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Abstract. In this paper we extend several results known for reduced rings to

reduced modules. We prove that for a semiprime module or a module with zero

Jacobson radical, the concepts of reduced, symmetric, ps-Armendariz and ZI
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rings are reduced. Rings over which all modules are reduced/symmetric are

characterized.
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1. INTRODUCTION

A ring is reduced if it has no nonzero nilpotent elements. Reduced rings have

been studied for over forty years ( see [19] ), and the reduced ring Rred = R/Nil(R)

associated with a commutative ring R has been of interest to commutative alge-

braists. Recently the reduced ring concept was extended to modules by Lee and

Zhou in [15] and the relationship of reduced modules with ( what we call as ) ZI

modules was studied by Baser and Agayev in [5]. In this paper we extend several

results involving reduced rings and related rings to modules.

All our rings are associative with identity, subrings and ring homomorphisms

are unitary and - unless otherwise mentioned - modules are unitary left modules.

Domains need not be commutative. R denotes a ring and M denotes an R-module.

Module homomorphisms are written on the side opposite that of scalars. We may

not mention which letters denote elements of rings and which of modules over

them, when this is clear from the context. All our left-sided results have right-

sided counterparts. For unexplained concepts and results we refer to [20].
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2. REDUCED MODULES AND ZI MODULES

In this section we continue the study of reduced modules, ZI modules and their

relationships with other modules carried out in [15], [7], [5] and [1].( The ZI property

has been called semicommutativity in [11], [7], [5] and [1] and the ‘insertion of factors

property (IFP)’ elsewhere in the literature.)

2A. We show in this part that ( Proposition 2.2 ) reduced implies symmetric

implies ZI ( for modules ) and also that ( Proposition 2.7 ) flat modules over reduced

rings are reduced.

Following [14], R is symmetric if whenever a, b, c ∈ R satisfy abc = 0, we have

bac = 0; it is easily seen that this is a left-right symmetric concept. A module RM

is symmetric ([14] and [16]), if whenever a, b ∈ R, m ∈ M satisfy abm = 0, we have

bam = 0. Extending the definition of a ZI ring ( zero-insertive ring ) M is ZI if

the condition am = 0 implies aRm = 0. ( We denote the annihilator of m ∈ M by

l(m); thus M is ZI if and only if l(m) is an ideal for each m.) A ring is reversible if

ab = 0 implies ba = 0; symmetric rings are reversible since ab1 = 0 implies ba1 = 0;

reversible rings are ZI. A module M is reduced ( see Lemma 1.2 of [15] ) if whenever

a ∈ R, m ∈ M satisfy a2m = 0, then aRm = 0. Reduced modules are clearly ZI.

The following known/easily proved results will be used.

Remark 2.1. (1) In a ZI module the condition abm = 0 implies acbdm = 0

for all elements c, d of the ring.

(2) Suppose that whenever elements a ∈ R, m ∈ M of a ZI R-module M satisfy

a2m = 0 we have am = 0. Then M is reduced.

(3) If for a left ideal B of R the R-module R/B is ZI, then B is an ideal of R.

(4) A ring R is ZI ( resp., reduced, symmetric ) if and only if the module RR

is ZI ( resp., reduced, symmetric).

(5) The class of ZI/reduced/symmetric modules is closed under direct products,

submodules and ( therefore ) direct sums.

By Theorem I.3 of [3] reduced rings are symmetric. This result extends to

modules:

Proposition 2.2. Reduced modules are symmetric and symmetric modules are ZI.

Proof. Let a, b ∈ R, m ∈ M ( a reduced R-module ) be such that abm = 0. Then

(bab)2m = 0 ⇒ babRm = 0 ⇒ babam = 0 ⇒ bam = 0. Next let a ∈ R, m ∈ M

( a symmetric R-module ) be such that am = 0. Then for each b ∈ R, we have

bam = 0 which implies abm = 0. ¤
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Proposition 2.2 of [5] is the ‘reduced’ case of Proposition 2.3 and Proposition 2.5

of [7] is the ZI case. All these ‘change of rings’ results will be used without explicit

mention.

Proposition 2.3. Let θ : R −→ A be a ring homomorphism, and M an A-module;

then M is an R-module via r.m = θ(r).m.

(1) If AM is reduced/ZI/symmetric, then so is RM .

(2) If θ is onto and RM is reduced/ZI/symmetric, then so is AM .

Proof. By preceding remarks we consider only the ‘symmetric’ case.

