

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 30 (2021) 243-259 DOI: 10.24330/ieja.969917

C-CANONICAL MODULES

Mohammad Bagheri and Abdol-Javad Taherizadeh

Received: 8 August 2020; Revised: 13 January 2021; Accepted: 25 January 2021 Communicated by A. Çiğdem Özcan

ABSTRACT. Let C be a semidualizing module over a commutative Noetherian local ring R. In this paper we introduce a new class of modules, namely C-canonical modules which are a generalization of canonical modules. It is shown that if the canonical module exists then the C-canonical module exists and the converse holds under special conditions. Also, a new characterization of Gorenstein local rings is given via C-canonical modules.

Mathematics Subject Classification (2020): 13C05, 13D05, 13D07, 13H10 Keywords: Semidualizing modules, dualizing modules, local cohomology, Auslander class, Bass class

1. Introduction

Throughout this introduction (R, \mathfrak{m}) is a commutative Noetherian local ring of dimension n, $E_R(R/\mathfrak{m})$ denotes the injective envelope of R/\mathfrak{m} and $H^n_{\mathfrak{m}}(R)$ is the *n*-th local cohomology module of M with respect to \mathfrak{m} .

Grothendieck [11] defined a canonical module over a complete local ring and called it a module of dualizing differentials; see [11, page 94]. Herzog and Kunz defined a canonical module for R as a finitely generated R-module K for which $K \otimes_R \hat{R} \cong \operatorname{Hom}_R(\operatorname{H}^n_{\mathfrak{m}}(R), \operatorname{E}_R(R/\mathfrak{m}))$ [12, Definition 5.6]. In [13] M. Hochster and C. Huneke, defined a canonical module as a finitely generated R-module K, for which $\operatorname{Hom}_R(K, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_{\mathfrak{m}}(R)$. By a dualizing module over a Cohen-Macaulay local ring, we mean a finitely generated maximal Cohen-Macaulay R-module with finite injective dimension of type 1 (see Section 2 for the definition of type). A canonical module of a Cohen-Macaulay local ring (if it exists) actually is the dualizing module. Canonical modules play an important role in studying Cohen-Macaulay local rings.

It is known that a canonical module (if it exists) is unique up to isomorphism [3, Theorem 12.1.6]. Canonical modules in general are studied extensively in the literature. Aoyoma [2] proved excellent results concerning behavior of canonical modules under flat base change, the endomorphism ring of canonical modules, and the trivial extension of the ring by canonical modules. In [1], the author proved that if the canonical module has finite projective dimension, then it is isomorphic to R. Also, it is known that if R is a homomorphic image of a Gorenstein local ring, then it has the canonical module, and the converse holds when R is Cohen-Macaulay. In fact, when R is a Cohen-Macaulay local ring, Foxby [8], and Reiten [16] proved (independently) that if the canonical module exists, then the trivial extension of Rby the canonical module is a Gorenstein local ring, and thus R is a homomorphic image of a Gorenstein local ring.

A semidualizing *R*-module is a finitely generated *R*-module *C* such that the homothety map $R \longrightarrow \operatorname{Hom}_R(C, C)$ is an isomorphism, and $\operatorname{Ext}^i_R(C, C) = 0$ for all i > 0. These modules, were introduced by Foxby [8], Vasconcelos [19], and Golod [10] independently. The ring itself and the dualizing module (if it exists) are examples of semidualizing modules. Semidualizing modules have been studied by many researchers; see, for example, [5], [6], [9], [15], [18], [20]. Also, we refer the reader to [21] for detailed results concerning semidualizing modules.

The main goal of this paper is to generalize the concept of canonical modules for semidualizing modules. To do this, we define a C-canonical module (or a canonical module for C) as a finitely generated R-module K such that $\operatorname{Hom}_R(K, \operatorname{E}_R(R/\mathfrak{m})) \cong$ $\operatorname{H}^n_{\mathfrak{m}}(C)$, where C is a semidualizing module.

In Section 3, we prove that a canonical module for C (if it exists) is unique up to isomorphism. Also, if R has a canonical module, then every semidualizing module C has a C-canonical module. We shall show that if a semidualizing module C has a canonical module and belongs to $\mathcal{A}_C(R)$ (the Auslander class of C), then R has a canonical module.

In Section 4, we discuss the case where R is a Cohen-Macaulay ring. Let us denote the canonical module of a semidualizing module C by ω_C . As an application, we prove some new results concerning the existence of the canonical module over Cohen-Macaulay rings via C-canonical modules. For instance, Theorem 4.1 says that if the canonical module for a semidualizing R-module C exists, then ω_R exists. More precisely:

Theorem: Let R be a Cohen-Macaulay ring. The following are equivalent:

- (i) ω_R exists;
- (ii) ω_C exists for every semidualizing module C;
- (iii) ω_C exists for some semidualizing module C.

It is known that a Cohen-Macaulay local ring is Gorenstein if and only if $R \cong \omega_R$. By the following result (which is Corollary 4.3), one can replace R by an arbitrary semidualizing module.

Theorem: Let R be a Cohen-Macaulay ring. The following are equivalent:

- (i) R is Gorenstein;
- (ii) $\omega_C \cong C$ for every semidualizing module C;
- (iii) $\omega_C \cong C$ for some semidualizing module C.

Sharp [17] showed that over a Cohen-Macaulay local ring with the canonical module ω_R , any maximal Cohen-Macaulay *R*-module with finite injective dimension, is equal to a finite direct sum of copies of ω_R (see [17, Theorem 2.1 (v)]). By the following result (Theorem 4.9), we obtain a similar representation for some subclasses of maximal Cohen-Macaulay *R*-modules, via *C*-canonical modules.

Theorem: Let R be a Cohen-Macaulay ring, C be a semidualizing module, and suppose ω_C exists. Let M be a maximal Cohen-Macaulay R-module with \mathcal{I}_C - $\mathrm{id}(M) < \infty$. Then $M \cong \bigoplus_{i=1}^t \omega_C$ for some positive number t.

2. Preliminaries

Throughout this paper R is a commutative Noetherian local ring with nonzero identity and dim R = n. We denote the maximal ideal of R by \mathfrak{m} , and the residue field R/\mathfrak{m} by k. The minimal number of generators of a finitely generated Rmodule M is denoted by $\mu(M)$, which is equal to $\operatorname{vdim}_k(M \otimes_R k)$. The type of a finitely generated R-module M is denoted by $r_R(M)$ and is defined by $r_R(M) =$ $\operatorname{vdim}_k \operatorname{Ext}_R^t(k, M)$ where $t = \operatorname{depth}_R M$. In particular when M is an Artinian Rmodule, one has $r(M) = \operatorname{vdim}_k \operatorname{Soc}(M)$, where $\operatorname{Soc}(M) = (0 :_M \mathfrak{m})$. The \mathfrak{m} -adic completion of R is denoted by \hat{R} . We use $\operatorname{E}_R(k)$ to denote the injective hull of the residue field k. For each $i \in \mathbb{N} \bigcup \{0\}$, the i-th local cohomology module of M with respect to the ideal \mathfrak{a} is defined by

$$\mathrm{H}^{i}_{\mathfrak{a}}(M) = \varinjlim_{n \in \mathbb{N}} \mathrm{Ext}^{i}_{R}(R/\mathfrak{a}^{n}, M)$$

We refer the reader to [3] for more details about local cohomology modules.

