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ABSTRACT. A purely inseparable field extension K of a field k of character-
istic p # 0 is said to be wg-generated over k if K/k is not finitely generated,
but L/k is finitely generated for each proper intermediate field L. In 1986,
Deveney solved the question posed by R. Gilmer and W. Heinzer, which con-
sists in knowing if the lattice of intermediate fields of an wp-generated field
extension K /k is necessarily linearly ordered under inclusion, by constructing
"MK : k] =p?" for

all positive integer n. This example has proved to be extremely useful in the

an example of an wp-generated field extension where [k?f7

construction of other examples of wp-generated field extensions (of any finite
irrationality degree). In this paper, we characterize the extensions of finite
irrationality degree which are wp-generated. In particular, in the case of un-
bounded irrationality degree, any modular extension of unbounded exponent
contains a proper subfield of unbounded exponent over the ground field. Fi-
nally, we give a generalization, illustrated by an example, of the wp-generated
to include modular purely inseparable extensions of unbounded irrationality

degree.
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1. Introduction

Let « be an infinite cardinal. In universal algebra, an algebra A is said to be a
Jénsson a-algebra if A has cardinality a, while each proper subalgebra B of A has
cardinality less than « [4, p. 469]. Following this terminology, R. Gilmer and W.
Heinzer extended this notion for the first time in [12] to generating sets. Recall that
the algebra A is said to be a Jénsson a-generated algebra if A has a generating set of
cardinality «, no generating set of smaller cardinality, and each proper subalgebra
B of A has a generating set of cardinality less than «. The authors first gave
special attention primarily to the cases where a = wq the first infinite cardinal,
and where o = wy. They then examined separately in [11] a problem of this class

for field extensions. Let K be a purely inseparable field extension of a field k of
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characteristic p # 0, by analogy, K is said to be wg-generated over k (for Jénsson
wo-generated extension) if K is not finite dimensional over k and yet every proper
intermediate field is finite dimensional over k [8]. Moreover, this last condition
implies that K /k is countably generated, and hence [K : k] = wp. In [11], Robert
Gilmer and William Heinzer focused on the question of whether [k? N K : k] = p
is essentially the only possibility for that K to be wg-generated over k. More
specifically, if K is wg-generated over k, must [kp_l NK:kl =p? In[g], J. K.
Deveney constructed an example of an wg-generated field extension K/k such that
for any positive integer n, [k?"" N K : k] = p**. It is easy to verify that K/k is
a modular relatively perfect extension of unbounded exponent and of irrationality
degree 2. Recall that the irrationality degree of K/k has been defined [13, Definition
2.3] by: di(K/k) = Su§(|Bn|) where | B,,| is the cardinality of a minimal generating
ne

set B, of k" " N K over k. Motivated by Dveney’s result, for each integer j we

have constructed in [6] a purely inseparable extension K/k satisfying:

e Every proper subfield of K/k is finite over k.
e For every positive integer n, [k? N K : k] = p/™.

Improving thus the counterexample of J. K. Deveney, such an extension is also
modular and relatively perfect of unbounded exponent, but of irrationality degree
j. It’s about essentially a form of irreducibility in the sense that K/k cannot be
decomposed into k — K7 — K with each of K;/k and K/K; having unbounded
exponent. Furthermore, any extension of finite irrationality degree is composite of
finite number of irreducible extensions. We also give a necessary and sufficient con-
dition for an wg-generated field extension to be of finite irrationality degree. More
specifically, we show that for an wg-generated field extension to be of finite irra-
tionality degree it is necessary and sufficient that the minimal intermediate field m
of K/k over which K is modular is nontrivial (m # K). In particular, any modular
and wy-generated field extension is of finite irrationality degree, and therefore if we
take these results into account, it is very probable that the wp-generated is related
to the extensions of finite irrationality degree. This leads us to study closely the
wo-generated in the restricted sense. Consistent with this terminology, and with
the aim of extending the wp-generated to modular purely inseparable extensions of
unbounded irrationality degree, we propose another generalization. An extension
K/k is said to be j-wo-generated if K /k does not admit any intermediate field L of
unbounded exponent over k and of irrationality degree less than or equal to j. It
is about a form of local irreducibility conditioned by the irrationality degree. If for

every integer j, K/k is j-wo-generated, K/k will be called +oo-wp-generated field
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extension. We immediately verify that any wg-generated field extension is 4o00-wg-
generated, and conversely any +o0o-wp-generated field extension of finite irrational-
ity degree is wg-generated. Moreover, for reasons of noncontradiction, we construct
an example of a +o0o0-wy-generated field extension of unbounded irrationality degree.

Throughout this paper, unless otherwise stated, all considered fields are purely
inseparable extensions of a common ground field k. They are to be viewed as

contained in a common algebraically closed field €.

2. Definitions and preliminary results

Let x be an element of K, the least positive integer e such that 2?° € k is called
the exponent of x over k, and is denoted by o(z/k). The maximum of the set of
exponents of elements of K is called the exponent of K over k, if it exists, that is,
the smallest integer e (if it exists) such that K?° C k, where K?* = {a?"|a € K},
which will be denoted by o01(K/k). Otherwise, K/k is said to be of unbounded
exponent. If K/k is a finite extension, the irrationality degree of K/k has been
defined by di(K/k) = min(|G|), where G is a generating set of K/k. If K/k is
of unbounded exponent, a minimal generating set may not exist [18, Lemma 1.16,
Proposition 1.23]; but as for any positive integer n, k» " N K/k has an exponent,
according to [18, p. 2, Corollary 1.6], a subset B of k" N K/k is an r-basis (used
as a shortcut for relative p-basis [18, p. 1, Definition 1.2]) of k* " N K /k if and only
if B is a minimal generating set of k» N K /k, and consequently, the cardinality
of any minimal generating set of k*~ N K /k depends only on n, because it is an r-
basis, and so it has a unique cardinality by the theory of general dependence [17, p.
132-133, Lemma 6.1, corollary 6.2]. Extending the minimum number of generator
of K/k, due to M. F. Becker and S. Mac Lane in [1], which was interesting/valid
only in the case when K/k is finite, we have recently defined the irrationality degree
of K/k as follows: di(K/k) = su§(|Bn|) where |B,,| is the cardinality of a minimal

ne

generating set B, of k» " N K over k [13, Definition 2.3]. If moreover di(K/k)
is finite, then K/k is called a g-finite extension [13, Definition 3.1], i.e., there
must exist an integer M such that for every positive integer n the field k» " N K
is generated by at most M elements over k. It is clear that every finite purely
inseparable field extension is in particular g-finite. The converse is true if and only

if K/k has an exponent. We will often use the following theorem.

