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Abstract. A purely inseparable field extension K of a field k of character-

istic p 6= 0 is said to be ω0-generated over k if K/k is not finitely generated,

but L/k is finitely generated for each proper intermediate field L. In 1986,

Deveney solved the question posed by R. Gilmer and W. Heinzer, which con-

sists in knowing if the lattice of intermediate fields of an ω0-generated field

extension K/k is necessarily linearly ordered under inclusion, by constructing

an example of an ω0-generated field extension where [kp
−n ∩K : k] = p2n for

all positive integer n. This example has proved to be extremely useful in the

construction of other examples of ω0-generated field extensions (of any finite

irrationality degree). In this paper, we characterize the extensions of finite

irrationality degree which are ω0-generated. In particular, in the case of un-

bounded irrationality degree, any modular extension of unbounded exponent

contains a proper subfield of unbounded exponent over the ground field. Fi-

nally, we give a generalization, illustrated by an example, of the ω0-generated

to include modular purely inseparable extensions of unbounded irrationality

degree.
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1. Introduction

Let α be an infinite cardinal. In universal algebra, an algebra A is said to be a

Jónsson α-algebra if A has cardinality α, while each proper subalgebra B of A has

cardinality less than α [4, p. 469]. Following this terminology, R. Gilmer and W.

Heinzer extended this notion for the first time in [12] to generating sets. Recall that

the algebra A is said to be a Jónsson α-generated algebra if A has a generating set of

cardinality α, no generating set of smaller cardinality, and each proper subalgebra

B of A has a generating set of cardinality less than α. The authors first gave

special attention primarily to the cases where α = ω0 the first infinite cardinal,

and where α = ω1. They then examined separately in [11] a problem of this class

for field extensions. Let K be a purely inseparable field extension of a field k of
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characteristic p 6= 0, by analogy, K is said to be ω0-generated over k (for Jónsson

ω0-generated extension) if K is not finite dimensional over k and yet every proper

intermediate field is finite dimensional over k [8]. Moreover, this last condition

implies that K/k is countably generated, and hence [K : k] = ω0. In [11], Robert

Gilmer and William Heinzer focused on the question of whether [kp
−1 ∩K : k] = p

is essentially the only possibility for that K to be ω0-generated over k. More

specifically, if K is ω0-generated over k, must [kp
−1 ∩ K : k] = p? In [8], J. K.

Deveney constructed an example of an ω0-generated field extension K/k such that

for any positive integer n, [kp
−n ∩ K : k] = p2n. It is easy to verify that K/k is

a modular relatively perfect extension of unbounded exponent and of irrationality

degree 2. Recall that the irrationality degree of K/k has been defined [13, Definition

2.3] by: di(K/k) = sup
n∈N

(|Bn|) where |Bn| is the cardinality of a minimal generating

set Bn of kp
−n ∩ K over k. Motivated by Dveney’s result, for each integer j we

have constructed in [6] a purely inseparable extension K/k satisfying:

• Every proper subfield of K/k is finite over k.

• For every positive integer n, [kp
−n ∩K : k] = pjn.

Improving thus the counterexample of J. K. Deveney, such an extension is also

modular and relatively perfect of unbounded exponent, but of irrationality degree

j. It’s about essentially a form of irreducibility in the sense that K/k cannot be

decomposed into k −→ K1 −→ K with each of K1/k and K/K1 having unbounded

exponent. Furthermore, any extension of finite irrationality degree is composite of

finite number of irreducible extensions. We also give a necessary and sufficient con-

dition for an ω0-generated field extension to be of finite irrationality degree. More

specifically, we show that for an ω0-generated field extension to be of finite irra-

tionality degree it is necessary and sufficient that the minimal intermediate field m

of K/k over which K is modular is nontrivial (m 6= K). In particular, any modular

and ω0-generated field extension is of finite irrationality degree, and therefore if we

take these results into account, it is very probable that the ω0-generated is related

to the extensions of finite irrationality degree. This leads us to study closely the