Definition 2.1. A finitely generated *R*-module *C* is called a *semidualizing R*-module if the homothety map $R \to \operatorname{Hom}_R(C, C)$ is an isomorphism, and $\operatorname{Ext}^i_R(C, C) = 0$ for all i > 0.

For example, the ring itself is always a semidualizing R-module. Also, a dualizing module of a Cohen-Macaulay local ring is a semidualizing R-module.

Definition 2.2. Let *C* be a semidualizing module and *M* be an *R*-module. Then *M* is called *C*-injective if $M \cong \operatorname{Hom}_R(C, I)$ for some injective *R*-module *I*. The class of *C*-injective *R*-modules is denoted by $\mathcal{I}_C(R)$. Also, *M* is called *C*-projective if $M \cong C \otimes_R P$ for some projective *R*-module *P*. The class of *C*-projective *R*modules is denoted by $\mathcal{P}_C(R)$.

Consider the complex:

$$X = 0 \to M \to B^0 \to B^1 \to \dots \to B^n \to \dots$$

where each B^i is a *C*-injective *R*-module. This complex is called an augmented \mathcal{I}_C -injective resolution for *M* whenever the following complex is exact:

 $C \otimes_R X = 0 \to C \otimes_R M \to C \otimes_R B^0 \to C \otimes_R B^1 \to \dots \to C \otimes_R B^n \to \dots$

Also, \mathcal{I}_C -injective dimension of M (or \mathcal{I}_C -id(M)) is defined as:

$$\mathcal{I}_C \text{-id}(M) := \inf \{ \sup \{ n \ge 0 \mid X_n \neq 0 \} X \text{ is an } \mathcal{I}_C \text{-injective resolution of } M \}.$$

The terms \mathcal{P}_C -projective resolution and \mathcal{P}_C -projective dimension of M (\mathcal{P}_C -pd(M)) are defined dually. These concepts are completely discussed in [18].

Definition 2.3. The Auslander class with respect to C, denoted by $\mathcal{A}_C(R)$, is a class of R-modules M such that

- (i) the natural map $M \to \operatorname{Hom}_R(C, C \otimes_R M)$ is an isomorphism and
- (ii) $\operatorname{Tor}_{i}^{R}(C, M) = 0 = \operatorname{Ext}_{R}^{i}(C, C \otimes_{R} M)$ for all $i \geq 1$.

Definition 2.4. The Bass class with respect to C, denoted by $\mathcal{B}_C(R)$, is a class of R-modules M such that

- (i) the evaluation map $C \otimes_R \operatorname{Hom}_R(C, M) \to M$ is an isomorphism and
- (ii) $\operatorname{Ext}_{R}^{i}(C, M) = 0 = \operatorname{Tor}_{i}^{R}(C, \operatorname{Hom}_{R}(C, M))$ for all $i \geq 1$.

Next, we recall some known results concerning semidualizing R-modules which will be needed throughout this paper.

Proposition 2.5. Let C be a semidualizing module.

- (i) C is a faithful R-module and therefore $\operatorname{Supp}_R(C) = \operatorname{Spec}(R)$ and $\dim C = \dim R$. Also, $\operatorname{Ass}_R(R) = \operatorname{Ass}_R(C)$.
- (ii) A sequence <u>x</u> of elements of R is an R-sequence if and only if it is a C-sequence and in this situation C/<u>x</u>C is a semidualizing R/<u>x</u>R-module. Moreover, depth_R(R) = depth_R(C).
- (iii) One has $\operatorname{Hom}_R(C, M) \neq 0$ for any nonzero *R*-module *M*.

(iv) If $\varphi : R \to S$ is a flat ring homomorphism then $C \otimes_R S$ is a semidualizing Smodule. The converse holds when φ is a faithfully flat ring homomorphism.

Proof. For (i) see [21, Proposition 2.1.16], for (ii) see [21, Theorem 2.2.6], for (iii) see [21, Corollary 2.1.17] and for (iv) see [21, Proposition 2.2.1]. \Box

Theorem 2.6. ([18, Theorem 2.11]) Let C be a semidualizing R-module and let M be an R-module.

- (i) $\mathcal{I}_C \operatorname{-id}_R(M) = \operatorname{id}_R(C \otimes_R M)$ and $\operatorname{id}_R(M) = \mathcal{I}_C \operatorname{-id}_R(\operatorname{Hom}_R(C, M)).$
- (ii) \mathcal{P}_C -pd_R(M) = pd_R(Hom_R(C, M)) and pd_R(M) = \mathcal{P}_C -pd_R(C $\otimes_R M$).

Theorem 2.7. Let C be a semidualizing module.

- (i) If any two R-modules in a short exact sequence are in A_C(R), respectively
 B_C(R), then so is the third.
- (ii) $\mathcal{A}_C(R)$ (resp. $\mathcal{B}_C(R)$) contains every *R*-module of finite projective dimension (resp. injective dimension).
- (iii) A_C(R) (resp. B_C(R)) contains every R-module of finite I_C-injective dimension (resp. P_C-projective dimension).

Proof. (i) See [21, Proposition 3.1.7].

(ii) See [21, Proposition 3.1.9 and Proposition 3.1.10].

(*iii*) See [18, Corollary 2.9].

Theorem 2.8. ([18, Theorem 2.8]) Let C be a semidualizing R-module and M be an R-module.

- (i) $M \in \mathcal{B}_C(R)$ if and only if $\operatorname{Hom}_R(C, M) \in \mathcal{A}_C(R)$.
- (ii) $M \in \mathcal{A}_C(R)$ if and only if $C \otimes_R M \in \mathcal{B}_C(R)$.

3. Main results

In this section C is a semidualizing R-module. We generalize some concepts which are stated in chapter 12 of [3].

Definition 3.1. A *C*-canonical module (or a canonical module for *C*) is a finitely generated *R*-module *K* such that $\operatorname{Hom}_R(K, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_\mathfrak{m}(C)$.

Example 3.2. If D is the dualizing module for R, then R is a D-canonical module.

Remark 3.3. If R is a homomorphic image of an n'-dimensional Gorenstein local ring R', then by the Local Duality Theorem ([3, Theorem 11.2.6]), $K = \operatorname{Ext}_{R'}^{n'-n}(C, R')$ is a C-canonical module.

Lemma 3.4. Let R be a complete local ring. Then C has a canonical module and any two C-canonical modules are isomorphic.

Proof. By Remark 3.3, and Cohen's Structure Theorem [14, Theorem 29.4], C has a canonical module. If K and K' are C-canonical modules, then

$$\operatorname{Hom}_R(K, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{Hom}_R(K', \operatorname{E}_R(R/\mathfrak{m})).$$

Now $K \cong K'$, by Matlis Duality Theorem [3, Theorem 10.2.12].

Theorem 3.5. Let K be a finitely generated R-module. Then K is a C-canonical module if and only if $K \otimes_R \hat{R}$ is a $C \otimes_R \hat{R}$ -canonical module.