Theorem 2.1 ([13], Theorem 2.7). For any family k C L C L' C K of purely
inseparable extensions, we have di(L'/L) < di(K/k).
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We will now highlight the notion of exponents of g-finite extensions (for more
details see [13]), by extending some basic definitions and notations given in [7, p.
373].

If K/k is a finite purely inseparable extension. An r-basis B = {a1, a9, ...,a,}
of K/k is said to be canonically ordered (Rasala used in [21] the term normal
generating sequence) if o(a;/k(a1,as,...,a;-1)) = 01(K/k(a1,a2,...,a5-1)) for
j =1,2,...,n. By [6, p. 138, Lemma 1.3], the integer o(a;/k(a1,..., a;—1))
thus defined satisfies o(a;/k(a1,...,a;-1)) = inf{m € N| di(k(K?")/k) < j —
1}. We immediately deduce the result [20, p. 90, Satz 14] which ensures the
independence of integers o(a;/k(ai,...,a;—1)), (1 < i < n), with respect to the
choice of canonically ordered r-basis {ai,...,a,} of K/k. In the sequel, we set
0;(K/k) = o(a;/k(a1,...,a;—1)) if 1 < i < n, and 0;(K/k) = 0 if ¢ > n where
{ai1,...,a,} is a canonically ordered r-basis of K/k. The invariant o;(K/k) defined
above is called the i-th exponent of K/k.

If K/k is g-finite, we denote the intermediate field k*~ " N K by k, for all n.
By virtue of [7, p. 374, Proposition 6], for each positive integer j, the sequence
of natural numbers (0;j(k,/k))n>1 is increasing, and thus (o, (ky/k))n>1 converges
to 400, or (0;(kn/k))n>1 becomes constant after a certain rank. One can readily
check that, if (0;(kn/k))n>1 is bounded, then for each ¢ > j, (0i(kn/k))n>1 is also

bounded (and therefore stationary).

Definition 2.2 ([13], Definition 3.2). Let K/k be a g-finite extension, and j a

positive integer. Then the invariant o;(K/k) = lirf (0j(kn/k)) is called the j-th
n—-+0oo

exponent of K/k.

The following result characterizes the exponents of K/k by relating to the be-

havior of irrationality degree of certain intermediate fields of K/k.

Theorem 2.3 ([13], Lemma 3.1). Let s be a positive integer (s > 1) and K/k a q-
finite extension, then os(K/k) is finite if and only if there exists a natural number n
such that di(k(KP")/k) < s, and we have o,(K/k) = inf{m € N|di(k(K?")/k) <
s}y. In particular, os(K/k) is infinite if and only if for each m € N, di(k(K?")/k) >

S.

A field k of characteristic p is said to be perfect if kP = k. In the same order
of ideas, K /k is said to be relatively perfect if k(KP) = K. We check immediately
that:

e If K/L and L/k are relatively perfect, then K/k is also relatively perfect;
o If K/k is relatively perfect, then the same is true for L(K)/k(L);
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e For any family (K;/k);cs of relatively perfect extensions, HK}//{ is also

K3
relatively perfect.

Therefore, there exists a unique maximal intermediate field M of K/k where M/k
is relatively perfect (for more details see [22, p. 16, Proposition 6]). M is called
the relatively perfect closure of K/k and is denoted by rp(K/k). The result
below makes it possible to reduce the study of properties of exponents of a ¢-finite

extension to a finite extension through the relatively perfect closure.

Theorem 2.4 ([13], Theorem 3.9). Let K, /k be the relatively perfect closure of
irrationality degree s of a q-finite extension K/k (di(K,/k) = s), then we have:

(1) For each t <s, oi(K/k) = +00.
(2) For eacht > s, 0oi(K/k) = 01_s(K/K,).

In addition, o;(K/k) is finite if and only if t > s.
Here is a list of immediate consequences.

Proposition 2.5 ([13], Proposition 3.10). Let K and L be two intermediate fields
of a g-finite extension M/k. For every j € N*, 0;(L(K)/L) < 0,;(K/k).

Proposition 2.6 ([13], Proposition 3.11). Let k C L C L' C K be g-finite exten-
sions. For each j € N*, 0;,(L'/L) < 0;(K/k).

2.1. Modular extensions. Before we state further preliminaries which we will
also need later, we review the following: Let K7 and K5 be two intermediate fields
between k and K that are k linearly disjoint. For every subfields Ly, Lo of K3 /k and
Ky /k respectively, it is well-known that Ly(K7) and Li(K) are k(Lq1, Lo) linearly
disjoint [16, p. 35, Lemma 2.5.3]. In particular, La(K7) N Ly (K2) = k(L1, L2).
Define a family {F;|i € J} of field extensions of k to be linearly disjoint over k
if every finite subfamily is linearly disjoint over k [16, p. 36]. It is not hard to
see that k((F})icy) = H F; ~ @ (®%F;)ics (for additional information about the
tensor product see |2, ZIGI(i7 p. 42, Definition 5]) if and only if the family (F;/k);cs
is k linearly disjoint. Moreover, the properties of linear disjointness of the finite
case naturally extend to any linearly disjoint family. In particular, for all i € J, let
L; be a subfield of F;/k, if (F;/k);cy is k linearly disjoint, by transitivity of linear
disjointness, we have (L;/k);c; (respectively, (( H L,)F;/k)icy) is k (respectively,
neJ
H L,,) linearly disjoint.
neJ
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A subset B of K which we will prefer called a modular r-basis (M. Weisfeld
used the term sub-basis see [25, p. 435]) of K over k if and only if it fulfills the
following conditions: BNk = (), K = k(B), and, for any finite subset {by,...,b;} of
B, the canonical homomorphism of the tensor product k(b1) ®p ... ®j k(b:) into K
is a monomorphism. This is equivalent, by [18, p. 14, Definition 1.21], to for every

¢
finite subset {b1,...,b:} of B, [k(b1,...,b) : k] = H[k(bz) : k], that is, k(b1,...,bs)

i=1
is a tensor product over k of the simple extensions k(b1),. .., k(b).

