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1. Introduction

Throughout this introduction (R,m) is a commutative Noetherian local ring of

dimension n, ER(R/m) denotes the injective envelope of R/m and Hn
m(R) is the

n-th local cohomology module of M with respect to m.

Grothendieck [11] defined a canonical module over a complete local ring and

called it a module of dualizing differentials; see [11, page 94]. Herzog and Kunz

defined a canonical module for R as a finitely generated R-module K for which

K⊗R R̂ ∼= HomR(Hn
m(R),ER(R/m)) [12, Definition 5.6]. In [13] M. Hochster and C.

Huneke, defined a canonical module as a finitely generated R-module K, for which

HomR(K,ER(R/m)) ∼= Hn
m(R). By a dualizing module over a Cohen-Macaulay

local ring, we mean a finitely generated maximal Cohen-Macaulay R-module with

finite injective dimension of type 1 (see Section 2 for the definition of type). A

canonical module of a Cohen-Macaulay local ring (if it exists) actually is the dualiz-

ing module. Canonical modules play an important role in studying Cohen-Macaulay

local rings.

It is known that a canonical module (if it exists) is unique up to isomorphism

[3, Theorem 12.1.6]. Canonical modules in general are studied extensively in the

literature. Aoyoma [2] proved excellent results concerning behavior of canonical

modules under flat base change, the endomorphism ring of canonical modules, and
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the trivial extension of the ring by canonical modules. In [1], the author proved that

if the canonical module has finite projective dimension, then it is isomorphic to R.

Also, it is known that if R is a homomorphic image of a Gorenstein local ring, then

it has the canonical module, and the converse holds when R is Cohen-Macaulay.

In fact, when R is a Cohen-Macaulay local ring, Foxby [8], and Reiten [16] proved

(independently) that if the canonical module exists, then the trivial extension of R

by the canonical module is a Gorenstein local ring, and thus R is a homomorphic

image of a Gorenstein local ring.

A semidualizing R-module is a finitely generated R-module C such that the

homothety map R −→ HomR(C,C) is an isomorphism, and ExtiR(C,C) = 0 for

all i > 0. These modules, were introduced by Foxby [8], Vasconcelos [19], and

Golod [10] independently. The ring itself and the dualizing module (if it exists) are

examples of semidualizing modules. Semidualizing modules have been studied by

many researchers; see, for example, [5], [6], [9], [15], [18], [20]. Also, we refer the

reader to [21] for detailed results concerning semidualizing modules.

The main goal of this paper is to generalize the concept of canonical modules for

semidualizing modules. To do this, we define a C-canonical module (or a canonical

module for C) as a finitely generated R-module K such that HomR(K,ER(R/m)) ∼=
Hn

m(C), where C is a semidualizing module.

In Section 3, we prove that a canonical module for C (if it exists) is unique up to

isomorphism. Also, if R has a canonical module, then every semidualizing module

C has a C-canonical module. We shall show that if a semidualizing module C has

a canonical module and belongs to AC(R) (the Auslander class of C), then R has

a canonical module.

In Section 4, we discuss the case where R is a Cohen-Macaulay ring. Let us

denote the canonical module of a semidualizing module C by ωC . As an application,

we prove some new results concerning the existence of the canonical module over

Cohen-Macaulay rings via C-canonical modules. For instance, Theorem 4.1 says

that if the canonical module for a semidualizing R-module C exists, then ωR exists.

More precisely:

Theorem: Let R be a Cohen-Macaulay ring. The following are equivalent:

(i) ωR exists;

(ii) ωC exists for every semidualizing module C;

(iii) ωC exists for some semidualizing module C.

It is known that a Cohen-Macaulay local ring is Gorenstein if and only if R ∼= ωR.

By the following result (which is Corollary 4.3), one can replace R by an arbitrary
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semidualizing module.

Theorem: Let R be a Cohen-Macaulay ring. The following are equivalent:

(i) R is Gorenstein;

(ii) ωC ∼= C for every semidualizing module C;

(iii) ωC ∼= C for some semidualizing module C.

Sharp [17] showed that over a Cohen-Macaulay local ring with the canonical

module ωR, any maximal Cohen-Macaulay R-module with finite injective dimen-

sion, is equal to a finite direct sum of copies of ωR (see [17, Theorem 2.1 (v)]).

By the following result (Theorem 4.9), we obtain a similar representation for some

subclasses of maximal Cohen-Macaulay R-modules, via C-canonical modules.

Theorem: Let R be a Cohen-Macaulay ring, C be a semidualizing module, and

suppose ωC exists. Let M be a maximal Cohen-Macaulay R-module with IC-

id(M) <∞. Then M ∼=
⊕t

i=1 ωC for some positive number t.

