 we examine some special treed domains. The

main result is Theorem 4.2, which states that the Nagata ring R(X) of an integral

domain R is (locally) divided if and only if R is quasi-Prüfer and (locally) divided.

In Section 5, we show that the small finitistic dimension of a local treed domain is 1

(Theorem 5.2). We thus recover a result of S. Glaz in case R is a Gaussian domain:

a Gaussian ring R is such that a simplified content formula holds (see [12]). If R

is a coherent Gaussian ring, then its small finitistic dimension is ≤ 1 [12, Theorem

3.2]. It is enough to recall that R is a Gaussian domain if and only if R is Prüfer

[12, Introduction]. We also compute the small finitistic dimension of local rings of

polynomial rings over a treed domain.

2. Properties of treed domains

We use some sets of prime ideals, linked to polynomial grade 1. We denote

by Ass(M) the set of all weak Bourbaki associated prime ideals of an R-module

M and by Att(M) the set of all Northcott attached prime ideals of M (see [25,

p.178], [19] and [29, Section 5]). For an integral domain R, we denote by K its

quotient field and set k(p) = Rp/pRp for p ∈ Spec(R). We introduce Ass(K/R)

and Att(K/R). A prime ideal p of R belongs to Ass(K/R) if and only if p is

a minimal prime ideal of (a) : (b), for some a, b ∈ R such that a 6= 0; so that
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Ass(K/R) = ∪ [Ass(R/(a)) | 0 6= a ∈ R]. Also, p belongs to Att(K/R) if and only

if for each I ∈ If (R) with I ⊆ p, there are some a, b ∈ R with a 6= 0, such that

I ⊆ (a) : (b) ⊆ p. We set Att∗(K/R) := ∪ [Att(R/(a)) | 0 6= a ∈ R]. Hence,

p ∈ Att∗(K/R) if and only if there is some 0 6= a ∈ R, such that for each I ∈ If (R)

with I ⊆ p, there is some b ∈ R, such that I ⊆ (a) : (b) ⊆ p. Then we have

Ass(K/R) ⊆ Att∗(K/R) ⊆ Att(K/R) (see [29, Section 5] and [30, Definition 1.4],

where Ass(K/R) and Att∗(K/R) appear under a different name). Moreover, each

nonzero prime ideal of R is a set union of some elements of Ass(K/R), because a

minimal prime ideal of a nonzero principal ideal of R belongs to Ass(K/R).

We gather below some results stated in our paper [30]. Many authors have used t-

ideals for characterizing some domains properties. The t-operation associated to an

integral domain R is as follows. For a nonzero ideal I of R, set It := ∪[(J−1)−1 | J ∈
If (R), J ⊆ I]. Then I is dubbed a t-ideal if I = It. A prime ideal p 6= 0 of a domain

R is called well behaved by Zafrullah if p and pRp are t-ideals [35] and R is well

behaved if each nonzero prime ideal is well behaved. As usual D(I) is the set of

all prime ideals p of a ring R, such that I 6⊂ p and Spec(R) is a topological space,

whose open subsets are the D(I)’s, where I is an ideal of R.

Proposition 2.1. Let R be an integral domain and 0 6= p ∈ Spec(R). Then p-

depth(Rp) = 1 is equivalent to p ∈ Att∗(K/R). The elements of Att∗(K/R) are

prime t-ideals. If I is an ideal of R, then Ass(K/R) ⊆ D(I) ⇔ Ass(K/R) ⊆ D(It),

and Ass can be replaced with Att∗.

Proof. Use [30, Proposition 1.23 and Theorem 1.5] for the first part. The second

part is an easy consequence of the first. ¤

Proposition 2.2. The set of all well behaved prime ideals of an integral domain

R is Att(K/R).

Proof. It is enough to translate [35, Proposition 1.1]. ¤

Kang stated the next result for a local treed domain [20, Theorem 3.19].

Theorem 2.3. A treed domain R is well behaved.

Proof. We first observe that an ideal, which is a directed set union of t-ideals, is

itself a t-ideal. To complete the proof, it is enough to combine the following facts.

