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Abstract. Hajós’ Theorem states that if a finite abelian group is expressed

as a direct product of cyclic subsets, then one of these subsets must be a

subgroup. Here factorizations are considered in which one of the factors is not

assumed to be cyclic but has certain restrictions on its order placed upon it.
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1. Introduction

Hajós [4] solved a classical problem of Minkowski by very surprisingly reducing

it to a problem involving the factorization of a finite abelian group into a product

of cyclic subsets and then showing that one of these subsets must be a subgroup.

Any cyclic subset can be expressed as a product of cyclic subsets of prime order.

Rédei [5] generalized Hajós’ Theorem by showing that the desired result holds if one

assumes only that the factors have prime order and that they need not be assumed

to be cyclic. Examples of de Bruijn [1] show that in Rédei’s Theorem it is not

possible in general to weaken this condition even for just one factor. Szabó [9] has

asked whether this might be done in relation to Hajós’ Theorem. The examples of

de Bruijn show that this is not possible if the exceptional factor has order divisible

by pqr where p, q, r are primes which need not be distinct. This leaves open the case

where the exceptional factor has order pq. In this paper this question is considered

but it is assumed that the primes p and q are distinct. There is one unsolved case

involving factors of order 2, but a positive answer is obtained in all other cases.

In the proofs the concept of a simulated subset also arises. So these subsets are

also considered along with cyclic subsets and the positive results are obtained for

the two types of subset taken together modulo the above exception. Positive results

have been given in all cases for simulated sets considered on their own in [7] . The

case p = q is also covered in these cases. Finally examples are given of some

families of finite abelian groups where in the case of cyclic subsets no restriction
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is needed on the order of the exceptional factor. It is shown that these families

contain all the groups with this property.

2. Preliminaries

Throughout the paper the word ‘group’ will be used to mean ‘finite abelian

group’. The multiplicative notation is used. The product of subsets A1, A2, . . . , Ar

of a group G is the subset of all elements of the form
∏r

i=1 ai, where ai ∈ Ai for each

i. The product is said to be direct if each such element has a unique expression in

this form. If the direct product of these subsets equals G we call this a factorization

of the group G. The notation gA is used to denote the set of elements {ga : a ∈ A}
and this subset is called a translate of A. In a factorization each subset Ai may

be replaced by giAi for any elements gi ∈ G. Hence we may and do assume that

e ∈ Ai for each factor Ai. The order of the subset A of G is denoted by |A|. In

order to avoid trivial cases we assume that |Ai| > 1 for each factor Ai of G. The

order of an element a is denoted by |a|. The subgroup generated by a subset A of

G is denoted by 〈A〉.
A subset A of a group G is said to be cyclic if A = {e, a, . . . , ar−1} where

|a| ≥ r. Clearly A is a subgroup if and only if |a| = r. ar is called the successor

element of A. We shall denote this cyclic set by [a]r. If r = st then [a]r = [a]s[as]t.

[a]r is a subgroup if and only if [as]t is a subgroup. By continuing this proceedure

we may replace a cyclic subset by a product of cyclic subsets of prime order.

A subset A of a group G is said to be simulated by a subgroup H of G if

|A| = |H| ≤ |A∩H| + 1 and |A| > 2. Equivalently either A = H or A and H

differ in one element only. In this latter case there exists h ∈ H and g ∈ G, g /∈ H

such that A = (H \ {h}) ∪ {gh}. g is called the distorsion element of A with

respect to H. If |A| > 4 then the simulating subgroup must be unique as two such

subgroups of order n would intersect in a subgroup of order n− 2, but for n = 3

or 4 more than one simulating subgroup may exist.

A subset A of a group G is said to be periodic if there exists a non-identity

element g of G such that gA = A. The set H of these periods, together with e,

forms a subgroup of G. Clearly A is a union of cosets of H. Equivalently there

exists a subset D such that A = HD, where D is non-periodic. A cyclic subset is

periodic if and only if it is a subgroup. A simulated subset is periodic if and only

if it is equal to its simulating subgroup, which in this case must be unique.

If G = A1 A2 · · · Ar is a factorization in which A1 = HD1 then we obtain

a factorization of the quotient group G/H. If, again, one factor is periodic this
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process may be continued. In [6] formulae are given to obtain all such factorizations

whenever this process continues at each stage, except in the case of elementary 2-

groups.