2. Preliminaries

Throughout this paper R is a commutative Noetherian local ring with nonzero

identity and dim R = n. We denote the maximal ideal of R by m, and the residue

field R/m by k. The minimal number of generators of a finitely generated R-

module M is denoted by µ(M), which is equal to vdimk(M ⊗R k). The type of a

finitely generated R-module M is denoted by rR(M) and is defined by rR(M) =

vdimkExttR(k,M) where t = depthRM . In particular when M is an Artinian R-

module, one has r(M) = vdimkSoc (M), where Soc (M) = (0 :M m). The m-adic

completion of R is denoted by R̂ . We use ER(k) to denote the injective hull of the

residue field k. For each i ∈ N
⋃
{0}, the i-th local cohomology module of M with

respect to the ideal a is defined by

Hi
a(M) = lim−→

n∈N
ExtiR(R/an,M).

We refer the reader to [3] for more details about local cohomology modules.

Definition 2.1. A finitely generated R-module C is called a semidualizing R-

module if the homothety map R→ HomR(C,C) is an isomorphism, and ExtiR(C,C)

= 0 for all i > 0.

For example, the ring itself is always a semidualizing R-module. Also, a dualizing

module of a Cohen-Macaulay local ring is a semidualizing R-module.
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Definition 2.2. Let C be a semidualizing module and M be an R-module. Then

M is called C-injective if M ∼= HomR(C, I) for some injective R-module I. The

class of C-injective R-modules is denoted by IC(R). Also, M is called C-projective

if M ∼= C ⊗R P for some projective R-module P . The class of C-projective R-

modules is denoted by PC(R).

Consider the complex:

X = 0→M → B0 → B1 → · · · → Bn → . . .

where each Bi is a C-injective R-module. This complex is called an augmented

IC−injective resolution for M whenever the following complex is exact:

C ⊗R X = 0→ C ⊗RM → C ⊗R B0 → C ⊗R B1 → · · · → C ⊗R Bn → . . .

Also, IC-injective dimension of M (or IC-id(M)) is defined as:

IC-id(M) := inf{sup{n ≥ 0 | Xn 6= 0} X is an IC-injective resolution of M }.

The terms PC-projective resolution and PC-projective dimension ofM (PC-pd(M))

are defined dually. These concepts are completely discussed in [18].

Definition 2.3. The Auslander class with respect to C, denoted by AC(R), is a

class of R-modules M such that

(i) the natural map M → HomR(C,C ⊗RM) is an isomorphism and

(ii) TorRi (C,M) = 0 = ExtiR(C,C ⊗RM) for all i ≥ 1.

Definition 2.4. The Bass class with respect to C, denoted by BC(R), is a class of

R-modules M such that

(i) the evaluation map C ⊗R HomR(C,M)→M is an isomorphism and

(ii) ExtiR(C,M) = 0 = TorRi (C,HomR(C,M)) for all i ≥ 1.

Next, we recall some known results concerning semidualizing R-modules which

will be needed throughout this paper.

Proposition 2.5. Let C be a semidualizing module.

(i) C is a faithful R-module and therefore SuppR(C) = Spec(R) and dimC =

dimR. Also, AssR(R) = AssR(C).

(ii) A sequence x of elements of R is an R-sequence if and only if it is a

C-sequence and in this situation C/xC is a semidualizing R/xR-module.

Moreover, depthR(R) = depthR(C).

(iii) One has HomR(C,M) 6= 0 for any nonzero R-module M .



C-CANONICAL MODULES 247

(iv) If ϕ : R→ S is a flat ring homomorphism then C⊗RS is a semidualizing S-

module. The converse holds when ϕ is a faithfully flat ring homomorphism.

Proof. For (i) see [21, Proposition 2.1.16], for (ii) see [21, Theorem 2.2.6], for (iii)

see [21, Corollary 2.1.17] and for (iv) see [21, Proposition 2.2.1]. �

Theorem 2.6. ([18, Theorem 2.11]) Let C be a semidualizing R-module and let M

be an R-module.

(i) IC-idR(M) = idR(C ⊗RM) and idR(M) = IC-idR(HomR(C,M)).

(ii) PC-pdR(M) = pdR(HomR(C,M)) and pdR(M) = PC-pdR(C ⊗RM).

Theorem 2.7. Let C be a semidualizing module.

(i) If any two R-modules in a short exact sequence are in AC(R), respectively

BC(R), then so is the third.

(ii) AC(R) (resp. BC(R)) contains every R-module of finite projective dimen-

sion (resp. injective dimension).

(iii) AC(R) (resp. BC(R)) contains every R-module of finite IC-injective di-

mension (resp. PC-projective dimension).