Proof. Note that $E_{\hat{R}}(\hat{R}/\hat{\mathfrak{m}}) \cong E_R(R/\mathfrak{m}) \otimes_R \hat{R}$ and by [3, Theorem 4.3.2], $H^n_{\mathfrak{m}}(C) \otimes_R \hat{R} \cong H^n_{\hat{\mathfrak{m}}}(C \otimes_R \hat{R})$. Let K be a C-canonical module. Then by [14, Theorem 7.11], and [3, Theorem 4.3.2], there are \hat{R} -isomorphisms

$$\begin{aligned} \mathrm{H}^{n}_{\hat{\mathfrak{m}}}(C \otimes_{R} \hat{R}) &\cong \mathrm{H}^{n}_{\mathfrak{m}}(C) \otimes_{R} \hat{R} \\ &\cong \mathrm{Hom}_{R}(K, \mathrm{E}_{R}(R/\mathfrak{m})) \otimes_{R} \hat{R} \\ &\cong \mathrm{Hom}_{\hat{R}}(K \otimes_{R} \hat{R}, \mathrm{E}_{R}(R/\mathfrak{m}) \otimes_{R} \hat{R}) \\ &\cong \mathrm{Hom}_{\hat{R}}(K \otimes_{R} \hat{R}, \mathrm{E}_{\hat{R}}(\hat{R}/\hat{\mathfrak{m}})). \end{aligned}$$

Hence $K \otimes_R \hat{R}$ is a $C \otimes_R \hat{R}$ -module.

Conversely, suppose that $K \otimes_R \hat{R}$ is a $C \otimes_R \hat{R}$ -canonical \hat{R} -module. Therefore,

$$\operatorname{Hom}_{\hat{R}}(K \otimes_R \hat{R}, \operatorname{E}_{\hat{R}}(\hat{R}/\hat{\mathfrak{m}})) \cong \operatorname{H}^n_{\hat{\mathfrak{m}}}(C \otimes_R \hat{R}).$$

Using [14, Theorem 7.11], and [3, Theorem 4.3.2], we get

 $\operatorname{Hom}_R(K, \operatorname{E}_R(R/\mathfrak{m})) \otimes_R \hat{R} \cong \operatorname{H}^n_{\mathfrak{m}}(C) \otimes_R \hat{R}.$

But both *R*-modules $\operatorname{Hom}_R(K, \operatorname{E}_R(R/\mathfrak{m}))$ and $\operatorname{H}^n_{\mathfrak{m}}(C)$ are Artinian, so that $\operatorname{Hom}_R(K, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_{\mathfrak{m}}(C)$ (See [3, Exercise 8.2.4]). Hence *K* is a *C*-canonical module.

Theorem 3.6. Suppose that K and K' are two C-canonical modules. Then $K \cong K'$.

Proof. By Theorem 3.5, $K \otimes_R \hat{R}$ and $K' \otimes_R \hat{R}$ are $C \otimes_R \hat{R}$ -canonical modules, so that by Lemma 3.4, $K \otimes_R \hat{R} \cong K' \otimes_R \hat{R}$. Now the result follows from [12, Lemma 5.8].

Remark 3.7. Suppose that there exists a *C*-canonical module. By Theorem 3.6, this *C*-canonical module is unique up to isomorphism. We shall denote this module by ω_C .

Theorem 3.8. (a) If ω_R exists, then $\operatorname{Hom}_R(C, \omega_R) \cong \omega_C$. Moreover, $\operatorname{Supp} \omega_R$ = $\operatorname{Supp} \omega_C$.

(b) Suppose that ω_C exists.

(i) $\operatorname{Ass}_R \omega_C = \{ \mathfrak{p} \in Spec(R) : \dim R/\mathfrak{p} = n \}.$

(ii) Let dim R = n > 0, and let $a_1, \ldots a_n$ be a system of parameters for R. Then a_1 is a non-zerodivisor on ω_C and if $n \ge 2$, then a_1, a_2 is an ω_C -sequence.

Proof. (a) By tensoring both sides of $\operatorname{Hom}_R(\omega_R, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_{\mathfrak{m}}(R)$ with C, we get

$$C \otimes_R \operatorname{Hom}_R(\omega_R, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_{\mathfrak{m}}(R) \otimes_R C.$$

But by [3, Lemma 10.2.16],

$$C \otimes_R \operatorname{Hom}_R(\omega_R, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{Hom}_R(\operatorname{Hom}_R(C, \omega_R), \operatorname{E}_R(R/\mathfrak{m}))$$

and $\operatorname{H}^{n}_{\mathfrak{m}}(R) \otimes_{R} C \cong \operatorname{H}^{n}_{\mathfrak{m}}(C)$ by [3, Exercise 6.1.10]. Next we show that $\operatorname{Supp} \omega_{R} = \operatorname{Supp} \omega_{C}$. Let $\mathfrak{p} \in \operatorname{Supp} \omega_{R}$. By Proposition 2.5 (iv), $C_{\mathfrak{p}}$ is a semidualizing $R_{\mathfrak{p}}$ -module and by Proposition 2.5 (iii), $\operatorname{Hom}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}}, (\omega_{R})_{\mathfrak{p}}) \neq 0$. Hence $(\omega_{C})_{\mathfrak{p}} \neq 0$ and thus $\mathfrak{p} \in \operatorname{Supp} \omega_{C}$. The converse inclusion holds because

$$\operatorname{Supp} \omega_C = \operatorname{Supp} \left(\operatorname{Hom}_R(C, \omega_R) \right) \subseteq \operatorname{Supp} \omega_R.$$

(b) The proof is similar to [3, Theorem 12.1.9].

The following result, shows that under special conditions, the existence of ω_C guarantees the existence of ω_R .

Theorem 3.9. Suppose that ω_C exists. Then the following are equivalent:

- (i) $\omega_C \in \mathcal{A}_C(R);$
- (*ii*) $\operatorname{H}^{n}_{\mathfrak{m}}(R) \in \mathcal{A}_{C}(R);$
- (iii) ω_R exists and belongs to $\mathcal{B}_C(R)$.

If the above equivalent conditions hold, then $\omega_R \cong C \otimes_R \omega_C$.

Proof. $(i) \Rightarrow (ii)$ One has

$$\operatorname{Hom}_R(\omega_C, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_{\mathfrak{m}}(C) \cong \operatorname{H}^n_{\mathfrak{m}}(R) \otimes_R C.$$

Thus by hypothesis and [21, Proposition 3.3.1], $C \otimes_R \operatorname{H}^n_{\mathfrak{m}}(R) \in \mathcal{B}_C(R)$ and by Theorem 2.8, $\operatorname{H}^n_{\mathfrak{m}}(R) \in \mathcal{A}_C(R)$, as desired.