A nonzero prime ideal of a treed domain is a directed set union of minimal prime

ideals of principal ideals. Moreover, these minimal prime ideals are t-ideals, because

the elements of Att∗(K/R) are t-ideals by Proposition 2.1. ¤
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We now generalize the above mentioned result of Dobbs [4].

Theorem 2.4. Each prime ideal p 6= 0 of a treed domain R verifies p-depth(Rp) =

1; so that p-depth(R) = 1 and depth(R) = 1. Moreover, Att∗(K/R) = Att(K/R) =

Spec(R) \ {0} is compact.

Proof. Let a be a nonzero nonunit element of R, then Gr(Ra) = 1, because the

polynomial grade of an ideal is less than the cardinal of a system of generators of

the ideal [25, 5.5, Theorem 13]. Let p 6= 0 be a prime ideal of R, then pRp is the set

union of linearly ordered prime ideals pi such that pi =
√

(xi) for some xi ∈ Rp,

because p is the set union of some minimal prime ideals of principal ideals and Rp

is treed. Now Gr(I) = Gr(
√

I) for any ideal I of a ring R by [25, 5.5, Theorem 12].

Arguing as in the proof of [25, 5.5, Theorem 11], we get that Gr(I) = sup Gr(Ji),

if I is the set union of a directed set of ideals {Ji}. These last facts combine to

yield that Gr(pRp) = 1. Then observing that (regular) R-sequences are preserved

by flat extensions, we get that Gr(I) ≤ Gr(IS) if R → S is a flat ring morphism

and I an ideal of R. It follows that p-depth(R) = 1, because R → Rp is flat.

To complete the proof, use Proposition 2.1. Therefore, if R is a treed domain,

Att∗(K/R) = Spec(R) \ {0} holds. ¤

The preceding theorems are recovered in the more general setting of Section 3.

Remark 2.5. By the above proof, Gr(I) ≤ Gr(IS) if R → S is a flat ring mor-

phism and I an ideal of R. Moreover, equality holds if R → S is faithfully flat by

[25, Remark, p.63]. It follows easily that the polynomial grade is preserved by a

faithfully flat morphism R → S, such that Max(S) = {mS | m ∈ Max(R)}. But

this is false for arbitrary faithfully flat morphisms like R → R[X] (see Remark 5.5).

The following ideal theoretic characterization of treed rings is reminiscent of the

theory of Prüfer domains.

Proposition 2.6. Let R be a ring. The following statements are equivalent:

(1) R is treed;

(2) I ∩ (J + K) = (I ∩ J) + (I ∩K) for each ideal I and each pair of radical

ideals J, K of R;

(3) I ∩ (P + Q) = (I ∩ P ) + (I ∩ Q) for each ideal I and each pair of prime

ideals P, Q of R.

Proof. Assume that R is treed. In order to show that (2) holds, we can assume

that R is local. In that case, J and K are comparable prime ideals. Then the
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verification of the equation is routine. Conversely, suppose that (3) holds. Let P

and Q be non comparable prime ideals of R and pick some a ∈ P \ Q and some

b ∈ Q \ P . Set I = (a + b), we have I ∩ (P + Q) = (I ∩ P ) + (I ∩ Q) and a + b

belongs to (I ∩ P ) + (I ∩Q); so that a + b = u(a + b) + v(a + b), where u ∈ P and

v ∈ Q, because a + b /∈ P and a + b /∈ Q. Hence 1− u ∈ Q implies that 1 ∈ P + Q

and (1) is proved. ¤

A ring is called a Baer ring (respectively, a weak Baer ring) if the annihilator

of each of its ideals (respectively, principal ideals) is generated by an idempotent.

We say that a ring is a strong (weak) Baer ring if each of its reduced factor rings

is a (weak) Baer ring. We proved that a ring R is strong Baer if and only if

(I : J) + (J : I) = R for all pairs of radical ideals I, J of R [29, Proposition 4.25].

Such a ring is treed. Moreover, when R is quasi-Noetherian (each ideal of R has

finitely many minimal prime ideals), then R is treed if and only if R is strong (weak)

Baer [29, Théorème 4.28].