Proof. (i) See [21, Proposition 3.1.7].

(ii) See [21, Proposition 3.1.9 and Proposition 3.1.10].

(iii) See [18, Corollary 2.9]. �

Theorem 2.8. ([18, Theorem 2.8]) Let C be a semidualizing R-module and M be

an R-module.

(i) M ∈ BC(R) if and only if HomR(C,M) ∈ AC(R).

(ii) M ∈ AC(R) if and only if C ⊗RM ∈ BC(R).

3. Main results

In this section C is a semidualizing R-module. We generalize some concepts

which are stated in chapter 12 of [3].

Definition 3.1. A C-canonical module (or a canonical module for C) is a finitely

generated R-module K such that HomR(K,ER(R/m)) ∼= Hn
m(C).

Example 3.2. If D is the dualizing module for R, then R is a D-canonical module.

Remark 3.3. If R is a homomorphic image of an n′-dimensional Gorenstein

local ring R′, then by the Local Duality Theorem ([3, Theorem 11.2.6]), K =

Extn
′−n
R′ (C,R′) is a C-canonical module.
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Lemma 3.4. Let R be a complete local ring. Then C has a canonical module and

any two C-canonical modules are isomorphic.

Proof. By Remark 3.3, and Cohen’s Structure Theorem [14, Theorem 29.4], C has

a canonical module. If K and K ′ are C-canonical modules, then

HomR(K,ER(R/m)) ∼= HomR(K ′,ER(R/m)).

Now K ∼= K ′, by Matlis Duality Theorem [3, Theorem 10.2.12]. �

Theorem 3.5. Let K be a finitely generated R-module. Then K is a C-canonical

module if and only if K ⊗R R̂ is a C ⊗R R̂-canonical module.

Proof. Note that ER̂(R̂/m̂) ∼= ER(R/m)⊗R R̂ and by [3, Theorem 4.3.2],

Hn
m(C) ⊗R R̂ ∼= Hn

m̂(C ⊗R R̂). Let K be a C-canonical module. Then by [14,

Theorem 7.11], and [3, Theorem 4.3.2], there are R̂-isomorphisms

Hn
m̂(C ⊗R R̂) ∼= Hn

m(C)⊗R R̂
∼= HomR(K,ER(R/m))⊗R R̂
∼= HomR̂(K ⊗R R̂,ER(R/m)⊗R R̂)

∼= HomR̂(K ⊗R R̂,ER̂(R̂/m̂)).

Hence K ⊗R R̂ is a C ⊗R R̂-module.

Conversely, suppose that K ⊗R R̂ is a C ⊗R R̂-canonical R̂-module. Therefore,

HomR̂(K ⊗R R̂,ER̂(R̂/m̂)) ∼= Hn
m̂(C ⊗R R̂).

Using [14, Theorem 7.11], and [3, Theorem 4.3.2], we get

HomR(K,ER(R/m))⊗R R̂ ∼= Hn
m(C)⊗R R̂.

But both R-modules HomR(K,ER(R/m)) and Hn
m(C) are Artinian, so that

HomR(K,ER(R/m)) ∼= Hn
m(C) (See [3, Exercise 8.2.4]). Hence K is a C-canonical

module. �

Theorem 3.6. Suppose that K and K ′ are two C-canonical modules. Then K ∼=
K ′.

Proof. By Theorem 3.5, K ⊗R R̂ and K ′ ⊗R R̂ are C ⊗R R̂-canonical modules, so

that by Lemma 3.4, K ⊗R R̂ ∼= K ′ ⊗R R̂. Now the result follows from [12, Lemma

5.8]. �

Remark 3.7. Suppose that there exists a C-canonical module. By Theorem 3.6,

this C-canonical module is unique up to isomorphism. We shall denote this module

by ωC .
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Theorem 3.8. (a) If ωR exists, then HomR(C,ωR) ∼= ωC . Moreover, SuppωR

= SuppωC .

(b) Suppose that ωC exists.

(i) AssR ωC = {p ∈ Spec(R) : dimR/p = n}.
(ii) Let dimR = n > 0, and let a1, . . . an be a system of parameters for

R. Then a1 is a non-zerodivisor on ωC and if n ≥ 2, then a1, a2 is an

ωC-sequence.

Proof. (a) By tensoring both sides of HomR(ωR,ER(R/m)) ∼= Hn
m(R) with C, we

get

C ⊗R HomR(ωR,ER(R/m)) ∼= Hn
m(R)⊗R C.