 $(ii) \Rightarrow (iii)$ Since $\mathrm{H}^n_{\mathfrak{m}}(R) \in \mathcal{A}_C(R)$, it follows that

$$\operatorname{H}^{n}_{\mathfrak{m}}(R) \cong \operatorname{Hom}_{R}(C, C \otimes_{R} \operatorname{H}^{n}_{\mathfrak{m}}(R)) \cong \operatorname{Hom}_{R}(C, \operatorname{H}^{n}_{\mathfrak{m}}(C)).$$

Therefore, using Hom-Tensor adjointness and by $\operatorname{Hom}_R(\omega_C, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_\mathfrak{m}(C)$, we can deduce that $\operatorname{Hom}_R(C \otimes_R \omega_C, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{H}^n_\mathfrak{m}(R)$, which shows that ω_R exists and is isomorphic to $C \otimes_R \omega_C$. Also, $\omega_R \in \mathcal{B}_C(R)$ holds by $\mathrm{H}^n_{\mathfrak{m}}(R) \in \mathcal{A}_C(R)$ and [21, Proposition 3.3.1].

 $(iii) \Rightarrow (i)$ This is clear by Theorems 3.8 and 2.8.

Let $u_R(0)$ be the intersection of the primary components q of the zero ideal of R for which dim $R/\mathfrak{q} = n$.

Proposition 3.10. Let S(C) denote the set of all submodules of C. Set

$$\Sigma := \{ N \in S(C) : \dim N < n \}$$

$$= \{ N \in S(C), \ N_{\mathfrak{p}} = 0 \quad for \ all \ \mathfrak{p} \in \operatorname{Spec}(\mathbf{R}) : \ \dim \ R/\mathfrak{p} = n \}.$$

By [3, Lemma 7.3.1], Σ has a largest element N'. Then the following hold:

- (i) $u_R(0) = \operatorname{Ann}_R(C/N');$
- (ii) If ω_C exists, then it is annihilated by $u_R(0)$;
- (iii) Let K be a finitely generated R-module which is annihilated by $u_R(0)$. Set G := C/N' and $\overline{R} := R/u_R(0)$ and $\overline{\mathfrak{m}} := \mathfrak{m}/u_R(0)$. Then K is a Ccanonical module if and only if

$$\operatorname{Hom}_{\overline{R}}(K, \operatorname{E}_{\overline{R}}(R/\overline{\mathfrak{m}})) \cong \operatorname{H}^{n}_{\overline{\mathfrak{m}}}(G).$$

Proof. (i) If dim $R/\mathfrak{p} = n$ then

$$\operatorname{Ann}_{R}(C/N')R_{\mathfrak{p}} = \operatorname{Ann}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}}/N'_{\mathfrak{p}}) = \operatorname{Ann}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}}) = 0$$

and the last equality holds because $C_{\mathfrak{p}}$ is a semidualizing $R_{\mathfrak{p}}$ -module. Hence we have dim $(\operatorname{Ann}_R(C/N')) < n$ and by [3, Exercise 12.1.11], $\operatorname{Ann}_R(C/N') \subseteq u_R(0)$. For the converse inclusion, let $r \in u_R(0)$. We show that dim (rC) < n. Suppose that $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\dim R/\mathfrak{p} = n$. Note that $rR_{\mathfrak{p}} = 0$ by [3, Exercise 12.1.11], and therefore $(rC)_{\mathfrak{p}} = rR_{\mathfrak{p}}C_{\mathfrak{p}} = 0$. This shows that dim (rC) < n. Since N' is the largest element of Σ , hence $rC \subseteq N'$. Therefore, r(C/N') = 0, and we have $u_R(0) \subseteq \operatorname{Ann}_R(C/N')$.

(ii) By [3, Lemma 7.3.1], we have $\mathrm{H}^n_{\mathfrak{m}}(C) \cong \mathrm{H}^n_{\mathfrak{m}}(G)$. But by part (i), $u_R(0)$ annihilates G, therefore it annihilates $\mathrm{H}^n_{\mathfrak{m}}(C)$. As $\mathrm{Hom}_R(\omega_C, \mathrm{E}_R(R/\mathfrak{m})) \cong \mathrm{H}^n_{\mathfrak{m}}(C)$, we conclude that $u_R(0)$ annihilates $\operatorname{Hom}_R(\omega_C, \operatorname{E}_R(R/\mathfrak{m}))$. By [3, Remark 10.2.2],

 $\operatorname{Hom}_R(\omega_C, \operatorname{E}_R(R/\mathfrak{m}))$ and ω_C have the same annihilator, therefore $u_R(0)$ annihilates ω_C .

(iii) Let K be a finitely generated R-module which is annihilated by $u_R(0)$. Using ([3, Theorem 4.2.1]), and $\operatorname{H}^n_{\mathfrak{m}}(C) \cong \operatorname{H}^n_{\mathfrak{m}}(G)$, we get $\operatorname{H}^n_{\mathfrak{m}}(C) \cong \operatorname{H}^n_{\overline{\mathfrak{m}}}(G)$. Set $E := \operatorname{E}_R(R/\mathfrak{m})$. In view of [3, Lemma 10.1.16], we have

$$\operatorname{Hom}_{R}(K, E) \cong \operatorname{Hom}_{R}(K \otimes_{R} R, E)$$
$$\cong \operatorname{Hom}_{R}(K, \operatorname{Hom}_{R}(\overline{R}, E))$$
$$\cong \operatorname{Hom}_{R}(K, (0 :_{E} u_{R}(0)))$$
$$\cong \operatorname{Hom}_{\overline{R}}((K, (0 :_{E} u_{R}(0))))$$
$$\cong \operatorname{Hom}_{\overline{R}}(K, \operatorname{E}_{\overline{R}}(\overline{R}/\overline{m})).$$

Thus there is an R-isomorphism $\operatorname{Hom}_R(K, E) \cong \operatorname{H}^n_{\mathfrak{m}}(C)$ if and only if there is an \overline{R} -isomorphism $\operatorname{Hom}_{\overline{R}}(K, \operatorname{E}_{\overline{R}}(\overline{R}/\overline{m})) \cong \operatorname{H}^n_{\overline{\mathfrak{m}}}(G)$.

Theorem 3.11. Suppose that ω_C exists. Then $(0:_R \omega_C) = (0:_R \operatorname{H}^n_{\mathfrak{m}}(C)) = u_R(0)$.

Proof. By [3, Remark 10.2.2], we have $(0 :_R \omega_C) = (0 :_R \operatorname{H}^n_{\mathfrak{m}}(C))$. Note that $u_R(0) \subseteq (0 :_R \omega_C)$ by Proposition 3.10 (ii). First suppose that R is a homomorphic image of a Gorenstein local ring (R', \mathfrak{m}') and therefore by [3, Remark 12.1.14], we may assume that dim R' = n. As ω_R exists, we have $\omega_C \cong \operatorname{Hom}_R(C, \omega_R)$. It is enough to show that $(0 :_R \omega_C) R_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ with dim $R/\mathfrak{p} = n$. But

$$(0:_R\omega_C)R_{\mathfrak{p}} = (0:_{R_{\mathfrak{p}}}(\omega_C)_{\mathfrak{p}}) = (0:_{R_{\mathfrak{p}}}\operatorname{Hom}(C,\omega_R)_{\mathfrak{p}}) = (0:_{R_{\mathfrak{p}}}\operatorname{Hom}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}},(\omega_R)_{\mathfrak{p}})).$$

By [3, Theorem 12.1.18 (ii)], one has $(\omega_R)_{\mathfrak{p}} \cong \omega_{R_{\mathfrak{p}}}$. Note that $R_{\mathfrak{p}}$ is a 0-dimensional local ring and $\omega_{R_{\mathfrak{p}}}$ is the canonical module for $R_{\mathfrak{p}}$, so that $\omega_{R_{\mathfrak{p}}} \cong E_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}})$. Hence

$$(0:_{R}\operatorname{Hom}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}},(\omega_{R})_{\mathfrak{p}})) = (0:_{R_{\mathfrak{p}}}\operatorname{Hom}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}},\operatorname{E}_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}})) = (0:_{R_{\mathfrak{p}}}C_{\mathfrak{p}}) = 0.$$

We have proved the theorem when R is a homomorphic image of a Gorenstein local ring. Now let R be an arbitrary ring. An argument as in [3, Theorem 12.1.15], shows that $(0:_R \omega_C) = u_R(0)$.