(1) Suppose AM is symmetric and let a, b ∈ R,m ∈ M such that abm = 0.

Then, by definition, 0 = abm = θ(ab)m = θ(a)θ(b)m. Since AM is symmetric, we

have bam = θ(ba)m = θ(b)θ(a)m = 0 showing that RM is symmetric.

(2) Let a, b ∈ A,m ∈ M such that abm = 0. Since θ is onto there exists r, s ∈ R

such that θ(r) = a, θ(s) = b. Now 0 = abm = θ(r)θ(s)m = rsm. Since RM is

symmetric, we have bam = θ(s)θ(r)m = srm = 0, and thus AM is symmetric. ¤

The R-endomorphism ring of M is denoted by E(M). We denote the left E(M)−,

right R-bimodule HomR(M, R) by M∗. The ‘generalized associativity situation’

in the standard Morita context (R,M, M∗, E(M)) is exploited without explicit

mention.

An R-module M is torsionless if M is a submodule of a direct product of copies

of R, or, equivalently, if given m ∈ M , m 6= 0, there exists q ∈ M∗ such that

mq 6= 0. If M is a faithful R-module, then R is a submodule of a direct product of

copies of M . An application of Remark 2.1(4)-(5) yields the following proposition.

Proposition 2.4. The following conditions are equivalent.

(1) R is a reduced ( resp.,symmetric ) ring.

(2) Every torsionless R-module is reduced ( resp.,symmetric ).

(3) Every submodule of a free R-module is reduced ( resp.,symmetric ).

(4) There exists a faithful, reduced ( resp.,symmetric ) R-module.

Remark 2.5. For an R-module M , let R denote the ring R/ann(M). Consider

the following conditions.

(1) The left R-module M is reduced ( resp.,symmetric).

(2) The left R-module M is reduced ( resp.,symmetric).

(3) R is a reduced ( resp.,symmetric) ring.

(4) The right E(M)-module M is reduced ( resp.,symmetric).

(5) The ring E(M) is reduced ( resp.,symmetric).
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An application of Proposition 2.3 yields the equivalence of conditions (1) and

(2); since the left R-, right E(M)-bimodule M is faithful as a left R-module and is

also faithful as a right E(M)-module, applying (4)⇒(1) of Proposition 2.4 we get

(2)⇒(3) and (4)⇒(5).

Next we recall a well-known result.

Proposition 2.6. Suppose that M is a flat left R-module. Then for every exact

sequence

0 → K → F → M → 0 (I)

where F is R-free , we have (IF )∩K = IK for each right ideal I of R; in particular,

we have xF ∩K = xK for each element x of R.

Next we prove

Proposition 2.7. Flat modules over reduced rings are reduced.

Proof. Let M be a flat module over the reduced ring R. Let m ∈ M and a ∈ R

satisfy a2m = 0. Suppose that for the epimorphism β : F → M the sequence

0 → K → F → M → 0 (II)

is exact . Now there exists y ∈ F such that yβ = m. This implies that (a2y)β =

a2m = 0, and therefore a2y ∈ (a2F ) ∩ K = a2K, by Proposition 2.6. Hence

a2y = a2k for some k ∈ K, yielding a2(y−k) = 0. As the free R-module F is reduced

we have ( for each b ∈ R ) ab(y − k) = 0 implying abm = ab(yβ) = ab(kβ) = 0.

Thus M is reduced. ¤

The following analogue of Proposition 2.7 has a similar proof.

Proposition 2.8. Flat modules over symmetric rings are symmetric.

2B. The study of reduced modules in [15] was partly motivated by the rela-

tionships of reduced rings with Armendariz rings, a notion introduced in [18]. A

ring R is Armendariz if given polynomials f(X) = ΣaiX
i and g(X) = ΣbjX

j with

coefficients in R, the condition f(X)g(X) = 0 implies aibj = 0 for every i and j.

It was pointed out in 4.7 of [18] that this concept can be extended to modules and

to the power series situation.

In [13] Kim, Lee and Lee studied the power series analogue of the ‘Armendariz

ring’ concept; they called such rings power-serieswise Armendariz rings. Extending

this concept to modules we call an R-module M ps-Armendariz if whenever f(X) =
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∑
aiX

i ∈ R[[X]], g(X) =
∑

mjX
j ∈ M [[X]] ( the power series module ) satisfy

f(X)g(X) = 0, we have aimj = 0, ∀i and ∀j.
The following result generalizes Lemma 2.3(2) of [13]. ( Lemma 2.3(3) of [13]

also extends to modules.)