The cyclic group of order n is denoted by Z(n). If n = p1
e1 · · · pk

ek , where

p1, . . . , pk are distinct primes, then we define e(n) =
∑

ei. If p is a prime then

Gp denotes the p-component of G and Gp′ denotes the complementary subgroup to

Gp in G. If a ∈ G then (a)p denotes the Gp component of a and (a)p′ denotes the

complementary component in Gp′ .

When dealing with these problems Rédei [5] introduced the use of group char-

acters. If χ is a character of a group G and A is a subset of G then χ(A) is defined

to be the complex number
∑

a∈A χ(a). If G = A1 · · · Ar is a factorization of G

then it is easily seen that χ(G) = χ(A1) · · ·χ(Ar). If χ is not the unity character

then χ(G) = 0 and so there exists i such that χ(Ai) = 0.

Rédei used these group characters to introduce the notion of replaceability of

factors. A factor A of a group G is said to be replaceable by a subset D if whenever

G = AB is a factorization so also is G = DB . He showed that if |A| = |D|
and for each character χ of G, χ(A) = 0 implies χ(D) = 0 then A is replaceable

by D. The following replacement results are known. A cyclic factor [a]p, where p

is prime, may be replaced by its p-component [(a)p]p. If this replacement is not a

subgroup we shall refer to the original factor as a cyclic subset of the first kind.

If the p-component of a cyclic factor of order p is a subgroup we shall refer to the

original factor as a cyclic subset of the second kind. In this case if the original

factor is not contained in Gp it is known [2, Lemma 2] that it may be replaced by

a simulated subset which is not a subgroup provided that its order is at least equal

to 3. It may also be assumed that the distorsion element has prime order q where

q 6= p. A simulated factor may be replaced by its simulating subgroup.

The following results on periodicity are known. If [a]r B = G is a factorization

then arB = B. This follows by comparing this factorization with a[a]rB =

aG = G. So the successor element of a cyclic factor which is not a subgroup is

a period of the other factor B. If AB = G is a factorization and A is simulated

with simulating subgroup H and distorsion element g then gB = B. This follows

by comparing the original factorization with G = HB. So if A is simulated but is

not a subgroup then B is periodic.

We present the next result formally, since we shall need only this special case of

a previous result.
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Lemma 1. If a group G is factorized as G = A1 · · ·An, where each factor is

either a simulated subset or is a subset of prime order then one of the factors is a

subgroup of G.

Proof. This is a special case of Theorem 2 of [3]. ¤

Lemma 2. If B and D are subsets of a group G with empty intersection and if

the direct products [a]pB and [a]pD are equal, where a ∈ G and p is prime, then

apB = B and apD = D.

Proof. In the integer group ring Z(G) from [a]pB = [a]pD we obtain that

(e + a + · · ·+ ap−1)
∑

b∈B

b = (e + a + · · ·+ ap−1)
∑

d∈D

d.

Upon multiplying by e− a and rearranging we obtain that
∑

b∈B

b + ap
∑

d∈D

d =
∑

d∈D

d + ap
∑

b∈B

b.

Since B ∩D = ∅ it follows that apB = B and that apD = D. ¤

3. General Results

Theorem 1. Let A1, . . . , Am be subsets of a group G each of which is either

cyclic or simulated but not equal to a subgroup of G. Suppose that the product

A = A1 · · ·Am is direct and is a direct factor of G of prime index. Then there is

precisely one factor B of G such that G = AB and B is a subgroup of G generated

either by the successor element of one of the cyclic factors or by the distorsion

element of one of the simulated factors.

Proof. We may assume that the cyclic subsets have prime order. It follows from

Lemma 1 that such a factor B must be periodic and so, as B has prime order, it

must be a subgroup. If m = 1 then the result is already known. So we may

proceed by induction on m. For each i let fi denote either the successor element of

the cyclic factor Ai or the distorsion element of the simulated factor Ai. From the

factorization G = BA1 · · ·Am we obtain the factorization

G/B = (A1B/B) · · · (AmB/B).