ω0-generated in the restricted sense. Consistent with this terminology, and with

the aim of extending the ω0-generated to modular purely inseparable extensions of

unbounded irrationality degree, we propose another generalization. An extension

K/k is said to be j-ω0-generated if K/k does not admit any intermediate field L of

unbounded exponent over k and of irrationality degree less than or equal to j. It

is about a form of local irreducibility conditioned by the irrationality degree. If for

every integer j, K/k is j-ω0-generated, K/k will be called +∞-ω0-generated field
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extension. We immediately verify that any ω0-generated field extension is +∞-ω0-

generated, and conversely any +∞-ω0-generated field extension of finite irrational-

ity degree is ω0-generated. Moreover, for reasons of noncontradiction, we construct

an example of a +∞-ω0-generated field extension of unbounded irrationality degree.

Throughout this paper, unless otherwise stated, all considered fields are purely

inseparable extensions of a common ground field k. They are to be viewed as

contained in a common algebraically closed field Ω.

2. Definitions and preliminary results

Let x be an element of K, the least positive integer e such that xp
e ∈ k is called

the exponent of x over k, and is denoted by o(x/k). The maximum of the set of

exponents of elements of K is called the exponent of K over k, if it exists, that is,

the smallest integer e (if it exists) such that Kpe ⊆ k, where Kpe = {ape | a ∈ K},
which will be denoted by o1(K/k). Otherwise, K/k is said to be of unbounded

exponent. If K/k is a finite extension, the irrationality degree of K/k has been

defined by di(K/k) = min(|G|), where G is a generating set of K/k. If K/k is

of unbounded exponent, a minimal generating set may not exist [18, Lemma 1.16,

Proposition 1.23]; but as for any positive integer n, kp
−n ∩K/k has an exponent,

according to [18, p. 2, Corollary 1.6], a subset B of kp
−n ∩K/k is an r-basis (used

as a shortcut for relative p-basis [18, p. 1, Definition 1.2]) of kp
−n ∩K/k if and only

if B is a minimal generating set of kp
−n ∩K/k, and consequently, the cardinality

of any minimal generating set of kp
−n ∩K/k depends only on n, because it is an r-

basis, and so it has a unique cardinality by the theory of general dependence [17, p.

132-133, Lemma 6.1, corollary 6.2]. Extending the minimum number of generator

of K/k, due to M. F. Becker and S. Mac Lane in [1], which was interesting/valid

only in the case when K/k is finite, we have recently defined the irrationality degree

of K/k as follows: di(K/k) = sup
n∈N

(|Bn|) where |Bn| is the cardinality of a minimal

generating set Bn of kp
−n ∩ K over k [13, Definition 2.3]. If moreover di(K/k)

is finite, then K/k is called a q-finite extension [13, Definition 3.1], i.e., there

must exist an integer M such that for every positive integer n the field kp
−n ∩K

is generated by at most M elements over k. It is clear that every finite purely

inseparable field extension is in particular q-finite. The converse is true if and only

if K/k has an exponent. We will often use the following theorem.

Theorem 2.1 ([13], Theorem 2.7). For any family k ⊆ L ⊆ L′ ⊆ K of purely

inseparable extensions, we have di(L′/L) ≤ di(K/k).
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We will now highlight the notion of exponents of q-finite extensions (for more

details see [13]), by extending some basic definitions and notations given in [7, p.

373].