Proposition 2.9. Reduced modules are ps-Armendariz and ps-Armendariz modules

are ZI.

Proof. Reduced modules are ps-Armendariz by Lemma 1.5 of [15]. Next suppose

the module M is ps-Armendariz. Let a ∈ R, m ∈ M satisfy am = 0. Then for all

b ∈ R, we have (a− abX)(m + bmX + b2mX2 + . . . ) = 0 yielding abm = 0, as RM

is ps-Armendariz. ¤

In the context of Proposition 2.9 the following results are of interest. The easy

proof of Proposition 2.10 is omitted.

Proposition 2.10. Let D be a commutative domain with field of fractions K. The

D-module K/D is ps-Armendariz if and only if D = K.

The following analogue of Theorem 12 of [2] has a similar proof.

Proposition 2.11. Let D be a commutative domain and M a D-module. Then

the idealization D(+)M is ps-Armendariz if and only if M is ps-Armendariz.

Remark 2.12 supplements some examples given in [13].

Remark 2.12. By Proposition 2.10 the Z-module Q/Z is not ps-Armendariz. It

is Armendariz since ( by Proposition 3.8 of [7] ) all Z-modules are Armendariz.

Similar assertions can be made about the Z-module Zp∞ ( the p-Prüfer group for

a prime p ). It follows that Z(+)(Q/Z) and Z(+)Zp∞ are commutative ( therefore

ZI ) rings which are Armendariz but not ps-Armendariz.

Remark 2.13. In view of Theorems 2.15 and 2.16 of [7] and Propositions 2.7 and

2.8 we can ask whether flat modules over ps-Armendariz rings are ps-Armendariz.

Remark 2.14. By Propositions 2.2 and 2.9 the classes of symmetric modules and

of ps-Armendariz modules ( over a given ring ) lie between the classes of reduced

modules and ZI modules. A similar remark also holds for rings. By Proposition 2

of [12], if K is a field, the ring R0 =








a b c

0 a d

0 0 a


 : a, b, c, d ∈ K





is Armendariz.
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The same proof actually shows that the ring R0 is ps-Armendariz. It is not sym-

metric since E23E12I = 0 but E12E23I 6= 0. By Remark 2.12, the ring Z(+)(Q/Z)

is symmetric but not ps-Armendariz.

2C. In this part we characterize rings over which all modules are reduced /

symmetric. We begin with a lemma.

Lemma 2.15. The following conditions are equivalent for a left R-module M .

(1) M is reduced

(2) All cyclic submodules of M are reduced.

Proof. We have only to prove (2) ⇒ (1). Let a ∈ R, m ∈ M such that a2m = 0..

Since the R-module Rm is reduced it follows that aRm = 0 proving that M is

reduced. ¤

A ring R is (von Neumann) regular (resp., strongly regular) if for every a ∈ R,

there exists b ∈ R such that a = aba ( resp., a = ba2). A ring R is left duo (resp.,left

quo) if every left ideal (resp., maximal left ideal ) of R is an ideal. R is a strongly

regular ring if and only if R is regular and reduced if and only if R is regular and

left duo if and only if R is regular and left quo; in particular, strong regularity is a

left-right symmetric property.

Theorem 2.16. For a ring R, the following conditions are equivalent.

(1) Every left R-module is reduced.

(2) Every cyclic left R-module is reduced.

(3) R is strongly regular.

Proof. (1) ⇔ (2) by Lemma 2.15.

(2) ⇒ (3) Let a ∈ R. Now the cyclic R-module R/Ra2 is reduced. Denoting

residue classes in R/Ra2 by bars, a21 = 0 which implies a = a1 = 0 that is a = ba2

for some b ∈ R.

(3) ⇒ (2) Let M be cyclic over R. Then M ∼= R/B for some left ideal B of

R. But R is strongly regular, so B is actually an ideal which implies that R/B is

a strongly regular and hence a reduced ring. Hence by Proposition 2.3(1) the left

R-module M(∼= R/B) is reduced. ¤

It follows from Proposition 2.2 and Theorem 2.16 that a ring R is strongly regular

if and only if every R-module is flat and symmetric, a result due to Raphael [16].

In Theorem 2.18 we characterize rings over which all modules are symmetric. We

begin with a lemma.
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Lemma 2.17. The following conditions are equivalent for a ring R.

(1) Whenever A, B are left ideals of R, we have AB = BA.