Here again one factor must be periodic and so, as it is cyclic or simulated, it must

be a subgroup. We may then repeat this process and eventually by renumbering

the factors, if necessary, we obtain an ascending chain of subgroups

B,BA1, . . . , BA1 · · ·Am−1 = L,G.
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Since BA1 is a subgroup it follows as above that B = 〈f1〉. Since Ai ⊂ L, 1 ≤
i ≤ m− 1 and L is a subgroup it follows that fi ∈ L. LAm = G implies that fm

is a period of L and so that fm ∈ L.

Now let us suppose, for some subgroup H of G, that G = AH is a factorization.

As above it follows that H = 〈fk〉 for some k. From this it follows that H ⊂ L.

Then the product HA1 · · ·Am−1 is direct and is contained in L,. Since |H| = |B|
it follows that this product equals L. By the inductive assumption it follows that

H = B. ¤

We should note that the simulating subgroup and distorsion element need not be

uniquely determined for certain subsets of small order. This result implies that in

the above circumstance the subgroup generated by the distorsion element is unique.

Theorem 2. Let A1, ..., Am be cyclic subsets of a group G which are not subgroups

of G. Suppose that the product A = A1 · · ·Am is direct and that there is a

factorization G = AH where H is a subgroup of G. Then if B and D are subsets

of G such that AB = AD , where these products are direct, and |B| is less than

the least prime factor of |G| it follows that B = D.

Proof. From G = HA1 · · ·Am we obtain as before in a renumbering an ascending

chain of subgroups H, HA1, ..., HA1 · · ·Am. Let Ar = [ar]mr . Since Ar gives rise

to a subgroup in HA1 · · ·Ar/HA1 · · ·Ar−1 it follows that amr
r ∈ HA1 · · ·Ar−1.

First let us suppose that m = 1. Let the subsets X,Y be the complements of

B ∩D in B and D respectively. Then A1X = A1Y . By Lemma 2 it follows that

am1
1 is a period of X. Since A1 is not a subgroup it follows that X, if non-empty,

has order at least equal to the order of am1
1 . This contradicts the definition of B.

Hence X and also Y are empty and so B = D.

We proceed by induction on m.

Now let X and Y denote the complements of A2 · · ·AmB ∩ A2 · · ·AmD in

A2 · · ·AmB and A2 · · ·AmD respectively. Then A1X = A1Y . By Lemma 2 it

follows that am1
1 is a period of X. Let this period have order k. Then am1r

1 is a

period of X for r < k. For each x ∈ X we can express am1r
1 x as a2,r · · · am,rbr

where ai,r ∈ Ai and br ∈ B. Suppose for r < s that br = bs. Then

a2,s · · · am,s = a
m1(s−r)
1 a2,r · · · am,r.

Now am1
1 ∈ H and the product HA2 · · ·Am is direct. This implies that a

m1(s−r)
1 =

e, which is false. It follows that the elements br, 0 ≤ r < k are distinct and

so that k ≤ |B|. This contradicts the definition of B. Hence X and also Y are

empty sets and so A2 · · ·AmB = A2 · · ·AmD. Now HA1 is a subgroup which has
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all the requisite properties with respect to the above products. By the inductive

assumption it follows that B = D. ¤

Theorem 3. Let a group G be a direct product of cyclic subsets of the first kind

and of a subset D of order pq, where p and q are distinct primes. Then the subset

D is periodic.

Proof. We may assume that the generator of each cyclic subset of the first kind

has order equal to a power of r, where r is prime and is the order of the subset.

If such a cyclic subset exists for which r is different from p and from q then by

consideration of the orders involved it follows that the product of all the cyclic

subsets of order r is equal to Gr. Hajós Theorem then applies to this situation and

shows that one of these cyclic subsets is a subgroup and so is not of the first kind.

Thus we may suppose that |G| = psqt and that G = A1 · · ·As−1B1 · · ·Bt−1D,

where each Ai has order p and each Bj has order q. By replacement results we may

also assume that each Ai is contained in Gp and that each Bj is contained in Gq.

Let A = A1 · · ·As−1 and B = B1 · · ·Bt−1. Since A ⊂ Gp it follows, for

each f ∈ Gq, that A(BD ∩ Gpf) = Gpf and so that A(BDf−1 ∩ Gp) = Gp.

Now (BDf−1 ∩ Gp) need not contain e but there exists gf ∈ Gp such that

(BDf−1 ∩ Gp)gf does contain e. By Theorem 1 it follows that there exists a

subgroup H of Gp, which is independent of f , such that (BDf−1 ∩ Gp)gf = H.