Theorem 3.12. Suppose that ω_C exists.

(i) One has

 $\operatorname{Supp} \omega_C = \{ \mathfrak{p} \in \operatorname{Spec}(R) : \operatorname{ht} \mathfrak{p} + \dim R/\mathfrak{p} = n \};$

moreover, ω_C and $\operatorname{Hom}_R(\omega_C, \omega_C)$ satisfy the condition S_2 .

252

(ii) If R is a homomorphic image of a Gorenstein local ring, then (ω_C)_p ≅ ω_{C_p} for each p ∈ Supp ω_C.

Proof. First suppose that R is a homomorphic image of a Gorenstein local ring R' with dim R' = n. Hence ω_R and ω_C exist, one has $\omega_C \cong \operatorname{Hom}_R(C, \omega_R)$, and $\operatorname{Supp} \omega_R = \operatorname{Supp} \omega_C$ by Theorem 3.8 (a). Now by [3, Theorem 12.1.18], the result follows. Next we prove that ω_C and $\operatorname{Hom}_R(\omega_C, \omega_C)$ are S_2 *R*-modules. But let us first prove (*ii*). Let $\mathfrak{p} \in \operatorname{Supp} \omega_C$. By [3, Theorem 12.1.18], $\omega_{R\mathfrak{p}}$ exists and we have $\omega_{R\mathfrak{p}} \cong (\omega_R)_{\mathfrak{p}}$. Hence

$$(\omega_C)_{\mathfrak{p}} \cong (\operatorname{Hom}_R(C, \omega_R))_{\mathfrak{p}} \cong \operatorname{Hom}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}}, (\omega_R)_{\mathfrak{p}}) \cong \operatorname{Hom}_{R_{\mathfrak{p}}}(C_{\mathfrak{p}}, \omega_{R_{\mathfrak{p}}}) \cong \omega_{C_{\mathfrak{p}}}.$$

It remains to show that ω_C and $\operatorname{Hom}_R(\omega_C, \omega_C)$ satisfy the condition S_2 . Note that by Theorem 3.8 (b), $\operatorname{detph}_{R_{\mathfrak{p}}}(\omega_C)_{\mathfrak{p}} \geq \min\{2, \dim R_{\mathfrak{p}}\}$ as $(\omega_C)_{\mathfrak{p}}$ is a $C_{\mathfrak{p}}$ -canonical module. Also, by [4, Exercise 1.4.19],

 $\operatorname{depth}_{R_{\mathfrak{p}}}(\operatorname{Hom}_{R}((\omega_{C})_{\mathfrak{p}},(\omega_{C})_{\mathfrak{p}}) \geq \min\{2,\operatorname{depth}_{R_{\mathfrak{p}}}(\omega_{C})_{\mathfrak{p}}\} \geq \min\{2,\operatorname{dim}_{R_{\mathfrak{p}}}\}.$

Thus we have proved the theorem when R is a homomorphic of a Gorenstein local ring. Now let R be an arbitrary ring. Note that $\omega_{C\otimes_R \hat{R}} \cong \omega_C \otimes_R \hat{R}$ and \hat{R} is a homomorphic image of a regular local ring, so that $\omega_C \otimes_R \hat{R}$ and $\operatorname{Hom}_{\hat{R}}(\omega_{C\otimes_R \hat{R}}, \omega_{C\otimes_R \hat{R}})$ are S_2 \hat{R} -modules. Let $\mathfrak{p} \in \operatorname{Spec}(R)$. There exists a prime ideal of \hat{R} lying over \mathfrak{p} . Suppose that β is the minimal ideal among these primes. We claim that β is a minimal prime ideal of $\mathfrak{p}\hat{R}$. To see this, suppose that $\mathfrak{p}\hat{R} \subseteq \mathfrak{q} \subseteq \beta$ for some $\mathfrak{q} \in \operatorname{Spec}(\hat{R})$. Then

$$\mathfrak{p} \subseteq (\mathfrak{p}\hat{R})^c \subseteq \mathfrak{q}^c \subseteq \beta^c = \mathfrak{p}.$$

Now minimality of β implies that $\beta = \mathfrak{q}$ as required. Thus $\dim \hat{R}_{\beta}/\mathfrak{p}\hat{R}_{\beta} = 0$, so that by [14, Theorem 15.1], we have $\operatorname{ht}_{\hat{R}}\beta = \operatorname{ht}_R\mathfrak{p}$.

Consider the flat local ring homomorphism $R_{\mathfrak{p}} \longrightarrow \hat{R}_{\beta}$. By [14, Theorem 23.3],

$$\operatorname{depth}_{\hat{R}_{\beta}}(\operatorname{Hom}((\omega_{C})_{\mathfrak{p}},(\omega_{C})_{\mathfrak{p}})\otimes_{R_{\mathfrak{p}}}\hat{R}_{\beta}) = \operatorname{depth}_{R_{\mathfrak{p}}}\operatorname{Hom}_{R_{\mathfrak{p}}}((\omega_{C})_{\mathfrak{p}},(\omega_{C})_{\mathfrak{p}})$$

Thus depth_{R_p} Hom_{R_p} ((ω_C)_{\mathfrak{p}}, (ω_C)_{\mathfrak{p}}) $\geq \min\{2, \operatorname{ht}_{\hat{R}}\beta\} = \min\{2, \operatorname{ht}_{R}\mathfrak{p}\}$. With a similar argument for (ω_C)_{\mathfrak{p}} we see that ω_C is S_2 . For the rest, let $\mathfrak{p} \in \operatorname{Spec}(R)$, so that we can choose β as above. Using the \hat{R}_{β} -isomorphism

$$(\omega_C \otimes_R R) \otimes_{\hat{R}} R_{\beta} \cong (\omega_C \otimes_R R_{\mathfrak{p}}) \otimes_{R_{\mathfrak{p}}} R_{\beta}$$

we have $\mathfrak{p} \in \operatorname{Supp} \omega_C$ if and only if $\beta \in \operatorname{Supp}_{\hat{R}} \omega_C \otimes_R \hat{R}$. Now suppose that $\mathfrak{p} \in \operatorname{Supp} \omega_C$. Then $\beta \in \operatorname{Supp}_{\hat{R}} \omega_C \otimes_R \hat{R}$. Thus $\operatorname{ht}_{\hat{R}} \beta + \dim_{\hat{R}} \hat{R} / \beta = n$. But $\dim \hat{R} / \beta = \dim R / \mathfrak{p}$ and $\operatorname{ht}_{\hat{R}} \beta = \operatorname{ht}_R \mathfrak{p}$. Hence $\operatorname{ht}_R \mathfrak{p} + \dim R / \mathfrak{p} = n$ if and only if $\operatorname{ht}_{\hat{R}} \beta + \dim_{\hat{R}} \hat{R} / \beta = n$. Thus $\beta \in \operatorname{Supp} \omega_C \otimes_R \hat{R}$ and therefore $\mathfrak{p} \in \operatorname{Supp} \omega_C$. \Box We end this section by asking two questions.