If K/k is a finite purely inseparable extension. An r-basis B = {a1, a2, . . . , an}
of K/k is said to be canonically ordered (Rasala used in [21] the term normal

generating sequence) if o(aj/k(a1, a2, . . . , aj−1)) = o1(K/k(a1, a2, . . . , aj−1)) for

j = 1, 2, . . . , n. By [6, p. 138, Lemma 1.3], the integer o(aj/k(a1, . . . , aj−1))

thus defined satisfies o(aj/k(a1, . . . , aj−1)) = inf{m ∈ N| di(k(Kpm)/k) ≤ j −
1}. We immediately deduce the result [20, p. 90, Satz 14] which ensures the

independence of integers o(ai/k(a1, . . . , ai−1)), (1 ≤ i ≤ n), with respect to the

choice of canonically ordered r-basis {a1, . . . , an} of K/k. In the sequel, we set

oi(K/k) = o(ai/k(a1, . . . , ai−1)) if 1 ≤ i ≤ n, and oi(K/k) = 0 if i > n where

{a1, . . . , an} is a canonically ordered r-basis of K/k. The invariant oi(K/k) defined

above is called the i-th exponent of K/k.

If K/k is q-finite, we denote the intermediate field kp
−n ∩ K by kn for all n.

By virtue of [7, p. 374, Proposition 6], for each positive integer j, the sequence

of natural numbers (oj(kn/k))n≥1 is increasing, and thus (oj(kn/k))n≥1 converges

to +∞, or (oj(kn/k))n≥1 becomes constant after a certain rank. One can readily

check that, if (oj(kn/k))n≥1 is bounded, then for each t ≥ j, (ot(kn/k))n≥1 is also

bounded (and therefore stationary).

Definition 2.2 ([13], Definition 3.2). Let K/k be a q-finite extension, and j a

positive integer. Then the invariant oj(K/k) = lim
n→+∞

(oj(kn/k)) is called the j-th

exponent of K/k.

The following result characterizes the exponents of K/k by relating to the be-

havior of irrationality degree of certain intermediate fields of K/k.

Theorem 2.3 ([13], Lemma 3.1). Let s be a positive integer (s ≥ 1) and K/k a q-

finite extension, then os(K/k) is finite if and only if there exists a natural number n

such that di(k(Kpn)/k) < s, and we have os(K/k) = inf{m ∈ N | di(k(Kpm)/k) <

s}. In particular, os(K/k) is infinite if and only if for each m ∈ N, di(k(Kpm)/k) ≥
s.

A field k of characteristic p is said to be perfect if kp = k. In the same order

of ideas, K/k is said to be relatively perfect if k(Kp) = K. We check immediately

that:

• If K/L and L/k are relatively perfect, then K/k is also relatively perfect;

• If K/k is relatively perfect, then the same is true for L(K)/k(L);
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• For any family (Ki/k)i∈I of relatively perfect extensions,
∏
i

Ki/k is also

relatively perfect.

Therefore, there exists a unique maximal intermediate field M of K/k where M/k

is relatively perfect (for more details see [22, p. 16, Proposition 6]). M is called

the relatively perfect closure of K/k and is denoted by rp(K/k). The result

below makes it possible to reduce the study of properties of exponents of a q-finite

extension to a finite extension through the relatively perfect closure.

Theorem 2.4 ([13], Theorem 3.9). Let Kr/k be the relatively perfect closure of

irrationality degree s of a q-finite extension K/k (di(Kr/k) = s), then we have:

(1) For each t ≤ s, ot(K/k) = +∞.

(2) For each t > s, ot(K/k) = ot−s(K/Kr).

In addition, ot(K/k) is finite if and only if t > s.

Here is a list of immediate consequences.

Proposition 2.5 ([13], Proposition 3.10). Let K and L be two intermediate fields

of a q-finite extension M/k. For every j ∈ N∗, oj(L(K)/L) ≤ oj(K/k).

Proposition 2.6 ([13], Proposition 3.11). Let k ⊆ L ⊆ L′ ⊆ K be q-finite exten-

sions. For each j ∈ N∗, oj(L′/L) ≤ oj(K/k).

2.1. Modular extensions. Before we state further preliminaries which we will

also need later, we review the following: Let K1 and K2 be two intermediate fields

between k and K that are k linearly disjoint. For every subfields L1, L2 of K1/k and

K2/k respectively, it is well-known that L2(K1) and L1(K1) are k(L1, L2) linearly

disjoint [16, p. 35, Lemma 2.5.3]. In particular, L2(K1) ∩ L1(K2) = k(L1, L2).