(2) Whenever a, b ∈ R we have RaRb = RbRa.

(3) Whenever a, b ∈ R there exists r ∈ R such that ba = rab.

Proof. Conditions (1) and (2) are trivially equivalent.

(2) ⇒(3) Letting b = 1 in RaRb = RbRa, we get RaR = Ra, yielding R is left

duo. Further, RbRa = RaRb = Rab implies ba = rab for some r ∈ R.

(3) ⇒ (2) Given x ∈ R, we have a(xb) = rxba for some r ∈ R yielding RaRb ⊂
RbRa and the result follows by symmetry. ¤

A ring satisfies the condition Cl if it satisfies the conditions of Lemma 2.17; Cr

is its right-sided version.

Theorem 2.18. The following conditions are equivalent for a ring R.

(1) R satisfies condition Cl.

(2) Every left R-module is symmetric.

(3) Every cyclic left R-module is symmetric.

Proof. (1) ⇒ (2) and (2) ⇒ (3) trivially.

(3) ⇒ (1) Let a, b ∈ R. Then R/Rab is symmetric as a left R-module. We

denote the residue class in R/Rab of an element x ∈ R by x. As ab1 = 0 in R/Rab,

we have ba = ba1 = 0 and hence there exists r ∈ R such that ba = rab. ¤

Remark 2.19. Some results connecting the condition Cr with duo rings have been

recorded in §3 of [6]. Since the conditions Cl and Cr are of independent interest we

record a few ( possibly folklore ) remarks about them.

(1) If each ( principal ) left ideal is generated by a family of central elements,

the ring clearly satisfies Cl. Among examples of such rings are commutative

rings, strongly regular rings and the ring of power series in one indetermi-

nate over a division ring.

(2) The class of rings satisfying the condition Cl is closed under homomorphic

images.

(3) As was noted in the proof of Lemma 2.17, if R satisfies the condition Cl

then R is left duo.

(4) It follows from (3) that the conditions ‘R is strongly regular’, ‘R is regular

and satisfies Cl’ and ‘R is regular and satisfies Cr’ are equivalent.
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(5) Let R be left and right duo, so that Ra = aR holds for each a ∈ R. Then

for a, b ∈ R, we have baR = bRa = Rba implying that Cl holds if and only

if Cr holds.

(6) Let L be a field, K = L(X) and σ the ring endomorphism of K defined by

σ(X) = X2 and σ is the identity map on L. Consider R = K(+)σK, the

twisted Nagata extension, where on K ⊕ K the product (a, b)(c, d) =def

(ac, σ(b)d). Then R has exactly one right ideal A apart from R and 0; A is

also a left ideal, and hence R satisfies Cr. It does not satisfy Cl; this can

either be directly verified or deduced from the fact that R is not left duo.

(7) Brungs’ Example in §3 of [6] is a noetherian left and right duo domain

which does not satisfy either condition Cl or Cr.

2D. Let P denote one of the following five ‘vanishing’ conditions which apply to

rings as well as modules: ZI, reduced, symmetric, ps-Armendariz, Armendariz and

ZI. Trivially every vector space satisfies each of these conditions. Hence it is not the

case that if a module satisfies P then its endomorphism ring also has P. However,

we record below some positive results that can be proved for cyclic modules.

Proposition 2.20. Let the cyclic R-module M be a ZI/ reduced/ symmetric/ ps-

Armendariz/ Armendariz and ZI R-module. Then its endomorphism ring E(M)

also has the same property.

Proof. Write M ∼= R/B where B is a left ideal of R. Since ( in each of these

situations ) the R-module R/B is ZI, B is an ideal of R. Now, by change of rings

arguments ( using Proposition 2.3 and its analogues ) the R/B-module M and so

the ring R/B has the same property as RM . As E(M) ∼= E(R/BM) ∼= R/B, it

follows that the ring E(M) also has the same property. ¤

Remark 2.21. If R/B is an Armendariz R-module then, as the following example

shows, B may not be an ideal of R and the method of Proposition 2.20 will not

work. Example 14 of [11] is an Armendariz ring which is not ZI. Indeed, let R be

such a ring. Then for some b ∈ R the left ideal l(b) is not an ideal. Since (as left

R-modules) R/l(b) ∼= Rb ≤ R, the cyclic R-module R/l(b) is Armendariz.