3. Integral domains with polynomial depth 1

We intend to give criteria for an integral domain to have polynomial depth 1.

We need some notation. Let R be a ring and Z ⊆ Spec(R). The generalization Z↓

of Z is {p ∈ Spec(R) | p ⊆ q for some q ∈ Z}. We set U(Z) = ∪ [p | p ∈ Z] and

Z[X] = {p[X] | p ∈ Z} ⊆ Spec(R[X]), where X is an indeterminate over R.

We will consider the Nagata ring R(X) of an integral domain R; that is the

localization of R[X], with respect to the set complement N of U(Max(R)[X]). It

is well known that f(X) ∈ N ⇔ c(f(X)) = R, where c(f(X)) is the content ideal

of f(X). We also consider the localization R{X} of R[X], with respect to the set

complement U of U(Ass(K/R)[X]). It was introduced by Kang under an equivalent

definition. The next result may be found in [30, Definition 2.1, Theorem 2.2].

Proposition 3.1. Let R be an integral domain, then f(X) ∈ U ⇔ c(f(X))−1 = R

and U(Ass(K/R)[X]) = U(Att∗(K/R)[X]). Then, R → R(X) → R{X} is factored

by injective flat morphisms, the first one being faithfully flat. Moreover, R(X) =

R{X} if and only if N = U .

The technical condition N = U is the key of our next results.

Definition 3.2. We say that an integral domain R has condition (†) if N = U ; or

equivalently,

(†) : I−1 = R ⇔ I = R for each I ∈ If (R).
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Mimouni has recently introduced DW-domains R, in which the w-operation is

trivial [23]. Then [23, Proposition 2.2] shows that the condition (†) holds on R if

and only if R is a DW-domain. We refer the reader to Mimouni’s paper for more

information on the w-operation and DW-domains.

We need the following lemma, where T(I) := ∪ [R :K In | n ∈ N] is the (Nagata)

ideal transform of an ideal I of an integral domain R. We recall that an ideal I of

an integral domain R is called t-finite if It = Jt for some J ∈ If (R).

Lemma 3.3. Let R be an integral domain and I an ideal of R.

(1) Ass(K/R) = Att∗(K/R) = Att(K/R) if Ass(K/R) is compact.

(2) Ass(K/R) ⊆ D(I) (respectively; Att∗(K/R) ⊆ D(I)) ⇒ I−1 = R.

(3) I−1 = R ⇒ Att(K/R) ⊆ D(I) if I is t-finite.

(4) If Att∗(K/R) is compact (e.g. either R is treed or Ass(K/R) is compact),

then Att∗(K/R) ⊆ D(I) implies It = R.

(5) If Att∗(K/R) is compact, the prime t-ideals of R are in Att∗(K/R)↓.

(6) T(I) = R ⇔ Ass(K/R) ⊆ D(I) ⇔ Att∗(K/R) ⊆ D(I), when I is t-finite.

Proof. (1) is a consequence of [29, Proposition 5.5]. We show (2). It is enough to

suppose that Ass(K/R) ⊆ D(I). In that case a/b ∈ I−1 ⇔ I ⊆ (b) : (a) implies

(b) : (a) = R; so that I−1 = R. Assume that the hypothesis of (3) holds. If I is

t-finite, there is some J ⊆ I in If (R) such that I−1 = J−1 by [8, p.324]. Suppose

that J ⊆ P for some P ∈ Att(K/R). Then by [29, p.712], there is some k ∈ K,

whose class in K/R is nonzero, and such that Jk ⊆ R; whence k ∈ J−1 = R, a

contradiction. It follows that Att(K/R) ⊆ D(J) ⊆ D(I). Under the hypotheses

of (4), there is some finitely generated ideal J ⊆ I, such that Att∗(K/R) ⊆ D(J);

so that J−1 = R by (2). Then It = R, because (J−1)−1 ⊆ It. Then (5) is a

consequence of (4). We show (6). To begin with, assume that I ∈ If (R) and denote

by k̄ an arbitrary element of K/R. Then T(I) 6= R is equivalent to the existence of

some k̄ 6= 0, such that Ink̄ = 0, which in turn is equivalent to Ass(K/R)∩V(I) 6= ∅
by [29, Définition 5.1(3)]. We can replace Ass with Att∗, because Ass(K/R) ⊆
Att∗(K/R) ⊆ Att(K/R) and Ass(K/R)∩V(I) 6= ∅ ⇔ Att(K/R)∩V(I) 6= ∅ by [29,