Since BD =
⋃

f∈Gq
(BD ∩ Gpf) it follows that H is a group of periods of BD.

H has order p and so has a generator h.

Let d1, . . . , dr be the set of all elements in D such that (di)p ∈ A. Since

hk is a period of BD it follows that hkD ⊆ BD. Thus hkdi = bd for some

b ∈ B, d ∈ D. Then we have that (d)p = hk(di)p ∈ hkA. Since the converse

holds on multiplication by h−k it follows that there are exactly r elements in D

whose p-components belong to hkA, 0 ≤ k < p. Hence pq = |D| = pr and so

r = q.

We consider first the case where the elements d1, . . . , dq all have the same

p-component. So let (di)p = a, 1 ≤ i ≤ q. Then there are exactly q elements

in D whese p-components are equal to hka, for each k. Let this set of elements

be hkfi, 1 ≤ i ≤ q, where fi ∈ Gq. Since the product BD is direct it follows

that the product B{f1, . . . , fq} is direct and, from consideration of order, it must

equal Gq. By Theorem 1 there is a subgroup K which is independent of k such that

{f1, . . . , fq} is a translate of K. Since D is the union of the subsets hka{f1, . . . , fq}
it follows that K is a group of periods of D.
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We now consider the other case where the number of elements di with equal

p-components is less than q. By renumbering we may assume that (d1)p = · · · =

(dm)p = a ∈ A, where m < q. As above, for each k there are exactly m elements of

D with p-component equal to hka. Let di = afi. Then fi ∈ Gq. Since hkafi ∈ BD

there exist elements bi ∈ B, 1 ≤ i ≤ m, such that hkafi(bi)−1 ∈ D. As B ⊆ Gq

the only elements in BD with p-component equal to hka are exactly those in the

subset hka{f1(b1)−1, . . . , fm(bm)−1}B. Since hk is a period of BD it follows that

the elements of the subset hka{f1, . . . , fm}B are in BD and have p-component

hka. It follows that

{f1(b1)−1, . . . , fm(bm)−1}B = {f1, . . . , fm}B.

Since B(AD ∩ Gq) = Gq and, by Theorem 1, AD ∩ Gq is a subgroup of Gq the

conditions of Theorem 2 are satisfied. It follows that

{f1(b1)−1, . . . , fm(bm)−1} = {f1, . . . , fm}.

Suppose that fi = fj(bj)−1 and hence that afibj = afj . Now bj is in B and afi

and afj are in D. It follows that i = j and that bj = e.

Thus the elements hkafi belong to D for 0 ≤ k < p. Thus this subset of elements

of D has H as a group of periods. Since m < q implies that D is a union of such

subsets it follows that H is a group of periods of D. ¤

Theorem 4. If a group G is a direct product of cyclic subsets of the first kind, of

simulated subsets and a subset of order pq, where p and q are distinct primes, then

one of the factors is periodic.

Proof. The cyclic subsets may be assumed to belong to the primary component

of G corresponding to their order. Let G = A1 · · ·AmD, where D has order pq

and the other sets are either cyclic of the first kind or simulated. If no simulated

subset occurs then the result follows by Theorem 3. So we may assume that A1 is

simulated with simulating subgroup H1 and distorsion element g1.

The result is known to be true if m = 1. So we may proceed by induction on m.

We may replace A1 by H1 and so obtain a factorization

G/H1 = (A2H1/H1) · · · (AmH1/H1)(DH1/H1)

of the quotient group. By the inductive assumption it follows that either some

subset AiH1/H1 is a subgroup or that DH1/H1 is periodic. In the first case AiH1

is a subgroup of G. In the second case there is a subgroup D1H1/H1 and a subset

D2H1/H1 such that DH1/H1 = (D1H1/H1)(D2H1/H1). The subsets D1 and
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D2 of G are not uniquely determined but we may suppose that |D1| = p, |D2| = q

and that they have been chosen to be subsets of D. As before this process may be

repeated to obtain an ascending chain of subgroups

H1,H1A2, . . . , H1A2 · · ·Ar−1,H1A2 · · ·Ar−1D1, ...

until a subgroup L is reached such that LX = G where either X = Am or X = D2.