Remark 2.22. Let B be a left ideal of a ring R. By the idealizer of B in R we mean

the subring I(B) := {x ∈ R|Bx ≤ B} of R. I(B) contains B as an ideal, and is

the largest subring of R to do so. The rings E(RR/B) and I(B)/B are isomorphic,

and indeed R/B has a natural right I(B)/B-module structure. We use these ideas

to prove Proposition 2.23. ( Clearly, the same method can be used elsewhere.)
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Proposition 2.23. If M is a cyclic, Armendariz R-module, then E(M) is an

Armendariz ring.

Proof. Let M ∼= R/B and consider the ring I(B)/B in the notation of Remark

2.22. Let f(X) = ΣaiX
i and g(X) = ΣbjX

j be polynomials with coefficients

in I(B). Assume that f(X), g(X) ∈ [I(B)/B][X] satisfy f(X)g(X) = 0. Now

f(X), g(X) ∈ R[X], and regarding g(X) as an element of [R/B][X] we have

f(X)g(X) = 0. By assumption the left R-module R/B is Armendariz, and so

we get aibj ∈ B for all i, j. It follows that E(M) ∼= I(B)/B is an Armendariz

ring. ¤

2E. Let S0 denote the set of all nonzerodivisors of R. For an R-module M we

write T (M) = {m ∈ M | rm = 0 for some r ∈ S0}; the module M is torsion

free if T (M) = 0. In Proposition 2.24 we note that T (M) is a submodule of M if M

is ZI and record some properties inherited by M/T (M) from M - for an analogue

of 2.24(3) see Lemma 1 of [14].

Proposition 2.24. (1) Let M be a ZI module. Then T (M) is a submodule of M

and the factor module M/T (M) is also ZI ( and torsion free ).

(2) Let M be reduced. Then M/T (M) is reduced.

(3) Let M be symmetric. Then M/T (M) is symmetric.

(4) Let M be Armendariz and ZI. Then M/T (M) is Armendariz and ZI.

Proof. We denote by m the residue class in M/T (M) of the element m ∈ M .

(1) Let x, y ∈ T (M) so that rx = sy = 0 for some r, s ∈ S0. As M is ZI we

have rtx = 0 for each t ∈ R implying tx ∈ T (M); in particular, rsx = 0 which

yields rs(x− y) = 0 with rs ∈ S0. Thus x− y ∈ T (M) also showing that T (M) is

a submodule of M . Given m ∈ T (M/T (M)) there exists s ∈ S0 such that sm = 0,

yielding sm ∈ T (M). It follows that for some r ∈ S0, rsm = 0. Thus, m ∈ T (M)

showing that T (M/T (M)) = 0. Next, let am = 0 and let b ∈ R; then am ∈ T (M)

implying ram = 0 for some r ∈ S0. As M is ZI, we have rabm = 0 yielding

abm = 0. Thus M/T (M) is ZI.

(2) Let for a ∈ R and m ∈ M/T (M), a2m = 0 so that a2m ∈ T (M). Then for

some r ∈ S0, ra
2m = 0 holds, yielding, as M is ZI, (ra)2m = 0. As M is actually

reduced, this yields raRm = 0 showing aRm = 0. Thus M/T (M) is a reduced

R-module.

(3) Let for elements a, b ∈ R and m ∈ M/T (M), abm = 0 so that for some r ∈ S0

we have rabm = 0. Using M is symmetric, we deduce br(am) = 0 which implies
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rbam = 0. Thus bam = 0 in M/T (M) proving that the R-module M/T (M) is

symmetric.

(4) Since M is ZI, M/T (M) is certainly ZI by (1). Let f(X) = ΣaiX
i and

g(X) = ΣmjX
j be nonzero polynomials with coefficients in R and M respectively.

Let g(X) denote the canonical image of g(X) in [M/T (M)][X] and assume that

f(X)g(X) = 0. Let t = deg(f) + deg(g). Then Σi+j=kaimj ∈ T (M) for k =

0, 1, . . . , t implying ( for each k ) the existence of elements rk ∈ S0 satisfying

rkΣi+j=kaimj = 0. Let r denote the product in any order of the elements rk.

Then r ∈ S0, and as M is ZI we have rΣi+j=kaimj = 0 for each k. Now write

u(X) := rf(X) ∈ R[X]. Since M is an Armendariz module u(X)g(X) = 0 yields

raimj = 0 for all i, j. Hence aimj = 0 ( in M/T (M) ) for all i, j showing that the

R-module M/T (M) is Armendariz. ¤

Remark 2.25. In the context of Proposition 2.24(4) it is natural to ask whether

for every ps-Armendariz module M the module M/T (M) is also ps-Armendariz.