Proposition 5.2]. Now suppose that I is t-finite; so that It = Jt for some J ∈ If (R).

Then we have T(I) = T(It) for each ideal I by [5, Proposition 3.4] and [5, Proof of

Corollary 3.5]. To conclude, it is enough to use the end of Proposition 2.1. ¤

We generalize some results of Huckaba and Papick on treed domains [28, Propo-

sition 3.3] and [17, Proposition 2.2]. Note that not all treed domains R have

Ass(K/R) compact. It is enough to consider a valuation ring (V, m), such that
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m = ∪[p | p ⊂ m] (see [28, p.223]). But Att∗(K/R) is compact if R is a treed do-

main. The above mentioned authors introduced for an integral domain R the con-

dition (†) of Definition 3.2, which involves that depth(R) = 1 [17, Lemma 2.1]. We

show that a germane result is true when depth is replaced with p-depth. A subset Z

of Spec(R) is called dilated (respectively, fathomable) if for any ideal (respectively,

finitely generated ideal) I of R, the following condition holds: I ⊆ U(Z) ⇒ I ⊆ P

for some P ∈ Z [29]. To verify that Z is dilated, it is enough to check that the

defining condition holds for all prime ideals I.

Theorem 3.4. The following statements are equivalent for an integral domain R:

(1) R verifies condition (†) (i.e. R is a DW-domain);

(2) Ass(K/R) (respectively, Att∗(K/R)) is fathomable;

(3) T(I) 6= R for each I ∈ If (R) \ {R};
(4) I−1 6= R for each I ∈ If (R) \ {R}.

If one of the above statements holds, R has polynomial depth 1.

Proof. In view of Proposition 3.1 and Lemma 3.3, it is enough to observe that

each statement amounts to saying that Att∗(K/R)∩V(I) 6= ∅ for each I ∈ If (R) \
{R} and that each maximal ideal is the set union of some elements of Ass(K/R)

(respectively, Att∗(K/R)) (see the end of the first paragraph of Section 2). Assume

that the condition (†) holds and suppose that p-depth(R) ≥ 2. There is some

maximal ideal m of R such that Gr(m) = Gr(m[X]) ≥ 2. We deduce from [34,

Proposition 3.4] that gr(m[X]) ≥ 2. Therefore, there is an R[X]-sequence a, b ∈
m[X]. Then a+bXn is contained in m[X], for each integer n > 0; so that a+bXn ∈
p[X] for some p ∈ Att∗(K/R). Pick an integer n such that the coefficients of

a and b are the coefficients of a + bXn. In that case J := (a, b) ⊆ p[X]. We

claim that p[X] ∈ Att∗(K(X)/R[X]). Indeed, there is some nonzero r ∈ R such

that p ∈ Att(R/Rr). The claim follows by [19, Theorem 2.5], because {p[X] | p ∈
Att(R/Rr)} = Att(R[X]/rR[X]). We are lead to a contradiction by Lemma 3.3(3),

because J−1 = R[X] by [21, Exercise 1,p.102]. Therefore, R has p-depth 1. ¤

Remark 3.5. We give some examples of integral domain R, with p-depth(R) = 1.

Clearly, a treed domain verifies (†) and is therefore a DW-domain. But a DW-

domains is not necessarily treed. Consider the DW-domain R exhibited in [23,

Example 2.10]. Then R has a prime ideal P , whose height is 2, and RP is a Krull

domain. Since a treed Krull domain must have dimension one (see for instance the

study of treed PIT domains at the beginning of Section 4), R cannot be treed.
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(1) The condition (3) of Theorem 3.4 holds if T(m) 6= R for each m ∈ Max(R),

and in particular, if m : m 6= R (respectively, m−1 6= R) for each m ∈ Max(R). Note

also that the above conditions are verified if they are verified locally on Max(R).