Recall that K is modular over k if and only if K?" and k are linearly disjoint
over their intersection for all n. Sweedler showed in [23, p. 403, Theorem 1] that if
K over k has a finite exponent, then K is modular over k if and only if K can be
written as the tensor product of simple extensions of k, that is, K/k has a modular
r-basis.

As an immediate consequence of the linear disjointness, we have:

Proposition 2.7. Let K/k be a purely inseparable extension having a modular
r-basis B and (eq)acn a family of integers such that 0 < e, < o(a/k). Let L =
E((aP"")aen), then (B\ L) and ((a?"* )aep \ k) are two modular r-basis, respectively
of K/L and L/k. Furthermore, for each a € B, o(a/L) = e,.

For each a € B, we put n, = o(a/k). Consider now the subsets B; and By of
B defined by By = {a € B|n, > j}, Bo = B\ B1 = {a € B|ng < j} (j being a

natural number not exceeding o1 (K/k)).

Proposition 2.8 ([13], Proposition 4.6). Under the conditions specified above, for
NK =k((a”" " aep, Ba2).

J

any integer 1 < j < 01(K/k), we have kP

Corollary 2.9 ([13], Corollary 4.7). For every modular extension K/k, and for
each, positive integer n, di(k? "N K/k) = di(k?" N K/k). In particular, di(K/k) =
di(k?”" N K/k).

We have a similar result under weaker hypotheses than that in [18, p. 94,
Proposition 3.3], as well as the [9, p. 289, Theorem 3.2].

Proposition 2.10. Let Ky and Ky be subfields of K/k such that K ~ K; ® K.
If K/K; is modular and K5 /k has an exponent, there exists a subset B of K such
that K ~ K1 ®y, (®kk(a))a63,

Proof. First, as K ~ K; ®; K3, then for each natural number 4, for any r-
basis C of k(Kgpz)/k:, C is also an r-basis of Kl(KQpl)/Kl. We then choose an

r-basis B of Ks/k, as Ko/k has an exponent, then B is a minimal generating
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set of Ky/k. Let By,...,B, be a partition of B obtained by the following pro-
cedure: By = {z € B|o(z/k) = 01(Ks/k) = e1}, and for each 1 < i < n,
B; = {z € Blo(z/k(B1,...,Bi—1)) = 01(Ka/k(B1,...,B;_1)) = e;}. By virtue
of linear disjointness, for each ¢ € {1...,n}, for each © € B;, we also have
o(x/K1(B1,...,Bi—1)) = 01(K/K1(B1, ...,Bi—1)) = e;. Taking into account
[19, p. 326, Theorem 1], k(Kgpei) = k(Blpei,...7 Bi_lpei). Therefore, for each
i €{2,...,n}, the products (H (G)O‘pei )¢ where G is a finite subset of elements in

[e3

Bi1U---UB;_; and the « are suitably chosen, form a linear basis of k(Kgpei)/k,
and by linear disjointness it is also a linear basis of K;(KoP") = Ky (K?™)/K.
Let M; denote this basis, and let x € B;, there exists some unique ¢, € k such

that z = anym (yo € M;), furthermore the ¢, are also unique in K;. On
[0}

the other hand, by virtue of modularity, for each i € {1,...,n}, K P" and K are
K; N KP" linearly disjoint. As K (KoP™") = K (K?™) and M; C K" then M,
is also a linear basis of KP* over Ky N KP*. Taking into account the uniqueness
of linear combinations of z in the linear basis M;, we deduce by identification that
the co € kN KP", and so B C kN KP" (KyP" (B"",...,Bi_1"")) for each
i€ {l...,n}. By [18, p. 94, Proposition 3.3], there exists a modular subextension
J/k of finite exponent of K/k such that K ~ K; ®; J. Thus, the result follows

immediately from the Swedleer’s theorem. O
In the finite case, the following result generalizes the above proposition.

Proposition 2.11. Let K; and Ky be two intermediate fields of purely insep-
arable extension L/k which are k linearly disjoint. Suppose that di(L/K;) =
di(K3/k) = n and L/K;, has an exponent. Let s be the smallest integer such
that 05(Ka/k) = 0, (K2 /k). If L/ Ky is modular, there exists a canonically ordered
r-basis {a1, ..., an} of K1(K2)/Ky verifying

Kl(Kg) ~ K ® k(al, .. .,as) Rk k(as+1) R - g k(an)

Proof. To simplify notation, we set e; = 0;(Ks2/k) for j = 1,...,n and K =
K1(Ks). Let {aq,...,a,} be a canonically ordered r-basis of Ky/k. In view of [7,
p. 374, Proposition 7], {a1,...,a,} is also a canonically ordered r-basis of K/K;

and, for each j € {1,...,n}, 0;(K/K;) = e;. According to [6, p. 140, Proposition

5.3], for i = s,...,n, we obtain the structure equations (of «; with respect to
E(ai,...,as_1)) of the form a?" = Z Cia,. .., Oés—l)spe” (x). Here Ay is
e€As 1

a suitable multi-index set and the C? are unique elements of k. Therefore, for all
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i € {s...,n}, the structure equations of «; with respect to Ky(aq,...,as-1) also
defined by the relation () above, where the C! are also unique elements of K. As
L/K; is modular, using the criterion of modularity [7, p. 375, Proposition 10], for
each (i,e) € {s,...,n} x Ag_1, we will have (Ogi)p*e" € L. Let FF = k((Cé)piEn)
where (i,¢€) runs through the set {s,...,n} x A;_1 and H = K1(F)(o,...,as5-1).
It’s clear that o1(F/k) < e, and K C H C L. According to Theorem 2.1 and
Proposition 2.6, n = di(K/K;) < di(H/K;) < di(L/K,) = n, and for each i €
{s,...,n}, en, = 0;(K/K;y) < 0;,(H/K;) < e,. It follows that di(H/K;) = n,
and for each ¢ € {s,...,n}, e, = 0;(H/K1). As es_1 > es = ey, by the r-basis
completion algorithm [7, p. 374, Proposition 8], there exists elements bs, ..., b, € F
such that {ay...,as-1,bs,...,b,} be a canonically ordered r-basis of H/K;. In
particular, we will have:

e For each i € {1,...,s — 1}, ¢, = 0;(H/K1) = 0;(Ki(a1,...,as-1)/K1)
=o0;(k(ag,...,as—1)/k).

e For each j € {s,...,n}, e, = 0;(H/K1) = o(bj/K1(o1...,05-1,bs,...,
bi—1)) < o(bj/k(bs,..., bj—1)) < 01(F/k) < ey, and so e, = oj(H/K;)
= 0j(k(bs,...,bn)/k).