Define a family {Fi | i ∈ J} of field extensions of k to be linearly disjoint over k

if every finite subfamily is linearly disjoint over k [16, p. 36]. It is not hard to

see that k((Fi)i∈J) =
∏
i∈J

Fi ' ⊗k(⊗kFi)i∈J (for additional information about the

tensor product see [2, III, p. 42, Definition 5]) if and only if the family (Fi/k)i∈J

is k linearly disjoint. Moreover, the properties of linear disjointness of the finite

case naturally extend to any linearly disjoint family. In particular, for all i ∈ J , let

Li be a subfield of Fi/k, if (Fi/k)i∈J is k linearly disjoint, by transitivity of linear

disjointness, we have (Li/k)i∈J (respectively, ((
∏
n∈J

Ln)Fi/k)i∈J) is k (respectively,∏
n∈J

Ln) linearly disjoint.



ON +∞-ω0-GENERATED FIELD EXTENSIONS 105

A subset B of K which we will prefer called a modular r-basis (M. Weisfeld

used the term sub-basis see [25, p. 435]) of K over k if and only if it fulfills the

following conditions: B∩k = ∅, K = k(B), and, for any finite subset {b1, . . . , bt} of

B, the canonical homomorphism of the tensor product k(b1)⊗k . . .⊗k k(bt) into K

is a monomorphism. This is equivalent, by [18, p. 14, Definition 1.21], to for every

finite subset {b1, . . . , bt} of B, [k(b1, . . . , bt) : k] =

t∏
i=1

[k(bi) : k], that is, k(b1, . . . , bt)

is a tensor product over k of the simple extensions k(b1), . . . , k(bt).

Recall that K is modular over k if and only if Kpn and k are linearly disjoint

over their intersection for all n. Sweedler showed in [23, p. 403, Theorem 1] that if

K over k has a finite exponent, then K is modular over k if and only if K can be

written as the tensor product of simple extensions of k, that is, K/k has a modular

r-basis.

As an immediate consequence of the linear disjointness, we have:

Proposition 2.7. Let K/k be a purely inseparable extension having a modular

r-basis B and (ea)a∈B a family of integers such that 0 ≤ ea ≤ o(a/k). Let L =

k((ap
ea

)a∈B), then (B \L) and ((ap
ea

)a∈B \k) are two modular r-basis, respectively

of K/L and L/k. Furthermore, for each a ∈ B, o(a/L) = ea.

For each a ∈ B, we put na = o(a/k). Consider now the subsets B1 and B2 of

B defined by B1 = {a ∈ B |na > j}, B2 = B \ B1 = {a ∈ B |na ≤ j} (j being a

natural number not exceeding o1(K/k)).

Proposition 2.8 ([13], Proposition 4.6). Under the conditions specified above, for

any integer 1 ≤ j < o1(K/k), we have kp
−j ∩K = k((ap

na−j

)a∈B1 , B2).

Corollary 2.9 ([13], Corollary 4.7). For every modular extension K/k, and for

each positive integer n, di(kp
−n ∩K/k) = di(kp

−1 ∩K/k). In particular, di(K/k) =

di(kp
−1 ∩K/k).

We have a similar result under weaker hypotheses than that in [18, p. 94,

Proposition 3.3], as well as the [9, p. 289, Theorem 3.2].

Proposition 2.10. Let K1 and K2 be subfields of K/k such that K ' K1 ⊗K2.

If K/K1 is modular and K2/k has an exponent, there exists a subset B of K such

that K ' K1 ⊗k (⊗kk(α))α∈B.