But by [3, Lemma 10.2.16],

C ⊗R HomR(ωR,ER(R/m)) ∼= HomR(HomR(C,ωR),ER(R/m))

and Hn
m(R)⊗R C ∼= Hn

m(C) by [3, Exercise 6.1.10]. Next we show that SuppωR =

SuppωC . Let p ∈ SuppωR. By Proposition 2.5 (iv), Cp is a semidualizing Rp-

module and by Proposition 2.5 (iii), HomRp
(Cp, (ωR)p) 6= 0. Hence (ωC)p 6= 0 and

thus p ∈ SuppωC . The converse inclusion holds because

SuppωC = Supp (HomR(C,ωR)) ⊆ SuppωR.

(b) The proof is similar to [3, Theorem 12.1.9]. �

The following result, shows that under special conditions, the existence of ωC

guarantees the existence of ωR.

Theorem 3.9. Suppose that ωC exists. Then the following are equivalent:

(i) ωC ∈ AC(R);

(ii) Hn
m(R) ∈ AC(R);

(iii) ωR exists and belongs to BC(R).

If the above equivalent conditions hold, then ωR ∼= C ⊗R ωC .

Proof. (i)⇒ (ii) One has

HomR(ωC ,ER(R/m)) ∼= Hn
m(C) ∼= Hn

m(R)⊗R C.

Thus by hypothesis and [21, Proposition 3.3.1], C⊗R Hn
m(R) ∈ BC(R) and by The-

orem 2.8, Hn
m(R) ∈ AC(R), as desired.
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(ii)⇒ (iii) Since Hn
m(R) ∈ AC(R), it follows that

Hn
m(R) ∼= HomR(C,C ⊗R Hn

m(R)) ∼= HomR(C,Hn
m(C)).

Therefore, using Hom-Tensor adjointness and by HomR(ωC ,ER(R/m)) ∼= Hn
m(C),

we can deduce that HomR(C ⊗R ωC ,ER(R/m)) ∼= Hn
m(R), which shows that ωR

exists and is isomorphic to C ⊗R ωC . Also, ωR ∈ BC(R) holds by Hn
m(R) ∈ AC(R)

and [21, Proposition 3.3.1].

(iii)⇒ (i) This is clear by Theorems 3.8 and 2.8. �

Let uR(0) be the intersection of the primary components q of the zero ideal of

R for which dimR/q = n.

Proposition 3.10. Let S(C) denote the set of all submodules of C. Set

Σ := {N ∈ S(C) : dimN < n}

= {N ∈ S(C), Np = 0 for all p ∈ Spec(R) : dim R/p = n}.

By [3, Lemma 7.3.1], Σ has a largest element N ′. Then the following hold:

(i) uR(0) = AnnR(C/N ′);

(ii) If ωC exists, then it is annihilated by uR(0);

(iii) Let K be a finitely generated R-module which is annihilated by uR(0). Set

G := C/N ′ and R := R/uR(0) and m := m/uR(0). Then K is a C-

canonical module if and only if

HomR(K,ER(R/m)) ∼= Hn
m(G).

Proof. (i) If dimR/p = n then

AnnR(C/N ′)Rp = AnnRp
(Cp/N

′
p) = AnnRp

(Cp) = 0

and the last equality holds because Cp is a semidualizing Rp-module. Hence we

have dim (AnnR(C/N ′)) < n and by [3, Exercise 12.1.11], AnnR(C/N ′) ⊆ uR(0).

For the converse inclusion, let r ∈ uR(0). We show that dim (rC) < n. Suppose

that p ∈ Spec(R) such that dimR/p = n. Note that rRp = 0 by [3, Exercise

12.1.11], and therefore (rC)p = rRpCp = 0. This shows that dim (rC) < n. Since

N ′ is the largest element of Σ, hence rC ⊆ N ′. Therefore, r(C/N ′) = 0, and we

have uR(0) ⊆ AnnR(C/N ′).

(ii) By [3, Lemma 7.3.1], we have Hn
m(C) ∼= Hn

m(G). But by part (i), uR(0)

annihilates G, therefore it annihilates Hn
m(C). As HomR(ωC ,ER(R/m)) ∼= Hn

m(C),

we conclude that uR(0) annihilates HomR(ωC ,ER(R/m)). By [3, Remark 10.2.2],
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HomR(ωC ,ER(R/m)) and ωC have the same annihilator, therefore uR(0) annihi-

lates ωC .

(iii) Let K be a finitely generated R-module which is annihilated by uR(0).

Using ([3, Theorem 4.2.1]), and Hn
m(C) ∼= Hn

m(G), we get Hn
m(C) ∼= Hn

m(G). Set

E := ER(R/m). In view of [3, Lemma 10.1.16], we have

HomR(K,E) ∼= HomR(K ⊗R R,E)

∼= HomR(K,HomR(R,E))

∼= HomR(K, (0 :E uR(0)))

∼= HomR((K, (0 :E uR(0)))

∼= HomR(K,ER(R/m)).