Hence, H =K ~ K1 @ k(ay,...,as_1) Qk k(bs) Qf - - Q k(by). |

2.2. Equiexponential extensions.

Proposition 2.12. Let K/k be a purely inseparable extension of exponent e. The
following assertions are equivalent:
(1) For every r-basis G of K/k, for each a € G, o(a/k(G\{a})) = o(a/k) =e.
(2) There exists an r-basis G of K/k such that for each a € G, o(a/k(G \
{a})) = ofa/k) = .
(3) There exists an r-basis G of K/k verifying K ~ ®y(k(a))eeq, and for each
a€ G, ola/k) =e.
(4) Any r-basis G of K/k satisfies K ~ ®(k(a))aca and 01(K/k) = e.

Proof. We immediately verify that (1) = (2) = (3), so we just have to show
that (3) = (4) = (1). Assume that there exists an r-basis G of K/k verifying
K ~ Q(®kk(a))ace, and for each a € G, o(a/k) = e. Let B be a finite r-
independent (used as shortening of relatively p-independent) subset of K/k, so there
exists G1 C G such that BU Gy is an r-basis of K/k, and therefore |B| = |G\ Gy
which we designate by n. Since the exponent of any element of B over k is less

than the exponent of K/k, we deduce that [k(B) : k] < H p°l@/k) < pen - and
a€B
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therefore [K : k(G1)] < [k(B) : k] < p". But, by virtue of the linear disjointness,

(K : k(G1)] = [K(G\G1) : k] = p", s0 [K : k(G1)] = [k(B) : k] = [ p*/¥ =p".
aceB
It follows that k(B) ~ ®i(®rk(a))ecn. Consequently, any r-basis B; of K/k

satisfies K ~ ®@(®k(a))qep, and 01(K/k) = e. On the other hand, condition
(1) follows from the fact that if G is an r-basis of K/k, then the same is true for
((ab)acc\(py U {b}) for every element b of G with the family((k(ab))acc by, k(D))
of subfields of K/k are k linearly disjoint according to condition (4). O

Definition 2.13. An extension that satisfies one of the conditions of the above

proposition is called equiexponential extension of exponent e.

It is easy to verify the following equivalent conditions:
(1) K/k is equiexponential of exponent e.
(2) There exists an r-basis G of K/k, for every finite subset G; of G, we have
k(G1)/k is equiexponential of exponent e.
(3) For any r-basis G of K/k, for any finite subset G of G, we have k(G1)/k

is equiexponential of exponent e.

In particular, any equiexponential extension is modular.

Proposition 2.14. For any modular relatively perfect extension K/k, for all n,

n

k,/k is equiexponential of exponent n (recall that k, = kP N K ).

Proof. From Proposition 2.8, it suffices to show that k(k,”) = k,—_1. According to
the modularity of K /k, K?" and k are kN K?" linearly disjoint for each n > 1, and
by virtue of transitivity of linear disjointness, k*"  (K?") and k are k?" ' (kN K?")
linearly disjoint. But K/k is relatively perfect, so g (KP") = KP""". Therefore

n—1

ENKP" = k" (kN KP") or, equivalently, to k(k,") = ky_1. O

As a consequence, in the case of ¢-finite extensions (notably case of finite exten-

sions) we give a more precise version of the Proposition 2.14.

Proposition 2.15 ([6], p. 147, Proposition 9.4). Let K/k be a q-finite extension
of irrationality degree t which is relatively perfect and modular (respectively, finite
extension and equiexponential). Let n and m be two natural numbers such that
n < m (respectively, n < o1(K/k)). The following properties are verified:

o di(kp/kyn) =1t.

e k. /kn is equiexponential of exponent m — n;

° kff ) =kn.

In particular, for each positive integer n, we have [ky, k] = p™*.

(m—n) m—n

NK =ky and k(kP,
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Corollary 2.16. If K/k is an equiexponential extension of exponent e, then:
(1) For each i € {1,...,e}, ki/k and K/k; are equiezponential of exponent i
and e — i, respectively.
(2) For each i € {1,...,e}, k(KP')/k and K/k(KP") are equiezponential of

exponent e — i and i, respectively.

The above theorem extends [9, p. 292, Theorem 4.4] concerning the homogeneity
of modular r-basis of an equiexponential extension (for more details, we refer to [9]
and [10]).

Theorem 2.17. Let k C L C K be a purely inseparable extensions such that K/k
is equiexponential of exponent e. If K/L is modular, there exists an r-basis G of
K /k such that the set {apo(a/L> la € G and o(a/L) < e} is a modular r-basis of L/k.

Proof. Since K/L is modular of finite exponent, there exists an r-basis By of
K/L such that K ~ ®r(®rL(a))acn,, (¥). To lighten the notation, we set e, =
o(a/L) for each a € By and C = (a?")4ep,. Let By be a subset of L such
that Bs is an r-basis of L(KP)/k(K?). Taking into account the transitivity of r-
independence, By U By is also an r-basis of K/k. Now consider the extension M of
k obtained by adjoining C' and Bs to k. It’s clear that M C L, moreover as K/k is
equiexponential, we will have K ~ ®(®xk(a))acp,uB,- By virtue of transitivity of
linear disjointness, K ~ ®y (®@p M (a))aes,, (**). In particular, from the relations
(*) and (**), for every finite family {ay,...,a,} of elements of By, L(ay,...,a,) ~
L(a1)®r---®@rL(a,) and M(ay,...,a,) ~ M(a1)®p - --®p M(ay,). By application

of [7, p. 374, Proposition 7], we have successively [L(a1,...,a,): L] = Hpe“i and
i=1

n
[M(a1,...,a,) : M] = Hpe“i or, equivalently, to L and K are M linearly disjoint;
fromwhenceL:Lﬁ[?le. O
3. +oo-wp-generated extensions

3.1. u-sequences.