2F. An R-module M is semiprime [21] if given m ∈ M , m 6= 0, there exists

q ∈ M∗ such that (mq)m 6= 0. The ring R is semiprime ( i.e., has no nonzero

nilpotent ideals ) if and only if the module RR is semiprime. A module M is

Z−regular ( ‘ Zelmanowitz regular’ ) if given m ∈ M , there exists q ∈ M∗ such

that (mq)m = m. Semisimple, projective modules are Z-regular, Z-regular modules

are semiprime and semiprime modules are torsionless ( see the definition in 2A) .

A module M is cyclically semiprime if every cyclic submodule of M is semiprime.

Torsion free modules over domains being cyclically semiprime, the Z-module Q is

cyclically semiprime but not semiprime.

It is easily seen that semiprime ZI rings are reduced. In Proposition 2.26 and

Corollary 2.27 we extend this result to modules.

Proposition 2.26. For a cyclically semiprime module M the following conditions

are equivalent.

(1) M is reduced.

(2) M is symmetric.

(3) M is ps-Armendariz.

(4) M is ZI.

Proof. Since (1)⇒(2)⇒(4) and (1)⇒(3)⇒(4) always hold ( by Propositions 2.2

and 2.9 ) we prove (4)⇒(1). Let a2m = 0, abm 6= 0 for a, b ∈ R, m ∈ M . As the

R-module Rm is semiprime there exists q ∈ (Rm)∗ such that [(abm)q]abm 6= 0.

However, a.am = 0 and M is ZI imply 0 = ab(mq)abm 6= 0, a contradiction. ¤
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Corollary 2.27. If M is a cyclically semiprime module over the ZI ring R then

M is reduced.

Proof. Every cyclic submodule of M is certainly torsionless and hence, by Propo-

sitions 2.7 and 2.9 of [7], M is ZI; by Proposition 2.26, it must be reduced. ¤

3. SEMIPRIMITIVE MODULES

In this section we study the relationships of reduced modules with semiprimitive

modules and other related classes of modules and rings.

3A. The Jacobson radical Rad(M) of a module M is the intersection of all its

maximal submodules. A module M is semiprimitive if Rad(M) = 0. A ring R is

semiprimitive if Rad(RR) = 0 ; it is well-known that this is a left-right symmetric

concept.

In Proposition 3.2 we extend the result ‘semiprimitive, ZI rings are reduced’ to

modules. The following lemma is well-known.

Lemma 3.1. (1) Submodules of semiprimitive modules are semiprimitive.

(2) Let B be an ideal of a ring R and let M be an R/B-module. Then Rad(R/BM)

= Rad(RM). In particular, M is semiprimitive as an R-module if and only if M

is semiprimitive as an R/B-module.

Proposition 3.2. For a semiprimitive module M the following conditions are

equivalent.

(1) M is reduced.

(2) M is symmetric.

(3) M is ps-Armendariz.

(4) M is ZI.

Proof. By the proof of Proposition 2.26 we have only to prove (4)⇒(1). By Lemma

2.15 it is sufficient to prove that the R-module Rm is reduced for each m ∈ M .

Since M is ZI, B := l(m) is an ideal of R and R/B ∼= Rm as left modules. Since M

is semiprimitive, by Lemma 3.1, so is the R-module R/B and hence also the ring

R/B. Since the semiprimitive ZI ring R/B is reduced the R-module Rm is reduced

by Proposition 2.3(1). ¤
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Remark 3.3. Example (1) below shows that neither of Propositions 2.26 and 3.2

can be deduced from the other. Example (3) shows that the semiprimitive analogue

of Corollary 2.27 does not hold.

(1) Reduced rings are semiprime, and so also are semiprimitive rings but a

simple Z-module (which is reduced as well as semiprimitive as a Z-module)

is never ( cyclically ) semiprime. The reduced, cyclically semiprime Z-

module Q satisfies Rad(Q) = Q.

(2) For a prime integer p the Z-module (Z/pZ) ⊕ Q is reduced, but is neither

cyclically semiprime nor semiprimitive.

(3) Let A be a semiprimitive ring which is not reduced, for example the ring of

all 2× 2 matrices over a field. Since every ring is the homomorphic image

of some Z-algebra of polynomials ( in non-commuting indeterminates ) A is

a factor ring of some domain R. By ‘change of rings’ results the R-module

A is semiprimitive but not reduced.