Thus there is an R-isomorphism HomR(K,E) ∼= Hn
m(C) if and only if there is an

R-isomorphism HomR(K,ER(R/m)) ∼= Hn
m(G). �

Theorem 3.11. Suppose that ωC exists. Then (0 :R ωC) = (0 :R Hn
m(C)) = uR(0).

Proof. By [3, Remark 10.2.2], we have (0 :R ωC) = (0 :R Hn
m(C)). Note that

uR(0) ⊆ (0 :R ωC) by Proposition 3.10 (ii). First suppose that R is a homomorphic

image of a Gorenstein local ring (R′,m′) and therefore by [3, Remark 12.1.14], we

may assume that dimR′ = n. As ωR exists, we have ωC ∼= HomR(C,ωR). It is

enough to show that (0 :R ωC)Rp = 0 for all p ∈ Spec(R) with dimR/p = n. But

(0 :R ωC)Rp = (0 :Rp
(ωC)p) = (0 :Rp

Hom(C,ωR)p) = (0 :Rp
HomRp

(Cp, (ωR)p)).

By [3, Theorem 12.1.18 (ii)], one has (ωR)p ∼= ωRp
. Note that Rp is a 0-dimensional

local ring and ωRp
is the canonical module for Rp, so that ωRp

∼= ERp
(Rp/pRp).

Hence

(0 :R HomRp
(Cp, (ωR)p)) = (0 :Rp

HomRp
(Cp,ERp

(Rp/pRp)) = (0 :Rp
Cp) = 0.

We have proved the theorem when R is a homomorphic image of a Gorenstein local

ring. Now let R be an arbitrary ring. An argument as in [3, Theorem 12.1.15],

shows that (0 :R ωC) = uR(0). �

Theorem 3.12. Suppose that ωC exists.

(i) One has

SuppωC = {p ∈ Spec(R) : ht p + dimR/p = n};

moreover, ωC and HomR(ωC , ωC) satisfy the condition S2.
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(ii) If R is a homomorphic image of a Gorenstein local ring, then (ωC)p ∼= ωCp

for each p ∈ SuppωC .

Proof. First suppose that R is a homomorphic image of a Gorenstein local ring

R′ with dimR′ = n. Hence ωR and ωC exist, one has ωC ∼= HomR(C,ωR), and

SuppωR = SuppωC by Theorem 3.8 (a). Now by [3, Theorem 12.1.18], the result

follows. Next we prove that ωC and HomR(ωC , ωC) are S2 R-modules. But let us

first prove (ii). Let p ∈ SuppωC . By [3, Theorem 12.1.18], ωRp exists and we have

ωRp
∼= (ωR)p. Hence

(ωC)p ∼= (HomR(C,ωR))p ∼= HomRp
(Cp, (ωR)p) ∼= HomRp

(Cp, ωRp
) ∼= ωCp

.

It remains to show that ωC and HomR(ωC , ωC) satisfy the condition S2. Note that

by Theorem 3.8 (b), detphRp
(ωC)p ≥ min{2,dimRp} as (ωC)p is a Cp-canonical

module. Also, by [4, Exercise 1.4.19],

depthRp
(HomR((ωC)p, (ωC)p) ≥ min{2,depthRp

(ωC)p} ≥ min{2,dimRp}.

Thus we have proved the theorem when R is a homomorphic of a Gorenstein local

ring. Now let R be an arbitrary ring. Note that ωC⊗RR̂
∼= ωC⊗RR̂ and R̂ is a homo-

morphic image of a regular local ring, so that ωC ⊗R R̂ and HomR̂(ωC⊗RR̂, ωC⊗RR̂)

are S2 R̂-modules. Let p ∈ Spec(R). There exists a prime ideal of R̂ lying over

p. Suppose that β is the minimal ideal among these primes. We claim that β is

a minimal prime ideal of pR̂. To see this, suppose that pR̂ ⊆ q ⊆ β for some

q ∈ Spec(R̂). Then

p ⊆ (pR̂)c ⊆ qc ⊆ βc = p.

Now minimality of β implies that β = q as required. Thus dim R̂β/pR̂β = 0, so

that by [14, Theorem 15.1], we have htR̂ β = htR p.

Consider the flat local ring homomorphism Rp −→ R̂β . By [14, Theorem 23.3],

depthR̂β (Hom((ωC)p, (ωC)p)⊗Rp
R̂β) = depthRp

HomRp
((ωC)p, (ωC)p).