Definition 3.1. A sequence k = Ko C K; C---C K,, C--- C K of subfields of a
purely inseparable extension K /k is said to be u-sequence (upper sequence) in K

over k if for any index i, K;y1/K; has unbounded exponent.

We tacitly assume henceforth, unless otherwise stated, that K/k is of unbounded
exponent. We check that k = Ko C K; C --- C K,, C --- C K is a u-sequence if
and only if the same holds for L = L(Ky) € L(K;) C --- C L(K,) C --- C K for
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every intermediate field L between k and K that is finite over k. In particular, if
K/k is g-finite, then k = Ky C K; C --- C K,, C --- C K is a u-sequence if and
only if it is the same for k = Ko C rp(K1/k) C--- Crp(K,/k) C--- C K.

Proposition 3.2 ([14], Proposition 2.5). Any decreasing sequence of a q-finite

extension 1s stationary.

Proof. Let (K, /k) be a decreasing sequence of subfields of K/k and (F;/k) the
sequence associated with their relatively perfect closure. In view of Theorem 2.1
and [13, Proposition 3.1], the sequence of integers (di(F,,/k)) is decreasing, hence
stationary starting at rank ng. We deduce by [13, Corollary 3.7] that di(F,,/Fy,) =
0 for all n > ng, and so F,, = F,, for all n > ny. By virtue of monotony, for
all n > ng, [Kny1 : Fuy) < [Kp ¢ Fp,]. In other words, the sequence of integers
([Kpn : Fugl)n>ne is decreasing, whence stationary from a rank e or, equivalently,
to for each n > e, [K,, : F,,] = [K¢ : Fy,]. As for each n > e, K,, C K., then
K, = K. for every n > e. O

Corollary 3.3. In a g-finite extension, any u-sequence is stationary.

Let K/k be a g-finite extension, we say that K/k has a u-sequence of length n
if K can be decomposed into extensions: k = Ko C Ky C --- C K,, = K such
that K;y1/K; has unbounded exponent for each i € {0,...,n—1}. Therefore, K/k
has a maximal u-sequence, and any u-sequence in K over k may be prolonged to
a maximal u-sequence of K/k. It is apparent that a maximal u-sequence presents
an irreducible form in the sense that between two consecutive terms there is no
proper extension of unbounded exponent, and hence impossible to decompose two
consecutive terms into u-sequence of length 2. It should be noted that this form of

irreducibility will constitute the subject of what follows.

Proposition 3.4. In a q-finite extension K/k the length of any u-sequence of K/k

is increased by di(K/k). In particular, K/k has a u-sequence of mazximal length.

Proof. We come back to the case where all consecutive terms are relatively perfect

in which case the result follows immediately from [13, Proposition 3.8]. ]

Remark 3.5. In general, the terms and length of a maximal u-sequence are not
unique. However, one can look for other forms of uniqueness, for example one may
wonder if a u-sequence of relatively perfect terms and of maximum length preserves
the irrationality degree up to a permutation. We do not yet have a precise answer

to such a question.
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3.2. wp-generated extensions. For convenience, we extend slightly the definition

of wy-generated as follows:

Definition 3.6. A purely inseparable extension K/k of unbounded exponent is
called wog-generated if L/k has bounded exponent for each proper intermediate field
L.

In particular, if K/k is ¢-finite, then K/k is wo-generated if every proper in-
termediate field is finite dimensional over k and; consequently we return to the
definition given separately by J.K Devney in [8], R. Gilmer and W. Heinzer in [11].
We immediately check that:

e Any wg-generated extension is relatively perfect.
o K/k is wop-generated if and only if & — K is a u-sequence of maximal
length and K/k is relatively perfect.
o If K is relatively perfect over k, then for every intermediate field L of K/k
of finite exponent, L(K)/L is wp-generated if the same holds true for K/k.
The result below ensures the existence of wy-generated extensions. More specif-

ically, we have:

Theorem 3.7. Let K/k be a q-finite extension of unbounded exponent. The set H
of subfields of K/k of unbounded exponent ordered by inverse inclusion is inductive
(namely, K1 < Ky if and only if Ko C K;). In particular, K/k contains an

wo-generated extension.
Proof. Immediately follows from Propositions 3.2 and 3.4. O

Without loss of generality, we agree that the definition of an wp-generated ex-
tension include the extensions of bounded exponent as special cases, since every

subfield of an extension of bounded exponent is also of bounded exponent.

Proposition 3.8. Any g-finite extension is decomposed into a finite number of

wp-generated extensions.

Proof. The result is clear if K/k is finite. Otherwise, by Proposition 3.4, K/k has
a u-sequence k = Ky C K7 C --- C K, = K of maximal length n. Necessarily
K; C K;41 is a u-sequence of maximal length 1. Otherwise K/k admits a u-
sequence of length greater than n, a contradiction. Consequently, we are led to
prove the result when k C K is of maximal length. In particular, rp(K/k)/k has no
a proper subfield of unbounded exponent. However, according to [13, Proposition
3.1], K/rp(K/k) is finite, and consequently K/k decomposes into a finite number

of wy-generated extensions. (Il
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Sweedler showed in [23, p. 404, Corollary 2] for any purely inseparable extension
K /k, there exists a unique minimal intermediate field m of K/k over which K is
modular. Improving [6, p. 148, Theorem 1.4], we have shown in [15, p. 75, Theorem
3.3] that m is not trivial when K/k is ¢-finite, i.e, m # K. More precisely, if K/k
is of finite irrationality degree and of unbounded exponent, the same is also true
for K/m. However, if K/k is of unbounded irrationality degree, we may well lose
this property by obtaining m = K (for example see [6, p. 149]).

In the case of modular extensions, the following result shows that the wy-generated

becomes an intrinsic property exclusively linked to the g-finite extensions.