Question 3.13. Suppose that ω_C exists for some semidualizing module. Can we conclude that ω_R exists?

Question 3.14. Suppose that $\omega_C \cong \omega_{C'}$ for two semidualizing modules C and C'. Does this imply that $C \cong C'$?

These questions will be answered when R is a Cohen-Macaulay ring (see Theorem 4.1, and Corollary 4.5 (ii)).

4. The Cohen-Macaulay case

In this section, we present some results concerning C-canonical R-modules, when R is a Cohen-Macaulay local ring and C is a semidualizing module. By [3, Corollary 12.1.21], we know that if ω_R exists then it has finite injective dimension and ω_R is the dualizing module.

Theorem 4.1. Let R be a Cohen-Macaulay ring. The following are equivalent:

- (i) ω_R exists;
- (ii) ω_C exists for every semidualizing module C;
- (iii) ω_C exists for some semidualizing module C.

Proof. $(i) \Rightarrow (ii)$ This is clear by Theorem 3.8 (a).

 $(ii) \Rightarrow (iii)$ It is obvious.

 $(iii) \Rightarrow (i)$ We claim that $C \otimes_R \omega_C \cong \omega_R$. In view of Theorem 3.5, it is enough for us to show that $(C \otimes_R \omega_C) \otimes_R \hat{R} \cong \omega_{\hat{R}}$. But $(C \otimes_R \omega_C) \otimes_R \hat{R} \cong (C \otimes_R \hat{R}) \otimes_{\hat{R}} (\omega_C \otimes_R \hat{R})$ and by Theorem 3.5, $\omega_C \otimes_R \hat{R}$ is a canonical module for \hat{R} -semidualizing module $C \otimes_R \hat{R}$. Thus we assume that R is complete, and therefore ω_R exists. Hence by Theorem 3.8 (a), $\omega_C \cong \operatorname{Hom}_R(C, \omega_R)$. Note that R is Cohen-Macaulay and therefore $\operatorname{id}_R(\omega_R) < \infty$. It follows from Theorem 2.7 that $\omega_R \in \mathcal{B}_C(R)$, and therefore $C \otimes_R \omega_C \cong C \otimes_R \operatorname{Hom}_R(C, \omega_R) \cong \omega_R$.

Corollary 4.2. Let R be a Cohen-Macaulay ring and suppose ω_C exists. Then \mathcal{I}_C -id $\omega_C < \infty$.

Proof. By Theorem 4.1, and Theorem 3.8 (a), ω_R exists and ω_C is isomorphic to $\operatorname{Hom}_R(C, \omega_R)$. Now Theorem 2.6 implies that \mathcal{I}_C -id $\omega_C = \operatorname{id}_R \omega_R = n < \infty$.

Corollary 4.3. Let R be a Cohen-Macaulay ring. The following are equivalent:

- (i) *R* is Gorenstein;
- (ii) $\omega_C \cong C$ for every semidualizing module C;

(iii) $\omega_C \cong C$ for some semidualizing module C.

Proof. $(i) \Rightarrow (ii)$ By [21, Corollary 4.1.11], the only semidualizing module over a Gorenstein local ring is R itself and so (ii) holds.

 $(ii) \Rightarrow (iii)$ Is clear.

 $(iii) \Rightarrow (i)$ By Corollary 4.2, we have \mathcal{I}_C -id $C < \infty$ and therefore $C \in \mathcal{A}_C(R)$ by Theorem 2.7. Hence C is projective by [21, Corollary 4.3.2]. As R is a local ring and C is an indecomposable R-module, C is a free R-module of rank 1 which shows that $C \cong R$. Therefore, $\mathrm{id}_R R < \infty$.

Remark 4.4. Let *C* be a semidualizing *R*-module. If *R* is a Cohen-Macaulay ring and ω_C exists, then by Theorem 4.1, ω_R exsits and $\omega_C \cong \text{Hom}_R(C, \omega_R)$. In this situation, by [21, Corollary 4.1.3], ω_C is a semidualizing *R*-module.

If R is a Cohen-Macaulay local ring with the dualizing module D, then $D \cong \omega_R$ and $R \cong \omega_D$. Next we generalize this fact for any two semidualizing R-modules.

Corollary 4.5. Let R be a Cohen-Macaulay ring and C and C' be two semidualizing modules.

- (i) One has $\omega_C \cong C'$ if and only if $\omega_{C'} \cong C$.
- (ii) If $\omega_C \cong \omega_{C'}$, then $C \cong C'$.

Proof. (i) Suppose that $\omega_C \cong C'$. Then $\operatorname{Hom}_R(C, \omega_R) \cong C'$. Since C is a maximal Cohen-Macaulay *R*-module, hence by [4, Theorem 3.3.10], we have

$$C \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(C, \omega_{R}), \omega_{R})$$
$$\cong \operatorname{Hom}_{R}(C', \omega_{R}) \cong \omega_{C'}.$$

(ii) The proof is similar to (i).

Using Theorem 4.1, and [4, Theorem 3.3.10 and Proposition 3.3.11], one has the following result.

Proposition 4.6. Let R be a Cohen-Macaulay ring and suppose that ω_C exists. Then $\mu(\omega_C) = r(C)$ and $r(\omega_C) = \mu(C)$.

Lemma 4.7. Let R be a Cohen-Macaulay ring and suppose that ω_C exists. Then any R-sequence \underline{x} is an ω_C -sequence and we have $\omega_C/\underline{x}\omega_C \cong \omega_{C/xC}$.

Proof. By Remark 4.4, ω_C is a semidualizing module. Hence any *R*-sequence is an ω_C -sequence by Proposition 2.5 (*ii*). For the rest, note that $\omega_C \cong \operatorname{Hom}_R(C, \omega_R)$. Therefore,

$$\omega_C \otimes_R R/\underline{x} \cong \omega_C/\underline{x}\omega_C \cong R/\underline{x}R \otimes_R \operatorname{Hom}_R(C,\omega_R).$$

By [4, Proposition 3.3.3], the right-hand side is isomorphic to $\operatorname{Hom}_{R/xR}(C/\underline{x}C, \omega_R/\underline{x}\omega_R)$ and this is isomorphic to $\omega_{C/\underline{x}C}$.