Proof. First, as K ' K1 ⊗k K2, then for each natural number i, for any r-

basis C of k(K2
pi)/k, C is also an r-basis of K1(K2

pi)/K1. We then choose an

r-basis B of K2/k, as K2/k has an exponent, then B is a minimal generating
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set of K2/k. Let B1, . . . , Bn be a partition of B obtained by the following pro-

cedure: B1 = {x ∈ B| o(x/k) = o1(K2/k) = e1}, and for each 1 < i ≤ n,

Bi = {x ∈ B| o(x/k(B1, . . . , Bi−1)) = o1(K2/k(B1, . . . , Bi−1)) = ei}. By virtue

of linear disjointness, for each i ∈ {1 . . . , n}, for each x ∈ Bi, we also have

o(x/K1(B1, . . . , Bi−1)) = o1(K/K1(B1, . . . , Bi−1)) = ei. Taking into account

[19, p. 326, Theorem 1], k(K2
pei ) = k(B1

pei , . . . , Bi−1
pei ). Therefore, for each

i ∈ {2, . . . , n}, the products (
∏
α

(G)
αpei

)G where G is a finite subset of elements in

B1 ∪ · · · ∪ Bi−1 and the α are suitably chosen, form a linear basis of k(K2
pei )/k,

and by linear disjointness it is also a linear basis of K1(K2
pei ) = K1(Kpei )/K1.

Let Mi denote this basis, and let x ∈ Bi, there exists some unique cα ∈ k such

that x =
∑
α

cαyα, (yα ∈ Mi), furthermore the cα are also unique in K1. On

the other hand, by virtue of modularity, for each i ∈ {1, . . . , n}, Kpei and K1 are

K1 ∩ Kpei linearly disjoint. As K1(K2
pei ) = K1(Kpei ) and Mi ⊆ Kpei , then Mi

is also a linear basis of Kpei over K1 ∩Kpei . Taking into account the uniqueness

of linear combinations of x in the linear basis Mi, we deduce by identification that

the cα ∈ k ∩ Kpei , and so Bi
pei ⊆ k ∩ Kpei (K1

pei (B1
pei , . . . , Bi−1

pei )) for each

i ∈ {1 . . . , n}. By [18, p. 94, Proposition 3.3], there exists a modular subextension

J/k of finite exponent of K/k such that K ' K1 ⊗k J . Thus, the result follows

immediately from the Swedleer’s theorem. �

In the finite case, the following result generalizes the above proposition.

Proposition 2.11. Let K1 and K2 be two intermediate fields of purely insep-

arable extension L/k which are k linearly disjoint. Suppose that di(L/K1) =

di(K2/k) = n and L/K1 has an exponent. Let s be the smallest integer such

that os(K2/k) = on(K2/k). If L/K1 is modular, there exists a canonically ordered

r-basis {α1, . . . , αn} of K1(K2)/K1 verifying

K1(K2) ' K1 ⊗ k(α1, . . . , αs)⊗k k(αs+1)⊗k · · · ⊗k k(αn).

Proof. To simplify notation, we set ej = oj(K2/k) for j = 1, . . . , n and K =

K1(K2). Let {α1, . . . , αn} be a canonically ordered r-basis of K2/k. In view of [7,

p. 374, Proposition 7], {α1, . . . , αn} is also a canonically ordered r-basis of K/K1

and, for each j ∈ {1, . . . , n}, oj(K/K1) = ej . According to [6, p. 140, Proposition

5.3], for i = s, . . . , n, we obtain the structure equations (of αi with respect to

k(α1, . . . , αs−1)) of the form αi
pen =

∑
ε∈Λs−1

Ciε(α1, . . . , αs−1)
εpen

(∗). Here Λs−1 is

a suitable multi-index set and the Ciε are unique elements of k. Therefore, for all
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i ∈ {s . . . , n}, the structure equations of αi with respect to K1(α1, . . . , αs−1) also

defined by the relation (∗) above, where the Ciε are also unique elements of K1. As

L/K1 is modular, using the criterion of modularity [7, p. 375, Proposition 10], for

each (i, ε) ∈ {s, . . . , n} × Λs−1, we will have (Ciε)
p−en

∈ L. Let F = k((Ciε)
p−en

)

where (i, ε) runs through the set {s, . . . , n} × Λs−1 and H = K1(F )(α1, . . . , αs−1).