Thus depthRp
HomRp

((ωC)p, (ωC)p) ≥ min{2,htR̂ β} = min{2,htR p}. With a sim-

ilar argument for (ωC)p we see that ωC is S2. For the rest, let p ∈ Spec(R), so that

we can choose β as above. Using the R̂β-isomorphism

(ωC ⊗R R̂)⊗R̂ R̂β ∼= (ωC ⊗R Rp)⊗Rp
R̂β

we have p ∈ SuppωC if and only if β ∈ SuppR̂ ωC ⊗R R̂. Now suppose that

p ∈ SuppωC . Then β ∈ SuppR̂ ωC ⊗R R̂. Thus htR̂ β + dim R̂ R̂/β = n. But

dim R̂/β = dimR/p and htR̂ β = htR p. Hence htR p + dimR/p = n if and only if

htR̂ β + dim R̂ R̂/β = n. Thus β ∈ SuppωC ⊗R R̂ and therefore p ∈ SuppωC . �
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We end this section by asking two questions.

Question 3.13. Suppose that ωC exists for some semidualizing module. Can we

conclude that ωR exists?

Question 3.14. Suppose that ωC ∼= ωC′ for two semidualizing modules C and C ′.

Does this imply that C ∼= C ′?

These questions will be answered when R is a Cohen-Macaulay ring (see Theorem

4.1, and Corollary 4.5 (ii)).

4. The Cohen-Macaulay case

In this section, we present some results concerning C-canonical R-modules, when

R is a Cohen-Macaulay local ring and C is a semidualizing module. By [3, Corollary

12.1.21], we know that if ωR exists then it has finite injective dimension and ωR is

the dualizing module.

Theorem 4.1. Let R be a Cohen-Macaulay ring. The following are equivalent:

(i) ωR exists;

(ii) ωC exists for every semidualizing module C;

(iii) ωC exists for some semidualizing module C.

Proof. (i)⇒ (ii) This is clear by Theorem 3.8 (a).

(ii)⇒ (iii) It is obvious.

(iii)⇒ (i) We claim that C⊗RωC ∼= ωR. In view of Theorem 3.5, it is enough for us

to show that (C⊗RωC)⊗R R̂ ∼= ωR̂. But (C⊗RωC)⊗R R̂ ∼= (C⊗R R̂)⊗R̂ (ωC⊗R R̂)

and by Theorem 3.5, ωC ⊗R R̂ is a canonical module for R̂-semidualizing module

C ⊗R R̂. Thus we assume that R is complete, and therefore ωR exists. Hence

by Theorem 3.8 (a), ωC ∼= HomR(C,ωR). Note that R is Cohen-Macaulay and

therefore idR(ωR) < ∞. It follows from Theorem 2.7 that ωR ∈ BC(R), and

therefore C ⊗R ωC ∼= C ⊗R HomR(C,ωR) ∼= ωR. �

Corollary 4.2. Let R be a Cohen-Macaulay ring and suppose ωC exists. Then

IC-idωC <∞.

Proof. By Theorem 4.1, and Theorem 3.8 (a), ωR exists and ωC is isomorphic to

HomR(C,ωR). Now Theorem 2.6 implies that IC-idωC = idR ωR = n <∞. �

Corollary 4.3. Let R be a Cohen-Macaulay ring. The following are equivalent:

(i) R is Gorenstein;

(ii) ωC ∼= C for every semidualizing module C;
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(iii) ωC ∼= C for some semidualizing module C.

Proof. (i) ⇒ (ii) By [21, Corollary 4.1.11], the only semidualizing module over a

Gorenstein local ring is R itself and so (ii) holds.

(ii)⇒ (iii) Is clear.

(iii) ⇒ (i) By Corollary 4.2, we have IC-idC < ∞ and therefore C ∈ AC(R) by

Theorem 2.7. Hence C is projective by [21, Corollary 4.3.2]. As R is a local ring

and C is an indecomposable R-module, C is a free R-module of rank 1 which shows

that C ∼= R. Therefore, idRR <∞. �

Remark 4.4. Let C be a semidualizing R-module. If R is a Cohen-Macaulay ring

and ωC exists, then by Theorem 4.1, ωR exsits and ωC ∼= HomR(C,ωR). In this

situation, by [21, Corollary 4.1.3], ωC is a semidualizing R-module.

If R is a Cohen-Macaulay local ring with the dualizing module D, then D ∼= ωR

and R ∼= ωD. Next we generalize this fact for any two semidualizing R-modules.

Corollary 4.5. Let R be a Cohen-Macaulay ring and C and C ′ be two semidual-

izing modules.

(i) One has ωC ∼= C ′ if and only if ωC′ ∼= C.

(ii) If ωC ∼= ωC′ , then C ∼= C ′.