Theorem 4.8. Let R be a Cohen-Macaulay ring and suppose that ω_C exists. Let N be a maximal Cohen-Macaulay R-module in $\mathcal{A}_C(R)$. Then:

- (i) $\operatorname{Hom}_R(N, \omega_C)$ is a maximal Cohen-Macaulay R-module in $\mathcal{A}_C(R)$.
- (ii) $N \cong \operatorname{Hom}_R(\operatorname{Hom}_R(N, \omega_C), \omega_C)$ (that is, N is ω_C -reflexive).
- (iii) For any R-sequence \underline{x} one has

$$\operatorname{Hom}_{R}(N,\omega_{C})\otimes_{R} R/\underline{x}R \cong \operatorname{Hom}_{R/xR}(N/\underline{x}N,\omega_{C}/\underline{x}\omega_{C}).$$

Proof. (i) By Theorem 4.1, ω_R exists. Also, $\operatorname{Ext}_R^j(N, \omega_R) = 0$ for all j > 0 and $\operatorname{Hom}_R(N, \omega_R)$ is a maximal Cohen-Macaulay *R*-module by [4, Theorem 3.3.10]. Thus by [21, Proposition 3.3.16], we have $\operatorname{Hom}_R(N, \omega_R) \in \mathcal{B}_C(R)$. Since $\operatorname{Ext}_R^j(C, \operatorname{Hom}_R(N, \omega_R)) = 0$ for all j > 0, so that by [4, Proposition 3.3.3], $\operatorname{Hom}_R(C, \operatorname{Hom}_R(N, \omega_R))$ is a maximal Cohen-Macaulay *R*-module and by Theorem 2.8, it belongs to $\mathcal{A}_C(R)$. But this module is isomorphic to $\operatorname{Hom}_R(N, \operatorname{Hom}_R(C, \omega_R))$ $\cong \operatorname{Hom}_R(N, \omega_C)$. This completes the proof of (i).

(ii) Using $\omega_C \cong \operatorname{Hom}_R(C, \omega_R)$ and Hom-Tensor adjointness, one has

 $\operatorname{Hom}_R(\operatorname{Hom}_R(N,\omega_C),\omega_C) \cong \operatorname{Hom}_R(C,\operatorname{Hom}_R(\operatorname{Hom}_R(N,\omega_C),\omega_R))$

 $\cong \operatorname{Hom}_{R}(C, \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(C \otimes_{R} N, \omega_{R}), \omega_{R})).$

By [7, Lemma 2.11], $N \otimes_R C$ is a maximal Cohen-Macaulay *R*-module, so that by [4, Theorem 3.3.10 (d)],

$$C \otimes_R N \cong \operatorname{Hom}_R(\operatorname{Hom}_R(C \otimes_R N, \omega_R), \omega_R).$$

Hence

$$\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(N, \omega_{C}), \omega_{C}) \cong \operatorname{Hom}_{R}(C, C \otimes_{R} N).$$

As $N \in \mathcal{A}_C(R)$, the right-hand side is isomorphic to N, as desired.

(iii) By [4, Proposition 3.3.3], and part (i), the following isomorphism holds:

$$\operatorname{Hom}_{R}(C, \operatorname{Hom}_{R}(N, \omega_{R})) \otimes_{R} R/\underline{x}R \cong$$
$$\operatorname{Hom}_{R/xR}(C/\underline{x}C, \operatorname{Hom}_{R}(N, \omega_{R})/\underline{x}\operatorname{Hom}_{R}(N, \omega_{R}))$$

The left-hand side is isomorphic to $\operatorname{Hom}_R(N, \omega_C) \otimes_R R/\underline{x}R$. Again by [4, Proposition 3.3.3], we conclude that the right-hand side is isomorphic to

$$\operatorname{Hom}_{R/\underline{x}R}(C/\underline{x}C, \operatorname{Hom}_{R/\underline{x}R}(N/\underline{x}N, \omega_R/\underline{x}\omega_R))$$

and by using Hom-Tensor adjointness, the later is isomorphic to

 $\operatorname{Hom}_{R/xR}(N/\underline{x}N, \operatorname{Hom}_{R/xR}(C/\underline{x}C, \omega_R/\underline{x}\omega_R)) \cong \operatorname{Hom}_{R/xR}(N/\underline{x}N, \omega_C/\underline{x}\omega_C)$

where the last isomorphism is obtained from Lemma 4.7.

Theorem 4.9. Let R be a Cohen-Macaulay ring and suppose that ω_C exists and M is a maximal Cohen-Macaulay R-module with \mathcal{I}_C -id $(M) < \infty$. Then $M \cong \bigoplus_{i=1}^t \omega_C$ for some positive number t.

Proof. By Theorem 2.6, we have $\operatorname{id}_R(C \otimes_R M) < \infty$ and $M \in \mathcal{A}_C(R)$ by Theorem 2.7. Also, $C \otimes_R M$ is a maximal Cohen-Macaulay *R*-module by [7, Lemma 2.11]. Hence by [17, Theorem 2.1(v)], we get $C \otimes_R M \cong \bigoplus_{i=1}^t \omega_R$. Applying $\operatorname{Hom}_R(C, -)$ on both sides, we get

$$\operatorname{Hom}_R(C, C \otimes_R M) \cong \bigoplus_{i=1}^t \operatorname{Hom}_R(C, \omega_R) \cong \bigoplus_{i=1}^t \omega_C.$$

But the left-hand side is isomorphic to M because $M \in \mathcal{A}_C(R)$.

Remark 4.10. According to [4, Definition 3.3.1], the canonical module over a Cohen-Macaulay local ring, is a maximal Cohen-Macaulay R-module K with finite injective dimension of type 1. By the next theorem, one may define a C-canonical module as a maximal Cohen-Macaulay R-module with $r_R(K) = \mu(C)$ and \mathcal{I}_{C} -id $(K) < \infty$.

Theorem 4.11. Let R be a Cohen-Macaulay ring and K be a finitely generated R-module. Then K is a C-canonical module if and only if K is a maximal Cohen-Macaulay module with $r_R(K) = \mu(C)$ and \mathcal{I}_C -id $(K) < \infty$.

Proof. (\Rightarrow) This is clear by Corollary 4.2, Remark 4.4, and Proposition 4.6. (\Leftarrow) Note that $K \otimes_R \hat{R}$ is a maximal Cohen-Macaulay \hat{R} -module and

$$\mu(C) = r_R(K) = r_{\hat{R}}(K \otimes_R \hat{R}) = \mu(C \otimes_R \hat{R}).$$

By using Theorem 2.6, the following equalities hold:

$$\begin{aligned} \mathcal{I}_{C\otimes_R \hat{R}} \cdot \mathrm{id}(K \otimes_R \hat{R}) &= \mathrm{id}_{\hat{R}}((K \otimes_R \hat{R}) \otimes_{\hat{R}} (C \otimes_R \hat{R})) \\ &= \mathrm{id}_{\hat{R}}((K \otimes_R C) \otimes_R \hat{R}) \\ &= \mathrm{id}_R(K \otimes_R C) \\ &= \mathcal{I}_C \cdot \mathrm{id}(K) < \infty. \end{aligned}$$

Hence $I_{C\otimes_R \hat{R}}$ -id $(K\otimes_R \hat{R}) < \infty$. As $\omega_{C\otimes_R \hat{R}}$ exists, it is enough for us to show that $K \otimes_R \hat{R} \cong \omega_{C\otimes_R \hat{R}}$ by Theorem 3.5. Thus we may assume that R is complete and

therefore ω_C exists. By Theorem 4.9, $K \cong \bigoplus_{i=1}^t \omega_C$ for some positive number t, so that $r_R(K) = t r(\omega_C) = t \mu(C)$. But $r_R(K) = \mu(C) = r(\omega_C)$ which implies that t = 1 and therefore $K \cong \omega_C$.