3B. In this part - among other things - we extend to modules some results known

for quo rings. We refer to [4] and §3 of [10] for undefined concepts and basic results

needed by us.

Closely related to regular rings are V-rings. A ring R is a leftV-ring if every

simple left R-module is injective. By a celebrated theorem of Kaplansky, the two

concepts are equivalent for commutative rings. A module RM is a V-module (also

called co-semisimple) if every simple R-module is M -injective ( in the sense of Azu-

maya ), equivalently, if every factor module of M is semiprimitive. A module RM

is a p-V-module if every simple R-module is p-M -injective; a ring R is a left p-V-

ring if RR is a p-V-module. Elliger [8] calls M regular if every cyclic submodule

of M is a direct summand; the ring R is regular if and only if the module RR is

so. Semisimple modules as well as Z-regular modules ( defined in 2F) are regu-

lar, regular modules as well as V-modules are p-V-modules, and p-V-modules are

semiprimitive.

Modules over left duo rings being ZI, several results of §2 are applied to them.

In Propositions 3.6 and 3.11 we consider modules defined over the larger class of

left quo rings. We first recall Proposition 4.4 and Corollary 4.5 from [17].

Proposition 3.4. If R is a left ( or right ) quo ring, then R/Rad(R) is a reduced

ring.

Corollary 3.5. If R is a semiprimitive left ( or right ) quo ring, then R is reduced.

In Proposition 3.6 we extend these two results to modules.
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Proposition 3.6. The following conditions are equivalent for a ring R.

(1) R is left quo.

(2) For each R-module M , the module M/Rad(M) is reduced.

(3) Each semiprimitive R-module is reduced.

(4) For each R-module M , the module M/Rad(M) is ZI.

(5) Each semiprimitive R-module is ZI.

(6) Each simple left R-module is reduced.

(7) Each simple left R-module is ZI.

Proof. Since Rad(M/Rad(M)) = 0 (always) it follows that for any property Q

of modules, the conditions ‘For each R-module M , the module M/Rad(M) has Q’

and ‘Each semiprimitive R-module has Q’ are equivalent. Therefore (2) ⇔ (3) and

(4) ⇔ (5) hold. Clearly (3) ⇒ (5) ⇒ (7).

(7) ⇒ (1) For each maximal left ideal µ of R, the simple R-module R/µ is ZI,

and therefore, by Remark 2.1(3), µ is an ideal. Hence R is left quo.

(1) ⇒ (6) If W is a simple R-module, then W ∼= R/µ for some maximal left

ideal µ of R. Since R is left quo, µ must be an ideal, and the ring R/µ ( being a

division ring ) is a reduced ring. Hence, by Proposition 2.3(1), W ∼= R/µ must be

a reduced R-module.

(6) ⇒ (3) If {Mi}i∈I are all the maximal submodules of the semiprimitive module

M , then we have a canonical monomorphism M −→ Πi∈I(M/Mi). As each M/Mi

is a simple R-module it is a reduced R-module. Hence M must be reduced. ¤

Proposition 3.7 is a part of Theorem 4.10 of [17]. In Proposition 3.11 and Corol-

lary 3.12 it is ( partially ) extended to modules.

Proposition 3.7. Let R be a left quo ring. Then the following conditions are

equivalent.

(1) R is regular.

(2) R is a left p-V-ring.

(3) R is a left V-ring.

Propositions 3.8 - 3.10 are easily proved results needed by us.

Proposition 3.8. Let θ : R −→ A be an onto ring homomorphism, and M an

A-module; then M is an R-module via r.m = θ(r).m.

(1) AM is a regular module if and only if RM is a regular module

(2) AM is a V-module if and only if RM is a V-module.

(3) AM is a p-V-module if and only if RM is a p-V-module.
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Proof. Straightforward verification. ¤

Proposition 3.9. If every cyclic submodule of M is a V-module, then M is a

V-module.

Proof. This is an immediate consequence of Proposition 2.3 of [4]. ¤

Proposition 3.10. Let M be a cyclic, semiprimitive module over the left quo ring

R. Then for some ideal B of R we have M ∼= R/B as left R-modules.

Proof. We have M ∼= R/B where B is a left ideal of R. As the R-module R/B

is semiprimitive, the left ideal B is the intersection of all maximal left ideals of R

containing B. As R is left quo each maximal left ideal is an ideal. Hence B is an

ideal of R. ¤

Next we prove

Proposition 3.11. Let R be a left quo ring and let M be a cyclic R-module. Then

the following conditions are equivalent.