In that case, p-depth(Rm) = 1 for each m ∈ Max(R).

(2) Assume that R is absolutely fathomable; that is, each subset of Spec(R) is

fathomable. Then the statements of Theorem 3.4 are locally verified. Therefore,

p-depth(RP ) = 1 for each nonzero P ∈ Spec(R). For instance, let C be a ring of

real continuous functions on a topological space E. Then each integral factor ring

of C has p-depth 1. This follows from [29, Exemple 3.20].

(3) Assume that R is an integral domain such that each compact open subset of

Spec(R) is affine. Then IT(I) = T(I) holds for each I ∈ If (R) [5, Theorem 4.4];

so that T(I) 6= R for I 6= R. This condition is verified if
√

I is locally the radical

of a nonzero principal ideal for each I ∈ If (R) [5, Corollary 4.6]. In particular, the

compact open subsets of the spectrum of a Prüfer domain are affine.

(4) Consider an integral domain R such that T(bc) = T(b) + T(c) for each

b, c ∈ R. In other words R is a T3-domain. Then a T3-domain has depth 1 [7,

Corollary 4.5.19]. We do not know whether any T3-domain has polynomial depth

1, but there is an answer for classes of integral domains described in (5) and (6).

(5) It is known that R = ∩[RP | P ∈ Ass(K/R)] [17, Theorem 2.0]. If this

representation is of finite character, then for each I ∈ If (R), there are some b, c ∈ I

such that T(I) = T(b, c) = Rb ∩Rc [18, Theorem 2.6]. This holds for a Noetherian

domain or a Krull domain. Consider a T3-domain, whose above representation is

of finite character. Then IT(I) = T(I) for each I ∈ If (R) by [7, Theorem 4.5.14].

Therefore, (3) can be applied and p-depth(R) = 1.

(6) Let (R, m) be a local domain, such that T(m) = K. Then R is a T1-domain

and p-depth(R) = 1. An example is given by [7, Example 4.5.10].

(7) Sakaguchi proved that p-depth(R) ≤ Dimv(R) for a local ring R, where

Dimv denotes the valuative dimension [32]. Therefore, a local integral domain

whose valuative dimension is 1 has p-depth 1. We can add that a local domain R

with valuative dimension 2, which is not Cohen-Macaulay in Sakaguchi’s sense (see

[33]), has p-depth 1.

Theorem 3.6. Let R be an integral domain. The following statements are equiv-

alent:

(1) Att∗(K/R) is compact and each element of Max(R) is a t-ideal;

(2) Max(R) ⊆ Att∗(K/R);
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(3) Att∗(K/R)[X] is fathomable (dilated) and each element of Max(R) is a

t-ideal;

(4) Rm has p-depth 1 for each m ∈ Max(R);

(5) R has condition (†) (i.e. R is a DW-domain) and Att∗(K/R) is compact;

(6) T(I) 6= R for each I ∈ If (R) \ {R} and Att∗(K/R) is compact;

(7) Rm verifies any of the above statements for each m ∈ Max(R).

If any of the above statements holds, the elements of Max(R) are well behaved.

Proof. (1) ⇒ (2) by Lemma 3.3(5). Now (2) ⇒ (1) by Proposition 2.1 and because

for S ⊆ Spec(R), the condition Max(R) ⊆ S implies that S is compact. Indeed,

an open subset of Spec(R), containing Max(R), is Spec(R). Then (1) ⇔ (3) by

[30, Lemma 2.18], in case we consider the dilated case. The fathomable case is a

consequence of the continuity of the map P 7→ P [X], because [29, Proposition 2.2]