There are now four cases to be considered depending on whether X = Am or

X = D2 and on whether or not g1 ∈ L.

Firstly let us suppose that X = Am and that g1 ∈ L. Then we have that

A1 ⊆ L and as D1, D2 are contained in L we have that D ⊆ L. Then the

product A1 · · ·Am−1D is direct, is contained in L and has order equal to that of L.

Hence it is equal to L and the result follows by the inductive assumption.

Secondly let us suppose that X = D2 and that g1 ∈ L. Then for each f ∈ D2

it follows from A1 ⊆ L that A1 · · ·Am(D ∩ Lf) = Lf . Again by Theorem 1 it

follows that there is a subgroup K which is independent of f such that D ∩ Lf

is a translate of K. Since D =
⋃

f∈D2
(D ∩ Lf) it follows that K is a group of

periods of D.

Now we turn to the cases in which g1 /∈ L. From LX = G it follows that

LXx−1 = G for each x ∈ X. Hence there exists bx ∈ X such that (g1)−1 ∈ Lbxx−1.

If g1bx = x for all x ∈ X then X is periodic. In this case we may assume that

X = D2. D2 has prime order and so must be a subgroup and contain its period

g1. If this is so we can use D2 rather than D1 at the stage where H1A1 · · ·Ar−1D

was being considered. This would lead to a new subgroup L′ instead of L with

g1 ∈ L′. Now the arguments from one of the first two cases apply and achieve the

desired result.

Thus we may assume that there exists f ∈ X such that g1bf 6= f . Now we form

a set Bf from A1 by replacing the distorsion element g1 by g1bff−1 but making no

other changes. Then Bf is also simulated by H1 and, since |H1| ≥ 3, Bf cannot

be a subgroup. We note also that Bf ⊆ L.

The third case to be considered is that in which X = Am and g1 /∈ L. We claim

that the product BfA2 · · ·Am−1D is direct. Since the product obtained by replacing

Bf here by H1 is direct we need consider only the case where ha2 · · · am−1d =

h1g1bff−1a′2 · · · a′m−1d
′, where h ∈ H1 ∩ A1, ai, a

′
i ∈ Ai, d, d′ ∈ D. This leads to

ha2 · · · am−1fd = h1g1a
′
1 · · · a′m−1bfd′. Since each side belongs to A1 · · ·AmD we

have the contradiction h = h1g1. Thus the above product is direct. Since each term

is contained in L it follows by consideration of order that BfA2 · · ·Am−1D = L.

The desired result follows by the inductive assumption.
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Finally we consider the fourth case in which g1 /∈ L and X = D2. For each

x ∈ D2 we claim that the product BfA2 · · ·Am(D∩Lx) is direct. Since the product

A1A2 · · ·AmD is direct we need only consider the case

ha2 · · · amlx = h1g1bff−1a′2 · · · a′ml′x

where h ∈ A1 ∩H1, ai, a
′
i ∈ Ai, l, l

′ ∈ L. This leads to

ha2 · · · amlf = h1g1a
′
2 · · · a′ml′bf .

Since the product LD2 is direct this implies that f = bf , which is false. Hence the

above product is direct.

We may assume that |D1| = p, |D2| = q. From BfA2 · · ·Am(D∩Lx)x−1 ⊆ L

it follows that |D ∩Lx| ≤ p for each x ∈ D2. Since D =
⋃

x∈D2
(D∩Lx) it follows

that pq = |D| = Σx∈D2 |D ∩ Lx|. Hence |D ∩ Lx| = p and so BfA2 · · ·Am(D ∩
Lx)x−1 = L. By the inductive assumption and by Theorem 1 there is a subgroup

M , which is independent of x, such that D ∩ Lx is a translate of M . As before it

follows that M is a group of periods of D. ¤

When we consider cyclic subsets of the second kind no problem arises if the

order is at least three. These cyclic subsets can be replaced by simulated subsets.

However a problem arises for any cyclic subsets of the second kind which are of

order two. Let A1 be such a subset, where A1 = {e, ag} with |a| = 2 and |g| odd.

Then as a cyclic subset A1 can be replaced by H1 = {e, a} and g2 and hence g is

a period of the product of the remaining factors. The problem arises when Bf is

constructed in the third and fourth cases of Theorem 4. We cannot now assert that

Bf is not periodic. It could be another subgroup of order 2 and so the inductive

argument breaks down.