Proof. (i) Suppose that ωC ∼= C ′. Then HomR(C,ωR) ∼= C ′. Since C is a maximal

Cohen-Macaulay R-module, hence by [4, Theorem 3.3.10], we have

C ∼= HomR(HomR(C,ωR), ωR)

∼= HomR(C ′, ωR) ∼= ωC′ .

(ii) The proof is similar to (i). �

Using Theorem 4.1, and [4, Theorem 3.3.10 and Proposition 3.3.11], one has the

following result.

Proposition 4.6. Let R be a Cohen-Macaulay ring and suppose that ωC exists.

Then µ(ωC) = r(C) and r(ωC) = µ(C).

Lemma 4.7. Let R be a Cohen-Macaulay ring and suppose that ωC exists. Then

any R-sequence x is an ωC-sequence and we have ωC/xωC ∼= ωC/xC .

Proof. By Remark 4.4, ωC is a semidualizing module. Hence any R-sequence is an

ωC-sequence by Proposition 2.5 (ii). For the rest, note that ωC ∼= HomR(C,ωR).

Therefore,

ωC ⊗R R/x ∼= ωC/xωC ∼= R/xR⊗R HomR(C,ωR).
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By [4, Proposition 3.3.3], the right-hand side is isomorphic to

HomR/xR(C/xC, ωR/xωR) and this is isomorphic to ωC/xC . �

Theorem 4.8. Let R be a Cohen-Macaulay ring and suppose that ωC exists. Let

N be a maximal Cohen-Macaulay R-module in AC(R). Then:

(i) HomR(N,ωC) is a maximal Cohen-Macaulay R-module in AC(R).

(ii) N ∼= HomR(HomR(N,ωC), ωC) (that is, N is ωC-reflexive).

(iii) For any R-sequence x one has

HomR(N,ωC)⊗R R/xR ∼= HomR/xR(N/xN,ωC/xωC).

Proof. (i) By Theorem 4.1, ωR exists. Also, ExtjR(N, ωR) = 0 for all j > 0 and

HomR(N,ωR) is a maximal Cohen-Macaulay R-module by [4, Theorem 3.3.10].

Thus by [21, Proposition 3.3.16], we have HomR(N,ωR) ∈ BC(R). Since

ExtjR(C,HomR(N,ωR)) = 0 for all j > 0, so that by [4, Proposition 3.3.3],

HomR(C,HomR(N,ωR)) is a maximal Cohen-Macaulay R-module and by Theorem

2.8, it belongs toAC(R). But this module is isomorphic to HomR(N,HomR(C,ωR))

∼= HomR(N,ωC). This completes the proof of (i).

(ii) Using ωC ∼= HomR(C,ωR) and Hom-Tensor adjointness, one has

HomR(HomR(N,ωC), ωC) ∼= HomR(C,HomR(HomR(N,ωC), ωR))

∼= HomR(C,HomR(HomR(C ⊗R N,ωR), ωR)).

By [7, Lemma 2.11], N ⊗R C is a maximal Cohen-Macaulay R-module, so that by

[4, Theorem 3.3.10 (d)],

C ⊗R N ∼= HomR(HomR(C ⊗R N,ωR), ωR).

Hence

HomR(HomR(N,ωC), ωC) ∼= HomR(C,C ⊗R N).

As N ∈ AC(R), the right-hand side is isomorphic to N , as desired.

(iii) By [4, Proposition 3.3.3], and part (i), the following isomorphism holds:

HomR(C,HomR(N,ωR))⊗R R/xR ∼=
HomR/xR(C/xC,HomR(N,ωR)/xHomR(N,ωR)).

The left-hand side is isomorphic to HomR(N,ωC)⊗R R/xR. Again by [4, Proposi-

tion 3.3.3], we conclude that the right-hand side is isomorphic to

HomR/xR(C/xC,HomR/xR(N/xN,ωR/xωR))
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and by using Hom-Tensor adjointness, the later is isomorphic to

HomR/xR(N/xN,HomR/xR(C/xC, ωR/xωR)) ∼= HomR/xR(N/xN,ωC/xωC)

where the last isomorphism is obtained from Lemma 4.7. �

Theorem 4.9. Let R be a Cohen-Macaulay ring and suppose that ωC exists and M

is a maximal Cohen-Macaulay R-module with IC-id(M) <∞. Then M ∼=
⊕t

i=1 ωC

for some positive number t.

Proof. By Theorem 2.6, we have idR(C⊗RM) <∞ and M ∈ AC(R) by Theorem

2.7. Also, C ⊗R M is a maximal Cohen-Macaulay R-module by [7, Lemma 2.11].

Hence by [17, Theorem 2.1(v)], we get C⊗RM ∼=
⊕t

i=1 ωR. Applying HomR(C,−)

on both sides, we get

HomR(C,C ⊗RM) ∼=
⊕t

i=1 HomR(C,ωR) ∼=
⊕t

i=1 ωC .