asserts that a subset Z is dilated if and only Z is fathomable and compact. Then

(2) ⇔ (4) by Proposition 2.1. Now (3) ⇔ (5) ⇔ (6) by Theorem 3.4. ¤

Remark 3.7. A treed domain verifies the statement (4) of Theorem 3.6 by Theo-

rem 2.4. Actually, p-depth(Rp) = 1 holds for each prime ideal p 6= 0 of an integral

domain R if and only if Spec(R)\{0} = Att∗(K/R). Note that Papick proved for a

treed domain R that Ass(K/R) is compact if and only if Max(R) ⊆ Ass(K/R). In

that case we know that Ass(K/R) = Att∗(K/R). Note also that an integral domain

with Noetherian spectral space verifies condition (1) if and only if each maximal

ideal is a t-ideal. We can also consider Glaz-Vasconcelos’s H-domains. An integral

domain R is called an H-domain if each ideal J of R such that J−1 = R contains an

ideal I ∈ If (R) such that I−1 = R [11, Section 3]. Then an integral domain R is an

H-domain if and only if Ass(K/R) is compact and P−1 6= R for each P ∈ Ass(K/R)

[11, 3.2b]. It follows from Lemma 3.3(1) that condition (1) holds for an H-domain

if and only if each maximal ideal of R is a t-ideal, or equivalently, is a divisorial

ideal. This last point is a consequence of [15, Proposition 2.4], because a divisorial

ideal is a t-ideal.

4. Special treed domains

The treed condition, combined with another property of integral domains, is very

strong. Quasi-Prüfer domains are involved in the following. An integral domain R

is called quasi-Prüfer if, among many equivalent conditions, its integral closure R′

is a Prüfer domain [7, Section 6.5]. Going-down domains, locally divided domains,

and i-domains are treed domains, mainly studied by Dobbs and Papick (see [3] and
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[27]). We give only here some definitions. An integral domain R is called going-

down if each of its overrings S defines a going-down extension R ⊆ S, whereas R

is called an i-domain if each of its overrings S defines an i-extension R ⊆ S (a ring

morphism is called an i-morphism if its spectral map is injective). Equivalently,

R is an i-domain if and only if R is quasi-Prüfer and R ⊆ R′ is an i-extension.

An integral domain R is divided if each prime ideal is comparable to each ideal,

or equivalently, pRp = p for each p ∈ Spec(R). Incidentally, we observe that

the going-down property of a domain can be checked by considering some special

prime ideals. Kaplansky defines the going-down property of a ring morphism at

a prime ideal [21, Exercise 36, p.44]. It is easy to show that an integral domain

R is going-down if and only if R is treed and for each overring S, the extension

R ⊆ S has the going-down property at each minimal prime ideal P of a principal

ideal (respectively, at each P ∈ Ass(K/R), P ∈ Att∗(K/R)). In the same way, an

integral domain R is divided if and only if each minimal prime ideal p of a nonzero

principal ideal (respectively, each p ∈ Ass(K/R) or Att∗(K/R)) is divided. We first

give some examples showing that the treed condition is drastic.

An integral domain is called a PIT domain if it satisfies the conclusion of the

Principal Ideal Theorem, namely each minimal prime ideal of a nonzero principal

ideal has height 1. For instance, Noetherian domains and weakly Krull domains R

(such that R = ∩ [Rp | ht(p) = 1] and the intersection has finite character) are PIT

domains [31, Proposition 3.1]. If R is a treed PIT domain, each prime ideal is a set

union of linearly ordered minimal prime ideals of principal ideals. It follows that R

is a one-dimensional domain.

An integral domain R is a Prüfer v-multiplication domain (PVMD) if and only if

Rp is a valuation domain at each maximal t-ideal p [24, Corollary 4.3]. Therefore,

a treed domain R is a PVMD if and only if R is a Prüfer domain. Examples of

PVMD’s are Krull domains, GCD domains, integrally closed coherent domains, etc.

We generalize below this result.