It’s clear that o1(F/k) ≤ en and K ⊆ H ⊆ L. According to Theorem 2.1 and

Proposition 2.6, n = di(K/K1) ≤ di(H/K1) ≤ di(L/K1) = n, and for each i ∈
{s, . . . , n}, en = oi(K/K1) ≤ oi(H/K1) ≤ en. It follows that di(H/K1) = n,

and for each i ∈ {s, . . . , n}, en = oi(H/K1). As es−1 > es = en, by the r-basis

completion algorithm [7, p. 374, Proposition 8], there exists elements bs, . . . , bn ∈ F
such that {α1 . . . , αs−1, bs, . . . , bn} be a canonically ordered r-basis of H/K1. In

particular, we will have:

• For each i ∈ {1, . . . , s − 1}, ei = oi(H/K1) = oi(K1(α1, . . . , αs−1)/K1)

= oi(k(α1, . . . , αs−1)/k).

• For each j ∈ {s, . . . , n}, en = oj(H/K1) = o(bj/K1(α1 . . . , αs−1, bs, . . . ,

bj−1)) ≤ o(bj/k(bs, . . . , bj−1)) ≤ o1(F/k) ≤ en, and so en = oj(H/K1)

= oj(k(bs, . . . , bn)/k).

Hence, H = K ' K1 ⊗ k(α1, . . . , αs−1)⊗k k(bs)⊗k · · · ⊗k k(bn). �

2.2. Equiexponential extensions.

Proposition 2.12. Let K/k be a purely inseparable extension of exponent e. The

following assertions are equivalent:

(1) For every r-basis G of K/k, for each a ∈ G, o(a/k(G \ {a})) = o(a/k) = e.

(2) There exists an r-basis G of K/k such that for each a ∈ G, o(a/k(G \
{a})) = o(a/k) = e.

(3) There exists an r-basis G of K/k verifying K ' ⊗k(k(a))a∈G, and for each

a ∈ G, o(a/k) = e.

(4) Any r-basis G of K/k satisfies K ' ⊗k(k(a))a∈G and o1(K/k) = e.

Proof. We immediately verify that (1) ⇒ (2) ⇒ (3), so we just have to show

that (3) ⇒ (4) ⇒ (1). Assume that there exists an r-basis G of K/k verifying

K ' ⊗k(⊗kk(a))a∈G, and for each a ∈ G, o(a/k) = e. Let B be a finite r-

independent (used as shortening of relatively p-independent) subset of K/k, so there

exists G1 ⊆ G such that B ∪G1 is an r-basis of K/k, and therefore |B| = |G \G1|
which we designate by n. Since the exponent of any element of B over k is less

than the exponent of K/k, we deduce that [k(B) : k] ≤
∏
a∈B

po(a/k) ≤ pen, and
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therefore [K : k(G1)] ≤ [k(B) : k] ≤ pen. But, by virtue of the linear disjointness,

[K : k(G1)] = [k(G\G1) : k] = pen, so [K : k(G1)] = [k(B) : k] =
∏
a∈B

po(a/k) = pen.

It follows that k(B) ' ⊗k(⊗kk(a))a∈B . Consequently, any r-basis B1 of K/k

satisfies K ' ⊗k(⊗k(a))a∈B1
and o1(K/k) = e. On the other hand, condition

(1) follows from the fact that if G is an r-basis of K/k, then the same is true for

((ab)a∈G\{b} ∪ {b}) for every element b of G with the family((k(ab))a∈G\{b}, k(b))

of subfields of K/k are k linearly disjoint according to condition (4). �

Definition 2.13. An extension that satisfies one of the conditions of the above

proposition is called equiexponential extension of exponent e.