So for general cyclic subsets we have the following result.

Theorem 5. If G = A1 · · ·AmD is a factorization of the group G where each

subset Ai is either cyclic or simulated and |D| = pq, where p, q are distinct primes

then one of these factors is periodic provided that no cyclic factor of the second kind

of order 2 arises when the cyclic factors are expressed as products of cyclic factors

of prime order.

Let [a]n be a cyclic factor where n = 2km with k > 0 and m odd. Then if

|a| = 2rs with s odd every factor of order 2 which arises in the expression as a

product of cyclic factors of prime order will have 2-component of order at least 4 if

r > k but if r = k the final factor of order 2 which arises will be of the second kind.
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It is clear that the conclusion of Theorem 5 must hold if G has odd order. It is

also true that the conclusion holds if the 2-component of G is cyclic. In this case G

cannot have two distinct subgroups A1 and Bf of order 2 and the proof of Theorem

4 goes through without change.

4. Special Results

We now consider those groups where no restriction on the order of the exceptional

factor is needed but we restrict our attention to cyclic subsets for the other factors.

Definition. Let C denote the set of all groups with the property that in any factor-

ization into a product of cyclic subsets together with one other subset at least one

factor must be periodic.

As usual we may assume that the cyclic subsets have prime order. For each

prime p it is clear that elementary p-groups belong to C since any cyclic subset of

order p is a subgroup.

Theorem 6. If G is a group such that e(|G|) ≤ 4 then G belongs to C.

Proof. If e(|G|) = 1 then there is nothing to prove.

If e(|G|) = 2 then only one cyclic factor can arise and the result is known.

If e(|G|) = 3 then either there is only one cyclic factor or every factor has prime

order. In each case the result is known.

Let e(|G|) = 4. If there is only one cyclic factor or if there are three cyclic factors

the result follows as in the previous case. So we may suppose that G = A1A2D

where the first two factors are cyclic of prime order and e(|D|) = 2. Let A1 = [a]p
and A2 = [b]q. Let H = 〈ap〉, K = 〈bq〉 and L = 〈a, b〉. We may assume that

neither H nor K equals {e} and thus that e(|L|)| > 2.

Suppose first that e(|L|) = 3. Let B be a complete set of coset representatives

for G modulo L. Then, for each b ∈ B, A1A2(D∩Lb) = Lb. As before this implies

by Theorem 1 that there exists a subgroup M of G which is independent of b such

that D ∩ Lb is a translate of M . This implies that M is a group of periods of D.

Now we may suppose that L = G. Let χ be a character of G such that

χ(A1) = 0. Then from Σ0≤i≤p−1χ(a)i = 0 it follows upon multiplication by

1− χ(a) that χ(ap) = 1 and so that χ(H) 6= 0. Hence χ(H) = 0 implies that

χ(A1) 6= 0. Similarly we have that χ(K) = 0 implies χ(A2) 6= 0. It follows

that χ(H) = χ(K) = 0 implies that χ(D) = 0. By [8, Theorem 2] there exist

subsets X, Y of G such that D = HX ∪KY , where the products are direct and
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the union is disjoint. Then from A1A2D = G and A1H = 〈a〉, A2K = 〈b〉 it

follows that G = 〈a〉A2X ∪ A1〈b〉Y . Suppose that X and Y are both non-empty

and that arbs ∈ X, aubv ∈ Y . Then aubs = au−rarbs = bv−saubv. This

contradicts the fact that the union is disjoint. Hence either X or Y is the empty

set and so either K or H is a group of periods of D. ¤

We now observe that [1, Theorem 1] implies that many groups do not belong to

C. If g is a generator of Z(mn) then A〈am〉 = 〈g〉 where A = {e, a, . . . , am−1}.
Now the construction of de Bruijn shows that if a group G contains a proper

subgroup H which is a direct product of subgroups H1 and H2 and each of these

has a factorization into a product of a subgroup and a non-periodic set then there is

a factorization of G into the product of these two non-periodic subsets and a third

non-periodic factor. From the remark above if H1 and H2 are cyclic subgroups of

composite order then the first two non-periodic subsets may be chosen to be cyclic.