The domain R, with quotient field K, is called a UMT-domain if every upper

to 0 (a nonzero prime ideal of R[X] which is contracted from K[X]) is a maximal

t-ideal. The class of UMT-domains is closely linked to the class of PVMDs, since

a domain R is a PVMD if and only if R is an integrally closed UMT-domain [16,

Proposition 3.2]. Moreover, an integral domain R is quasi-Prüfer if and only if

each of its overrings is a UMT-domain [6, Corollary 3.11]. A t-linked overring of a

UMT-domain is again a UMT domain [16, p.1962]. Now in view of [6, p.1022], the

overrings of a treed domain R are t-linked, because each nonzero maximal ideal of
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R is a t-ideal. It follows that a treed domain R is a UMT-domain if and only if

R is quasi-Prüfer. In that case, each overring of R is a UMT-domain. Hence, an

i-domain is a UMT-domain.

Now let X be an indeterminate over a treed domain R, with quotient field K.

Since R verifies (†) by Remark 3.5, R(X) = R[X]U , where R[X] \U = ∪ [p[X] | p ∈
Spec(R)] by Proposition 3.1 and Theorem 2.4. Hence the prime ideals of R(X)

are of the form qR(X) where q ⊆ p[X] for some p ∈ Spec(R) by [30, Lemma 2.8].

Assume in addition that R is quasi-Prüfer. Then a prime ideal q of R[X] such that

q ⊆ p[X] is of the form q = (q ∩ R)[X] [7, p. 212]. In that case, the spectral map

of R → R(X) is a homeomorphism, with inverse map p 7→ pR(X). Moreover, each

local ring of R(X) is of the form Rp(X) = R[X]p[X] = R(X)pR(X) for some prime

ideal p of R. Working a little bit, we could get the following result. If R is an

integral domain, then R(X) is treed if and only if R is treed and quasi-Prüfer [2,

Theorem 2.10]. In that case R(X) is quasi-Prüfer. In [2], we may see that R(X)

is going-down if and only if R is going-down and quasi-Prüfer. Moreover, R is an

i-domain if and only if R(X) is an i-domain. We now intend to characterize integral

domains R, such that R(X) is (locally) divided or such that R(X) is a PVD, since

the study of these classes is missing in [2]. Before that, we need a result.

Proposition 4.1. Let f : R → S be an injective ring morphism between integral

domains, whose spectral map is a homeomorphism.

(1) Sq = Sp for each q ∈ Spec(S) and p := f−1(q).

(2) If R is (locally) divided, then S is (locally) divided.

Proof. As af is a homeomorphism, we get that q =
√

pS. Indeed, af(V(q)) =

V(p), because af is closed, and af−1(V(p)) = V(pS) combine to yield the desired

equation. Consider the multiplicative subset f(R \ p), with saturated associated

multiplicative subset T , then S \ T = ∪[Q | Q ∈ Spec(S) such that f−1(Q) ⊆ p].

But f−1(Q) ⊆ p implies that Q ⊆ q, because Q =
√

f−1(Q)S. From q ⊆ S \ T ,

we deduce T = S \ q and Sq = Sp. Assume that R is divided. Let q ∈ Spec(S)

be lying over p ∈ Spec(R). It follows that pRp = p. Let x ∈ qSq. From Sq = Sp

and q =
√

pS, we deduce that there is some integer n such that xn ∈ pRpS = pS;

so that x ∈ q. Therefore, qSq = q for each q implies that S is divided. The local

statement follows easily, because Rp → Sp = Sq is a spectral homeomorphism. ¤

Theorem 4.2. Let R be an integral domain. Then R(X) is (locally) divided if and

only if R is quasi-Prüfer and (locally) divided.
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Proof. Assume that R is quasi-Prüfer and (locally) divided. Then R is treed and

R(X) is (locally) divided by Proposition 4.1, because R → R(X) is a spectral

homeomorphism. Conversely, assume that R(X) is divided. Then R(X) is treed

and hence R is quasi-Prüfer [2, Theorem 2.10]. Moreover, R is divided because

faithful flatness descends the divided property, since IR(X) ∩R = I for each ideal

I of R and R → R(X) is spectrally surjective. Now if R(X) is locally divided,

R(X) is treed and then R is quasi-Prüfer and treed. Since Rp(X) = R(X)pR(X) is

divided for each p ∈ Spec(R), so is Rp by the above result. ¤

Consider now the PVD context. A local integral domain (R, m) is called a pseudo-

valuation domain if there is a valuation overring V such that Spec(R) = Spec(V ),

or equivalently, there is a valuation overring V , with maximal ideal m [13, Theorem

2.7]. Assume that (R, m) is a PVD, associated to a valuation domain V . Then

V (X) is a valuation overring of R(X) and m(X) = mR(X) is a common ideal of

these two domains. Thus R(X) is a PVD. The converse is easily gotten by using

the criterion of [13, Theorem 1.4] and the faithful flatness of R → R(X).