Theorem 3.9. For an wgy-generated extension K/k to be q-finite it is necessary
and sufficient that the minimal intermediate field m over which K is modular is

nontrivial, i.e., m # K.
In the proof, we will need the following result:

Lemma 3.10. Let K/k be a purely inseparable extension of unbounded exponent
and irrationality degree. If K/k is relatively perfect and modular, then K/k contains

a proper modular subfield L of unbounded exponent over k.

Proof. We will build by induction a strictly increasing sequence (K,,),>1 of mod-
ular intermediate field of K/k such that for all n, K, /k has exponent n. As
K /k is relatively perfect, according to Proposition 2.14 and Corollary 2.9, for each
n>1, di(k? " N K/k) = di(k?" N K/k) = di(K/k) and k? " N K/k is equiex-
ponential of exponent n. Let G; be an r-basis of KN K/k, it follows that
P NK ~ @k (®rk(a))eeq,- Let us choose an element x of Gy, since G is infi-
nite, there exists a finite subset G} of G; such that x ¢ k(G}), in which case we
denote Ky = k(G%). Tt is clear that Kj/k is modular. We suppose that we have

constructed a sequence of extensions k C K7 C Ky C ... K, C K such that

(1) For each i € {1,...,n}, K;/k is finite modular extension.

(2) For every i € {1,...,n}, o1(K;/k) = 1.

3) z ¢ K,,.
Let Gn41 be an r-basis of k» " N K/k, from Proposition 2.12, k¥ " N K ~
D1(@1k(a))accn,r- As 01(Kn/k) = n, we deduce that K, C k* " N K. But
K, /k is finite and G4 is infinite, therefore there exists a finite subset G, of
Gp+1 such that K, C k(G), ). If 2 € k(G 1), then K, = k(G ) is suitable.
If ¢ € k(G),,,), since TN K~ @p(01k(a))acar . Ok (®kk(a))aeninGy, .

n+1

r & k(Gny1 \ G, 1). Otherwise, as k(Gj, ;) and k(Gni1 \ G}, ;1) are k linearly
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disjoint, then = € k(G ;) Nk(Gny1 \ Gy, 1) = k, a contradiction. Let y be an
element of Gy, 11 \ G}, 1, (y exists because G, 11 is infinite and G, |, is finite). Let

K1 = K,(y), it is immediately verified that

o & & Ky, since Kyp1 CE(Gne1 \Gryy) and 2 € k(Gry1 \ Glpq)-
e K,i1/k is finite and o1 (K,,11/k) = o(y/k) =n+ 1.
o Kpi1 ~ K, ® k(y), (application of the transitivity of linear disjointness
of k(G7,, 1) and k(Gn41\ G}, 11)), and as K, /k is modular, by [5, p. 55,
Lemma 3.4], K,,+1/k is modular.
Hence, K, 1/k is suitable, and so L = U K; is modular [24, p. 40, Proposition

i>1
1.2] and of unbounded exponent over k with = & L. O

Proof of Theorem 3.9. The necessary condition immediately follows from [15,
p. 75, Theorem 3.3]. Conversely, let m be the minimal intermediate field over
which K is modular. Since K/k is wo-generated and m # K, m/k has an exponent
e, and from Lemma 3.10, K/m will be ¢-finite. In the following, for every n, we
set K, =mP = "NK and di(K/m) = I. Let G,, be an r-basis of K,/m, taking
into account Proposition 2.14 and Corollary 2.9, |G, | =1 and 01(K,,/m) = e + n.
Moreover, we have k(K,P" ) = k(mP*,G,P") = k(GpP"), so di(k(K,P )/k) < | and
01 (k(K,P")/k) > o1 (m(K,P")/m) = n. In particular, the extension H = |J k(K,?")
of k has unbounded exponent, but as K/k is wo-generated, we get K = H. However,
by virtue of [13, Proposition 2.3], di(H/k) = sug(di(Kn/k)) < 1, it follows that K/k
ne

is g-finite. O
Corollary 3.11. Any wg-generated modular extension is q-finite.

In the following subsection we extend the notion of wy-generated extension.

3.3. Generalization of an wy-generated extension.

Definition 3.12. Let j be a positive integer. A purely inseparable extension K /k of
unbounded exponent is said to be j-wg-generated if K/k has no proper intermediate

field of unbounded exponent and of irrationality degree less than or equal to j.

In other words, any proper intermediate field of K/k whose irrationality degree

does not exceed j strictly has an exponent.

Definition 3.13. A purely inseparable extension K/k is called +oo-wg-generated

if K/k is j-wo-generated for all j.
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Remark 3.14. By Theorem 3.9, any modular wp-generated extension is of finite
irrationality degree. This is no longer the case for +oo-wg-generated extension.
Indeed, in Theorem 3.20, we exhibit an example of a modular +oo-wy-generated
extension of infinite irrationality degree. The construction requires the following

results.

Theorem 3.15. Given a purely inseparable extension K/k which is relatively per-
fect and modular, and let L be a proper intermediate field of K/k. If K/L is modular
and [L : k] < oo, then for every integer n > e = oy(L/k), k? " N K/k(LP" ") is

modular. In particular, K/k(LPE*l) is also modular.

For the proof of this theorem, we will use the following results. Firstly, for all

non-negative integer n, consider K,, =k~ "N K and L, = L? "N K.
Lemma 3.16. Under the same assumptions of the above theorem, for each positive
integer n, there exists two subfields N and M of K, /k such that:
o L CKk(NP"), with N/k is finite.
o K, M ®, N~ (M®,L)®, N. Moreover, M/k and N/k are equiexpo-
nential of exponent n + e.
o L(M)/L(MP) and L(Lp4c")/L(MP) are L(MP) linearly disjoint.
o Lyio/L(M) is modular with di(Lyy./L(M)) = di(K,,/M) = di(N/k) =
di(K,/L(M)).