Thus, in this case, the group G will not belong to C.
Let e(|G|) > 4. If |G| is divisible by four distinct primes then G must have a

proper subgroup H of type Z(pq)⊗ Z(rs) and so G does not belong to C. If |G| is

divisible by three distinct primes then G has either a proper subgroup of the form

Z(p2) ⊗ Z(qr) or of the form Z(pq) ⊗ Z(pr) and so does not belong to C. If |G|
is divisible by two distinct primes p and q then if G contains either a subgroup of

the form Z(p2) ⊗ Z(q2) , a subgroup of the form Z(pq) ⊗ Z(pq) or a subgroup of

the form Z(p2) ⊗ Z(pq) then G does not belong to C. Finally if |G| is a p-group

and contains a subgroup of the form Z(p2) ⊗ Z(p2) then G does not belong to C.
In the case of two prime factors of |G| this leaves groups of type H ⊗ K, where

H is a cyclic p-group and K is an elementary q-group. In the case of G being a

p-group this leaves only groups of this form, but with p = q. We shall now show

that all groups of these types do belong to C and so complete the classification of

the groups in C.

Theorem 7. Let p be a prime and let G be a group of type Z(pe) ⊗ H, where H

is an elementary p-group. Then G belongs to C.

Proof. If e = 1 then G is an elementary p-group and the result is known. So we

may suppose that e > 1. Let a be an element in G of order pe. Then G = 〈a〉 ⊗ H.

Let G = A1 · · ·AmD be a factorization in which each factor Ai is cyclic of order

p. Let Ai = [amihi]p, where hi ∈ H. If pe−1 divides mi then Ai is a subgroup. So

we may suppose that this is not the case.
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Let K = 〈ape−1〉. Let χ be any character of G such that χ(K) = 0. Then χ(a)

must be a primitive root of unity of order pe. Then χ(Ai) = Σ0≤k≤p−1(χ(a))miχ(hi).

Then as χ(hi)p = 1 it follows that (1 − ((χ(a))miχ(hi))χ(Ai) = 1 − (χ(a))pmi .

Since pe does not divide pmi it follows that χ(Ai) 6= 0. Hence χ(K) = 0 implies

that χ(D) = 0. By [8] it follows that K is a group of periods of D. ¤

Theorem 8. Let p and q be distinct primes and let a group G be a direct sum of

a cyclic p-group and an elementary q-group. Then G belongs to C.

Proof. Let G = L ⊗ H, where L = Z(pe) and H is an elementary q-group.

Let G = A1 · · ·AkB1 · · ·BmD be a factorization in which each factor Ai is cyclic

of order p and each factor Bj is cyclic of order q. Let a be an element of order pe

and let K = 〈ape−1〉 be the unique subgroup of G of order p. Let Ai = [aifi]p,

where ai ∈ Gp , fi ∈ Gq. Let Bj = [bjhj ]q, where bj ∈ Gp , hj ∈ Gq.

Let χ be a character of G such that χ(K) = 0. Then χ(a) must be a primitive

root of unity of order pe and so the restriction of χ to Gp is bijective. If χ(Bj) = 0

then χ(bjhj) is a primitive root of unity of order q. Hence χ(bj) = 1 and so bj = e.

Thus Bj is a subgroup. Therefore we may assume that χ(Bj) 6= 0.

If for all characters χ of G such that χ(K) = 0 it follows that χ(D) = 0 then

by [8] K is a group of periods of D. Thus we may assume that there exists such a

character χ1 and an integer k such that χ1(Ak) = 0. Then this implies that χ1(ak)

has order p and that χ1(fk) = 1. Hence (Ak)p = K and χ1(〈fk〉) 6= 0. Each

factor Ai may be replaced by (Ai)p. Since the product is still direct it follows that

(Ai)p 6= K for i 6= k and so that χ(Ai) 6= 0 for any character χ with χ(K) = 0.

On the assumption that Ak 6= K we obtain that χ(K) = 0, χ(〈fk〉) = 0 implies

that χ(D) = 0. We may again apply [8] to obtain the existence of subsets X and

Y such that D = KX ∪ 〈fk〉Y , where the products are direct and the union is

disjoint. Now we may replace Ak by (Ak)p, which equals K . Since the product

(Ak)pD is direct it follows that X = ∅. Hence 〈fk〉 is a group of periods of D.

This completes the proof and so also the classification of the groups in C. ¤
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