It is easy to verify the following equivalent conditions:

(1) K/k is equiexponential of exponent e.

(2) There exists an r-basis G of K/k, for every finite subset G1 of G, we have

k(G1)/k is equiexponential of exponent e.

(3) For any r-basis G of K/k, for any finite subset G1 of G, we have k(G1)/k

is equiexponential of exponent e.

In particular, any equiexponential extension is modular.

Proposition 2.14. For any modular relatively perfect extension K/k, for all n,

kn/k is equiexponential of exponent n (recall that kn = kp
−n ∩K).

Proof. From Proposition 2.8, it suffices to show that k(kn
p) = kn−1. According to

the modularity of K/k, Kpn and k are k∩Kpn linearly disjoint for each n ≥ 1, and

by virtue of transitivity of linear disjointness, kp
n−1

(Kpn) and k are kp
n−1

(k∩Kpn)

linearly disjoint. But K/k is relatively perfect, so kp
n−1

(Kpn) = Kpn−1

. Therefore

k ∩Kpn−1

= kp
n−1

(k ∩Kpn) or, equivalently, to k(kn
p) = kn−1. �

As a consequence, in the case of q-finite extensions (notably case of finite exten-

sions) we give a more precise version of the Proposition 2.14.

Proposition 2.15 ([6], p. 147, Proposition 9.4). Let K/k be a q-finite extension

of irrationality degree t which is relatively perfect and modular (respectively, finite

extension and equiexponential). Let n and m be two natural numbers such that

n < m (respectively, n < o1(K/k)). The following properties are verified:

• di(km/kn) = t.

• km/kn is equiexponential of exponent m− n;

• kp−(m−n)

n ∩K = km and k(kp
m−n

m ) = kn.

In particular, for each positive integer n, we have [kn, k] = pnt.
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Corollary 2.16. If K/k is an equiexponential extension of exponent e, then:

(1) For each i ∈ {1, . . . , e}, ki/k and K/ki are equiexponential of exponent i

and e− i, respectively.

(2) For each i ∈ {1, . . . , e}, k(Kpi)/k and K/k(Kpi) are equiexponential of

exponent e− i and i, respectively.

The above theorem extends [9, p. 292, Theorem 4.4] concerning the homogeneity

of modular r-basis of an equiexponential extension (for more details, we refer to [9]

and [10]).

Theorem 2.17. Let k ⊆ L ⊆ K be a purely inseparable extensions such that K/k

is equiexponential of exponent e. If K/L is modular, there exists an r-basis G of

K/k such that the set {apo(a/L) | a ∈ G and o(a/L) < e} is a modular r-basis of L/k.

Proof. Since K/L is modular of finite exponent, there exists an r-basis B1 of

K/L such that K ' ⊗L(⊗LL(a))a∈B1
, (*). To lighten the notation, we set ea =

o(a/L) for each a ∈ B1 and C = (ap
ea

)a∈B1 . Let B2 be a subset of L such

that B2 is an r-basis of L(Kp)/k(Kp). Taking into account the transitivity of r-

independence, B1 ∪B2 is also an r-basis of K/k. Now consider the extension M of

k obtained by adjoining C and B2 to k. It’s clear that M ⊆ L, moreover as K/k is

equiexponential, we will have K ' ⊗k(⊗kk(a))a∈B1∪B2 . By virtue of transitivity of

linear disjointness, K ' ⊗M (⊗MM(a))a∈B1 , (**). In particular, from the relations

(*) and (**), for every finite family {a1, . . . , an} of elements of B1, L(a1, . . . , an) '
L(a1)⊗L · · ·⊗LL(an) and M(a1, . . . , an) 'M(a1)⊗M · · ·⊗MM(an). By application

of [7, p. 374, Proposition 7], we have successively [L(a1, . . . , an) : L] =

n∏
i=1

peai and

[M(a1, . . . , an) : M ] =

n∏
i=1

peai or, equivalently, to L and K are M linearly disjoint;

from whence L = L ∩K = M . �

3. +∞-ω0-generated extensions

3.1. u-sequences.