Proof. Since L/k has an exponent e, L C k» "N K; from whence L — LP "NK —
K, — Lpie. Let G be an r-basis of K, /k. As K/k is relatively perfect and
modular, then according to Proposition 2.14, K, /k is equiexponential of expo-
nent n + e. In particular, K,, ~ @(@rk(a))acq, and therefore Ko = k(K,P" ) ~
Or(@rk(aP"))aeq. But L/k is finite and L C Ky, so there exists a finite subset
G, of G such that L C k(G1?"). Let us denote the relative complement of G in
G by Gy, (G = G\ Gy), and consider the extensions N and M of k obtained,
respectively, by adjoining G; and G2 to k. It is immediately verified that:

e Ky~M®pN~(M®pL)®LN.

e M and N are equiexponential of exponent n + e.
In particular, for each x € Ga, o(z/L(G2 \ {z})) = n + e, and consequently if
there exists € G2 such that © € L(L,4+.")(G2 \ {z}), we will have n + e =
o(#/L(G2 \ {2})) < 01(L(Lnse?) (G2 \ {2})/L(G2 \ {})) < 01(L(Lnse?)/L) =
n+ e — 1, a contradiction; from whence G5 is r-independent in L,,./L or, equiv-
alently, to L(M) and L(L,+.”) are linearly disjoint over L(MP). Therefore there
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exists a subset G of L, . such that G2 U G5 is an r-basis of L, tc/L(Lpyc?), so
G2 U G3 is a minimal generating set of L,1./L. Since K/L is modular and rel-
atively perfect, Lt ~ Qn(®LL(a))eccuas ~ (L ®r M) ®@p (®LL(a))accs) ~
M @ (®1L(a))eeq,). Hence, L,(M) ~ M @ (9rL(a"))aeq, ~ (M @, L) @,
(@rL(a" ))aeqs € Kn and K,, ~ M @, N ~ (M @, L) @, N C Ly .. Firstly,
as N/k is equiexponential of exponent n + e and L C k(N?"), we will have
|G1| = di(N/k) = di(N/k(NP)) = di(N/k(N?")) < di(N/L) < di(N/k), and
thus di(N/L) = |G1]. On the other hand, by virtue of Theorem 2.1 and [13,
Corollary 2.5], we have |G3| = di(L,(M)/L(M)) < di(K,/L(M)) = di(N/L)
and di(K,,/L(M)) < di(Lpte/L(M)) = |Gs|, (namely K,, C L,i.). As a result,
|Gs| = |G1| = di(N/F). O

As K, M @, N ~ (M ®y L)®; N and K, /k are equiexponential of exponent
n + e, it is immediately verified that:

o Foreachi € {1,...,n}, k(K" ) = Kn_; = k(MP)@,k(N?"), so M(K,"") =
M(K,_;) = M®k(N?"). In particular, for each i € {1,...,n}, M(K;)/M
is equiexponential of exponent e + 4 and di(N/k) = di(M(K;)/M).

e L,../L(M) is equiexponential of exponent n + e.

In the following we set di(N/k) = j, and denote by s the largest integer such
that os(L/k) = 01(L/k) = e.

Lemma 3.17. Under the above conditions, for every positive integer n, we have:
(1) di(M(Knpj)/L(M)) = di(N/k), for each i € {0,...,n—1}.
(2) di(M(K,"")/L(M)) = di(M(Ko)/L(M)) = j — 5.

In particular, for eachr € {j —s+1,...,7}, 0p(Kp/L(M)) = 0j_s1(K,/L(M))

=n.

Proof. Let {ai,...,a;,} be a canonically ordered r-basis of L/k, hence k —
k(ag,...,as) = L — Ky — K,. Let B be an r-basis of M(Ky)/M(L), there-
fore M(Ky) = M(aq,...,am,B). But L(M) ~ L ®; M, then M(aq,...,as)/M
is equiexponential of exponent e. We complete the system {aq,...,as} into an
r-basis of M(Ky)/M by a subset C of Ky [7, p. 374, Proposition 8]. In partic-
ular, we will have |B| = di(M(Ky)/L(M)) < di(M(Ko)/M(ay,...,a5)) = |C| =
j — s. Moreover, for each r € {s+ 1,...,m}, o(a,/k(a1,...,as)) < e, thus by
applying the r-basis completion algorithm [7, p. 374, Proposition 8], we have
M(Ky) = M(ay,...,as,B), so B is an r-basis of M(Ky)/M(a1,...,as), and
therefore |B| = j — s, whence di(M(Ky)/M(L)) = |B| = j — s. Similarly, we
have L(M)(K,"" ') = Ky(M) and L(M)(K,"") = M(Ky). As K, ~ L(M)®p, N,
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then M(K,"" )~ L(M)®,L(N?"""), it follows that di(M(L)(K,"" )/M(L)) =
di(M(K1)/M(L)) = di(L(N?*""")/L). But N/k is equiexponential of exponent
n+eand L C k(NP"), by virtue of Theorem 2.1 and [13, Corollary 2.5, we
will have j = di(k(N?"")/k(N?")) < di(L(N?""")/L) < di(k(N*""")/k) = j.
As a result, di(M(K,)/M(L)) = j, whence, according to Theorem 2.3, for each
re{i—s+ 1, gh 0r(Ka/L(M)) = 0j g1 (Kn/L(M)) = n. O

n—1 n—1

Proof of Theorem 3.15. Throughout this demonstration, we will use the previ-
ous notations. First, we briefly recap some useful results: for every positive integer
n, we have

(1) Ky C Lipge-

(2) Lpte/L(M) is modular with di(Ly4./L(M)) = j = di(K,,/L(M)).

(3) K, ~ L(M)®p N.
By virtue of Proposition 2.11, there exists a canonically ordered r-basis {a1, ..., a;}
of K,,/L(M) such that K,, ~ L(M)®pL(a1,...,a;—s)@rL(aj_s+1)®L- - -Qr L(a;),
and so for each i € {j — s+ 1,...,j}, a;?" € L. Let {ai,...,am} be an r-
basis of L/k, hence K, = M(o1,...,am,a1,...,a;). As o(a;/k) < e for each
i € {1,...,m} and K, /M is equiexponential of exponent n + e, then by the
r-basis completion algorithm and Lemma 3.16, we have K, ~ M(aq,...,a;) ~
M @y k(a1) @ -+ - k(aj). But K, /k and K,,/M are equiexponential of exponent
n + e, therefore k:(aj_sHpn, . ,ajpn)/k is equiexponential of exponent e. On the
other hand, k(aj,sﬂpn, ceey ajp") C L, thus by completing this system to a canoni-
cally ordered r-basis of L/k, we get k(LP" ') = k(aj_ss1?" ... a;7" " ). Ac-
cordingly, by virtue of Proposition 2.7, we will have K,, ~ M®k(a1)Q%- - -Qxk(a;) ~
(M@pk(LP )@y et R (1) @y ety @ ety K(LP ) (ay) with M/k
is modular. According to [5, p. 55, Lemma 3.4], we deduce that K, /k(LP" ') is
also modular. O
Lemma 3.18. Let K/k be an equiezponential extension of exponent n > 1 and L
a proper intermediate field of kN K/k. If k € KP, there exists an extension
K'/K satisfying the conditions below:

(1) di(K/k) = di(K' k),

(2) K'/k is equiexponential of exponent n + 1,

(3) K'/L is not modular.