The following result is a generalization of [4, Proposition 3.3.13].

Theorem 4.12. Let R be a Cohen-Macaulay ring and C be a semidualizing R-module. For any R-module Q, the following conditions are equivalent.

- (i) $Q \cong \omega_C$.
- (ii) $Q \in \mathcal{A}_C(R)$ is a maximal Cohen-Macaulay faithful R-module and $r_R(Q) = \mu(C)$.

Proof. $(i) \Rightarrow (ii)$. By remark 4.4, ω_C is a semidualizing *R*-module. Therefore, it is a maximal Cohen-Macaulay faithful *R*-module. Also, by Proposition 4.6, $r(\omega_C) = \mu(C)$.

 $(ii) \Rightarrow (i)$. We claim that $C \otimes_R Q \cong \omega_R$. One can use [21, Proposition 3.4.7], and the exact sequence $0 \to R \xrightarrow{x} R \to R/xR \to 0$ to see that $Q/xQ \in \mathcal{A}_{C/xC}(R/xR)$ for any non-zero divisor x, and so that for any R-sequence $\underline{x}, Q/\underline{x}Q \in \mathcal{A}_{C/\underline{x}C}(R/\underline{x}R)$. Note that $C \otimes_R Q$ is a maximal Cohen-Macaulay R-module by [7, Lemma 2.11]. First we prove that $r_R(C \otimes_R Q) = 1$. Let \underline{x} be a maximal R-sequence. Note that $r_R(Q) = v \dim_k \operatorname{Ext}^n_R(k, Q)$ and the later is equal to $v \dim_k \operatorname{Hom}_{R/\underline{x}}(k, Q/\underline{x}Q)$. Set $\overline{R} := R/\underline{x}, \overline{Q} := Q/\underline{x}Q, \overline{C} := C/\underline{x}C$ and $\overline{C \otimes_R Q} := (C \otimes_R Q)/\underline{x}(C \otimes_R Q)$. By using Hom-Tensor adjointness, [4, Lemma 3.1.16], and $\overline{Q} \in \mathcal{A}_{\overline{C}}(\overline{R})$, we have the following equalities:

$$r_{R}(Q) = v \dim_{k} \operatorname{Hom}_{\overline{R}}(k, \operatorname{Hom}_{\overline{R}}(\overline{C}, \overline{C} \otimes_{\overline{R}} \overline{Q}))$$

$$= v \dim_{k} \operatorname{Hom}_{\overline{R}}(k, \operatorname{Hom}_{\overline{R}}(\overline{C}, \overline{R} \otimes_{R} (C \otimes_{R} Q)))$$

$$= v \dim_{k} \operatorname{Hom}_{\overline{R}}(k \otimes_{\overline{R}} \overline{C}, \overline{C} \otimes_{R} \overline{Q})$$

$$= v \dim_{k} \operatorname{Hom}_{\overline{R}}(\overline{C}, \operatorname{Hom}_{\overline{R}}(k, \overline{C} \otimes_{R} \overline{Q})))$$

$$= \mu_{\overline{R}}(\overline{C}) \cdot r_{\overline{R}}(\overline{C} \otimes_{R} \overline{Q}).$$

$$= \mu_{R}(C) \cdot r_{R}(C \otimes_{R} R).$$

By hypothesis $r_R(Q) = \mu(C)$, thus $r_R(C \otimes_R Q) = 1$. On the other hand $Q \cong \text{Hom}_R(C, C \otimes_R Q)$. As Q is a faithful R-module we get $C \otimes_R Q$ is faithful. Hence by [4, Proposition 3.3.13], ω_R exists and is isomorphic to $C \otimes_R Q$. Therefore,

$$Q \cong \operatorname{Hom}_R(C, C \otimes_R Q) \cong \operatorname{Hom}_R(C, \omega_R) \cong \omega_C.$$

By using Theorem 4.12 and Corollary 4.5, we have the following result.

Corollary 4.13. Let R be a Cohen-Macaulay ring. If $r_R(R) = \mu(C)$, then C is the canonical module of R.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

- Y. Aoyama, On the depth and the projective dimension of the canonical module, Japan. J. Math., 6 (1980), 61-66.
- [2] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ., 23 (1983), 85-94.
- [3] M. P. Brodmann, R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Second edition, Cambridge University Press, 2013.
- [4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised edition, Cambridge University Press, Cambridge, 1993.
- [5] L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc., 353(5) (2001), 1839-1883.
- [6] L. W. Christensen and S. Sather-Wagstaff, A Cohen-Macaulay algebra has only finitely many semidualizing modules, Math. Proc. Cambridge Philos. Soc., 145(3) (2008), 601-603.
- [7] Mohammad T. Dibaei and Arash Sadeghi, *Linkage of modules and the Serre conditions*, J. Pure Appl. Algebra, 219 (2015), 4458-4478.
- [8] H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
- [9] A. J. Frankild, S. Sather-Wagstaff, and A. Taylor, *Relations between semidu*alizing complexes, J. Commut. Algebra, 1(3) (2009), 393-436.
- [10] E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
- [11] R. Hartshorne, Local Cohomology, A seminar given by A. Grothendieck, Harvard University, Fall 1961, Springer-Verlag, Berlin-New York, 1967.
- [12] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lect. Notes in Math., Vol. 238, Springer-Verlag, Berlin-New York, 1971.
- [13] M. Hochster and C. Huneke, *Indecomposable canonical modules and connect*edness, Commutative algebra: syzygies, multiplicities, and birational algebra

(South Hadley, MA, 1992), Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197-208.

- [14] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986.
- [15] S. Nasseh and S. Sather-Wagstaff, Geometric aspects of representation theory for DG algebras: answering a question of Vasconcelos, J. Lond. Math. Soc. (2), 96(1) (2017), 271-292.
- [16] I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc., 32 (1972), 417-420.
- [17] R. Y. Sharp, Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. Lond. Math. Soc. (3), 25 (1972), 303-328.
- [18] R. Takahashi and D. White, Homological aspects of semidualizing modules, Math. Scand., 106(1) (2010), 5-22.
- [19] W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, No. 14., North-Holland Publishing Co., Amsterdam-Oxford, 1974.
- [20] S. Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois J. Math., 51(1) (2007), 255-285.
- [21] S. Sather-Wagstaff, Semidualizing Modules, in preparation, URL: https://www.ndsu.edu/pubweb/ ssatherw/DOCS/sdm.pdf.

Mohammad Bagheri (Corresponding Author) and Abdol-Javad Taherizadeh Faculty of of Mathematical Science and Computer Kharazmi University 15719-14911, Tehran, Iran e-mails: m1368bagheri@gmail.com (M. Bagheri) taheri@khu.ac.ir (A. Taherizadeh)