(1) M is a regular module.

(2) M is a V-module.

(3) M is a p-V-module.

Proof. In all three cases M is semiprimitive, and using Proposition 3.10 we may

assume that M ∼= R/B for some ideal B of R. By ‘change of rings’ Proposition

3.8 the ring R/B has the ‘same’ property as the R-module M . The ring R/B is

certainly left quo. Hence by Propositions 3.7 and 3.8 the result follows. ¤

Corollary 3.12. Left p-V-modules over left quo rings are V-modules.

Proof. In the cyclic case this holds by Proposition 3.11. In the general case we

use Proposition 3.9. ¤

Regular ZI rings are strongly regular and therefore reduced, left and right V-

rings. We have the following extension of this result.

Proposition 3.13. Let RM be a regular, ZI module. Then M is a reduced V-

module.

Proof. Since regular modules are semiprimitive, by Proposition 3.2, the module

M is reduced. To prove that M is also a V-module assume first that M is cyclic.

Since M is ZI, M ∼= R/B where B is an ideal of R. Applying Proposition 3.8(1)

we deduce that R/B is a strongly regular ring. Hence R/B is a left V-ring and
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therefore by Proposition 3.8(2) RM is a V-module. In the general case we use

Proposition 3.9. ¤

Remark 3.14. Our Propositions 3.11 and 3.13 are analogues of parts of Theorems

4.4 and 4.8 of [10]. However, the defining condition of the ( Zelmanowitz ) regular

modules studied by Hirano is stronger than that of the regular modules considered

here.

4. NONSINGULAR MODULES

For basic results concerning nonsingular rings and modules we refer to [9]; see

also [5]. Reduced rings are nonsingular by Exercise 1D3 of [9] but reduced modules

need not be nonsingular - for each prime integer p the Z-module Z/pZ is reduced

but not nonsingular as noted in Example 2.19 of [5]. If R is an infinite product of

fields and B is the direct sum of the same fields, then R/B is a flat, torsion free

( as defined in 2E ), reduced and singular R-module. While torsionless modules

over reduced rings are, of course, both reduced and nonsingular, we do not know

an example of a torsionless, reduced module which is not nonsingular.

Nonsingular rings ( modules ) need not be reduced; the ring of 2 × 2 matrices

over a field is ( left and right ) nonsingular. The next result, a part of Proposition

1.27 of [9], is extended in Theorem 4.2 and its corollaries.

Proposition 4.1. Commutative nonsingular rings are reduced.

Theorem 4.2. Let RM be a nonsingular module. Then M is reduced in each of

the following cases.

(1) R is left duo.

(2) M is ZI over the reversible ring R;

(3) M is symmetric.

Proof. In all cases, M is ( nonsingular and ) ZI. To prove the result we assume

that a ∈ R,m ∈ M satisfy a2m = 0, am 6= 0 and derive a contradiction in each

case. ( See Remark 2.1(2).) Since l(am) is not a large left ideal of R, for some

nonzero c ∈ R we have l(am) ∩ Rc = 0. Now c 6∈ l(am) ⇒ cam 6= 0. Case (1): As

R is left duo, ca ∈ Rc. Now ca2m = 0 implies ca ∈ l(am)∩Rc = 0 ⇒ 0 = cam 6= 0,

a contradiction. Cases (2) and (3): Since M is ZI, a2m = 0 implies acam = 0 ⇒
ac ∈ l(am) ∩ Rc = 0. In case (2), since R is reversible we have ca = 0 implying

0 = cam 6= 0, while in case (3) M is symmetric implies 0 6= cam = acm = 0. ¤
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Since symmetric rings are reversible, and reversible rings are ZI we deduce the

following results; they may be known but we could not find references in the liter-

ature.

Corollary 4.3. Left duo, left nonsingular rings are reduced.

Corollary 4.4. Let R be a reversible ring. Then R is left non-singular if and only

if R is reduced if and only if R is right nonsingular.

Corollary 4.5. Let R be a symmetric ring. Then R is left non-singular if and only

if R is reduced if and only if R is right nonsingular.

Remark 4.6. In view of the fact that all left ( or right ) duo rings and all reversible

rings are ZI, it is natural to ask whether all left nonsingular ZI rings ( nonsingular

ZI modules ) are reduced.

Acknowledgements. We thank the referee for his or her comments, which con-
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