Proof. If K/L is not modular, then K’ = K(BP ), where B is an r-basis of K/k,
is suitable. If K/L is modular, according to Theorem 2.17, there exists an r-basis

G of K/k such that G; = {(apn(a/L))aeg| o(a/L) < n} is also a modular r-basis of
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L/k and K ~ ®7,(®L(a))acc. Since L C kP N K and K/k is equiexponential of
exponent n, for every a € G, we have o(a/kp_1 NK)=n—-1<o(a/L) <o1(K/k) =
n. It follows that G; = {a € G such that o(a/L) = n — 1}, and consequently K ~
®L(®@rL(a))eca, ®L (®rL(a))aeca\¢,- Necessarily G\ G1 and Gy are nonempty,
otherwise k¥ ' N K = L or L = k. However this contradicts the fact that L is a
proper subfield of kP NK/k. Let « € G\ Gy and B € G1. As k € KP, there exists
t € k such that ¢ ¢ KP. We then set G’ = (ap_l)aeg\{g} U{tr 'a? 4+ B '} and
K' = Ek(G’). Tt is easily verified that

e K'/k is equiexponential of exponent n + 1.
o K C K’ and di(K/k) = di(K'/k).

Suppose that K'/L is modular. As " ¢ L or, equivalently, to (1, apn_l) is

linearly independent over L, then it is remains in particular linearly independent

over LNK™". We complete this system to a linear basis B of K" over LNK'P".

Since K’?" and L are LN K'®" linearly disjoint by virtue of modularity, B is also a

linear basis of L(K'"") over L. But (a? ' t*~ ' + 7 )" =" 'a?" 7 4 8P and

(aP "t?" + 4P ")P" is written uniquely as a sum of elements of B, by identification
1

we will have " € kN K™, andso t* € k» ' NK' =k N K C K, this
contradicts the fact that ¢ ¢ KP. It follows that K’/L is not modular. O

Lemma 3.19. Let Q2 be an algebraic closure of a field k of characteristic p > 0 and
H the set of intermediate fields of Q/k that are finite over k. If k is countable, the

same s also true for Q and H.

Proof. Consider the equivalence relation ~ on 2 defined by a ~ f if and only
if irr(a, k) = irr(B, k) where irr(a, k) and irr(8, k) are respectively the minimal
polynomials over k of o and 5. Let E be a system of coset representatives for
)/~ (we can choose the elements of E' among the roots of all the irreducible monic
polynomials in such a way that each polynomial will be identified by one and only
one root, that is, by an element of F). Since the roots of a polynomial are finite,
for every a € E, |a| is finite. Similarly, we have k[X] is countable, in particular E

is also countable, and consequently Q = U @ is countable [3, III, p. 49, Corollary
aclE
3]. In the sequel, we shall denote for every positive integer n, H, = {L € H such

that L/k is generated by at most n elements of 2}. It’s clear that the mapping:

QY — H,,

(a1,...,0) — k(ag,...,ap),
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is surjective, so |H,| < |2"], and consequently H,, is countable. Since H = U H,,
H/k is countable [3, IIL, p. 49, Corollary 3]. = O
We now have all the necessary tools to construct a +o0o-wp-generated extension

of unbounded irrationality degree. For this, we consider a countable field k of
characteristic p > 0 and of unbounded imperfection degree (cardinality of a p-base
of k, which is equal to di(k/kP)), and let ((X;):en+,t) be a p-independent subset
of k. We set My = k(X" )ien+) and Mo = k((X;” )ien+). Let E be the set of
proper intermediate fields of M;/k. By virtue of Lemma 3.19, E can be presented
as E = (Ly)n>3. By repeated application of Lemma 3.18, we construct a sequence
of increasing extensions (M, /k),>3 satisfying:

(1) M,/L, is not modular.

(2) M, /k is equiexponential of exponent n.
Finally let K = U M,,.

iEN*

Theorem 3.20. The extension K/k above is modular and +oo-wg-generated of

unbounded irrationality degree (By Theorem 3.9, this extension is not wo-generated).
For the proof we will use in addition the following result:

Lemma 3.21 ([6], p. 155, Lemma 2.6). Let kK C S C K be purely inseparable
extensions such that K/k is modular. If L is an intermediate field of S/k over

which S is modular, then K/L is also modular, (in particular, the same is true for

K/S).

Proof of Theorem 3.20. Firstly, by construction K/k is relatively perfect of un-
bounded irrationality degree. Let S be a proper intermediate field of K/k of irra-
tionality degree j over k. Suppose that S/k is of unbounded exponent. By virtue of
Theorem 3.7, S/k contains an wy-generated extension that is denoted by S’. In par-
ticular S’/k is relatively perfect. Let L’ be the minimal intermediate field of S’ /k
over which S’ is modular, so L'/ is finite from Theorem 3.9. If we set L = e ns’,
then S’/L is modular [6, p. 144, Proposition 6.4]. Thus, in view of Lemma 3.21
above, K/L is also modular. By using Theorem 3.15, for every integer n > o01(L/k),
the same is also true for ky,/k(LP" ') where e = o1(L/k) and k, = k? " N K. In
addition, k(Lpe_l) belongs to E (because it is finite and of exponent 1 over k),
therefore there exists a natural number ¢ such that L; = k(LpFl). But k,, = M,
for every n > 3, so M,,/L; is modular for every integer n > sup(o1(L/k),t), and
a fortiori Lt(Mgnft) /Ly is modular. It follows that M;/L; is also modular, which

contradicts the construction of M,,. O

7
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