5. Homological properties

We next give some homological considerations. The following result is a direct

application of [19, Theorem 5.4], because Gr(p) = 1 for each p ∈ Ass(R/I) in an

integral domain R with polynomial depth 1 and ideal I.

Theorem 5.1. Let R be an integral domain with polynomial depth 1 and I an

ideal. Then I is projective (equivalently, invertible) if and only if I has a resolution

of finite length by finitely generated projective R-modules.

Alfonsi defined the small finitistic dimension fpd(M) of an R-module M [1,

Définition 2.1]. For M = R, we recover the usual definition sup (proj.dimM) =

fpd(R), where the R-modules M are such that proj.dimM < ∞ and M has a finite

projective resolution. Then we have Gr(m,M) = fpd(M) for a local ring (R, m)

and an R-module M [1, Corollaire 2.7]. We get immediately the following result.

Theorem 5.2. Let R be a local domain, with polynomial depth 1, then fpd(R) = 1.

Corollary 5.3. Let R be an integral domain and X1, . . . , Xn indeterminates over

R. For q ∈ Spec(R[X1, . . . , Xn]) and p = q ∩ R, such that p-depth(Rp) = 1, then

Gr(R[X1, . . . , Xn]q) = fpd(R[X1, . . . , Xn]q) = 1 + dim(k(p)[X1, . . . , Xn]q).

Proof. It is enough to use [1, Corollaire 2.12]. ¤
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Corollary 5.4. Let (R, m) → (S, n) be a local faithfully flat morphism such that

m = nS (e.g. R → R(X) or a henselization morphism). If fpd(R) = 1, so does S.

Proof. Use Remark 2.5. ¤

Remark 5.5. Sakaguchi proved that Gr(M [X]q) = Gr(Mp) + 1 for an R-module

M , q ∈ Spec(R[X]) and p = q ∩ R [33, Theorem 3.5]. Using either this result or

the above corollary, we get that Gr(R[X]q) = fpd(R[X]q) = 2 if q ∈ Max(R[X])

and p-depth(Rq∩R) = 1. Thus Corollary 5.4 is not valid for arbitrary faithfully flat

morphisms.

Remark 5.6. McDowell defined a pseudo-Noetherian ring R as a coherent ring,

such that for each nonzero finitely presented R-module M and each I ∈ If (R), then

I ⊆ Z(M) implies that there is some m 6= 0 in M such that Im = 0 [22]. Now a treed

coherent domain R is locally pseudo-Noetherian. To see this, we can assume that

(R, m) is local. In view of [29, p.712], Z(M) = ∪[p | p ∈ Att(M)] and the previous

reference allows us to conclude, because Att(M) is linearly ordered. Note that the

Ext-grade of a local pseudo-Noetherian ring is equal to its small finitistic dimension

[22, Theorem 2.5]. If in addition R is treed, we recover Alphonsi’s result by using

[29, Proposition 6.32]. As a consequence of Theorem 5.2, fpd(R) = Fpd(R), the

finitistic dimension of R, does not hold when R is a treed coherent domain. Deny,

then a valuation ring has finitistic dimension 1, and hence is Noetherian [9, Theorem

2.5.14]. Note also that if (R, m) is a treed regular local domain, then 1 = Gr(m)

equals the weak global dimension of R [10, Lemma 3]. It follows that R is a

valuation domain [9, Corollary 4.2.6].

Acknowledgment. We thank the referee for showing us the connection between

DW-domains and the condition (†).
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