But the left-hand side is isomorphic to M because M ∈ AC(R). �

Remark 4.10. According to [4, Definition 3.3.1], the canonical module over a

Cohen-Macaulay local ring, is a maximal Cohen-Macaulay R-module K with finite

injective dimension of type 1. By the next theorem, one may define a C-canonical

module as a maximal Cohen-Macaulay R-module with rR(K) = µ(C) and IC-

id(K) <∞.

Theorem 4.11. Let R be a Cohen-Macaulay ring and K be a finitely generated

R-module. Then K is a C-canonical module if and only if K is a maximal Cohen-

Macaulay module with rR(K) = µ(C) and IC-id(K) <∞.

Proof. (⇒) This is clear by Corollary 4.2, Remark 4.4, and Proposition 4.6.

(⇐) Note that K ⊗R R̂ is a maximal Cohen-Macaulay R̂-module and

µ(C) = rR(K) = rR̂(K ⊗R R̂) = µ(C ⊗R R̂).

By using Theorem 2.6, the following equalities hold:

IC⊗RR̂-id(K ⊗R R̂) = idR̂((K ⊗R R̂)⊗R̂ (C ⊗R R̂))

= idR̂((K ⊗R C)⊗R R̂)

= idR(K ⊗R C)

= IC-id(K) <∞.

Hence IC⊗RR̂ -id(K⊗R R̂) <∞. As ωC⊗RR̂ exists, it is enough for us to show that

K ⊗R R̂ ∼= ωC⊗RR̂ by Theorem 3.5. Thus we may assume that R is complete and
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therefore ωC exists. By Theorem 4.9, K ∼=
⊕t

i=1 ωC for some positive number t,

so that rR(K) = t r(ωC) = t µ(C). But rR(K) = µ(C) = r(ωC) which implies that

t = 1 and therefore K ∼= ωC . �

The following result is a generalization of [4, Proposition 3.3.13].

Theorem 4.12. Let R be a Cohen-Macaulay ring and C be a semidualizing R-

module. For any R-module Q, the following conditions are equivalent.

(i) Q ∼= ωC .

(ii) Q ∈ AC(R) is a maximal Cohen-Macaulay faithful R-module and rR(Q) =

µ(C).

Proof. (i)⇒ (ii). By remark 4.4, ωC is a semidualizing R-module. Therefore, it is

a maximal Cohen-Macaulay faithful R-module. Also, by Proposition 4.6, r(ωC) =

µ(C).

(ii)⇒ (i). We claim that C⊗RQ ∼= ωR. One can use [21, Proposition 3.4.7], and the

exact sequence 0 → R
x−→ R → R/xR → 0 to see that Q/xQ ∈ AC/xC(R/xR) for

any non-zero divisor x, and so that for any R-sequence x, Q/xQ ∈ AC/xC(R/xR).

Note that C ⊗R Q is a maximal Cohen-Macaulay R-module by [7, Lemma 2.11].

First we prove that rR(C ⊗R Q) = 1. Let x be a maximal R-sequence. Note that

rR(Q) = vdimkExtnR(k,Q) and the later is equal to vdimkHomR/x(k,Q/xQ). Set

R := R/x,Q := Q/xQ, C := C/xC and C ⊗R Q := (C ⊗R Q)/x(C ⊗R Q). By

using Hom-Tensor adjointness, [4, Lemma 3.1.16], and Q ∈ AC(R), we have the

following equalities:

rR(Q) = vdimkHomR(k,HomR(C,C ⊗R Q))

= vdimkHomR(k,HomR(C,R⊗R (C ⊗R Q))

= vdimkHomR(k ⊗R C,C ⊗R Q)

= vdimkHomR(C,HomR(k,C ⊗R Q))

= µR(C) · rR(C ⊗R Q)

= µR(C) · rR(C ⊗R R).

By hypothesis rR(Q) = µ(C), thus rR(C ⊗R Q) = 1. On the other hand Q ∼=
HomR(C,C ⊗R Q). As Q is a faithful R-module we get C ⊗R Q is faithful. Hence

by [4, Proposition 3.3.13], ωR exists and is isomorphic to C ⊗R Q. Therefore,

Q ∼= HomR(C,C ⊗R Q) ∼= HomR(C,ωR) ∼= ωC .

�
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By using Theorem 4.12 and Corollary 4.5, we have the following result.

Corollary 4.13. Let R be a Cohen-Macaulay ring. If rR(R) = µ(C), then C is

the canonical module of R.
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