Definition 3.1. A sequence k = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ · · · ⊆ K of subfields of a

purely inseparable extension K/k is said to be u-sequence (upper sequence) in K

over k if for any index i, Ki+1/Ki has unbounded exponent.

We tacitly assume henceforth, unless otherwise stated, that K/k is of unbounded

exponent. We check that k = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ · · · ⊆ K is a u-sequence if

and only if the same holds for L = L(K0) ⊆ L(K1) ⊆ · · · ⊆ L(Kn) ⊆ · · · ⊆ K for
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every intermediate field L between k and K that is finite over k. In particular, if

K/k is q-finite, then k = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ · · · ⊆ K is a u-sequence if and

only if it is the same for k = K0 ⊆ rp(K1/k) ⊆ · · · ⊆ rp(Kn/k) ⊆ · · · ⊆ K.

Proposition 3.2 ([14], Proposition 2.5). Any decreasing sequence of a q-finite

extension is stationary.

Proof. Let (Kn/k) be a decreasing sequence of subfields of K/k and (Fi/k) the

sequence associated with their relatively perfect closure. In view of Theorem 2.1

and [13, Proposition 3.1], the sequence of integers (di(Fn/k)) is decreasing, hence

stationary starting at rank n0. We deduce by [13, Corollary 3.7] that di(Fn/Fn0
) =

0 for all n ≥ n0, and so Fn = Fn0
for all n ≥ n0. By virtue of monotony, for

all n ≥ n0, [Kn+1 : Fn0 ] ≤ [Kn : Fn0 ]. In other words, the sequence of integers

([Kn : Fn0 ])n≥n0 is decreasing, whence stationary from a rank e or, equivalently,

to for each n ≥ e, [Kn : Fn0
] = [Ke : Fn0

]. As for each n ≥ e, Kn ⊆ Ke, then

Kn = Ke for every n ≥ e. �

Corollary 3.3. In a q-finite extension, any u-sequence is stationary.

Let K/k be a q-finite extension, we say that K/k has a u-sequence of length n

if K can be decomposed into extensions: k = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K such

that Ki+1/Ki has unbounded exponent for each i ∈ {0, . . . , n−1}. Therefore, K/k

has a maximal u-sequence, and any u-sequence in K over k may be prolonged to

a maximal u-sequence of K/k. It is apparent that a maximal u-sequence presents

an irreducible form in the sense that between two consecutive terms there is no

proper extension of unbounded exponent, and hence impossible to decompose two

consecutive terms into u-sequence of length 2. It should be noted that this form of

irreducibility will constitute the subject of what follows.

Proposition 3.4. In a q-finite extension K/k the length of any u-sequence of K/k

is increased by di(K/k). In particular, K/k has a u-sequence of maximal length.

Proof. We come back to the case where all consecutive terms are relatively perfect

in which case the result follows immediately from [13, Proposition 3.8]. �

Remark 3.5. In general, the terms and length of a maximal u-sequence are not

unique. However, one can look for other forms of uniqueness, for example one may

wonder if a u-sequence of relatively perfect terms and of maximum length preserves

the irrationality degree up to a permutation. We do not yet have a precise answer

to such a question.
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3.2. ω0-generated extensions. For convenience, we extend slightly the definition

of ω0-generated as follows:

Definition 3.6. A purely inseparable extension K/k of unbounded exponent is

called ω0-generated if L/k has bounded exponent for each proper intermediate field

L.

In particular, if K/k is q-finite, then K/k is ω0-generated if every proper in-

termediate field is finite dimensional over k and; consequently we return to the

definition given separately by J.K Devney in [8], R. Gilmer and W. Heinzer in [11].

We immediately check that:

• Any ω0-generated extension is relatively perfect.

• K/k is ω0-generated if and only if k −→ K is a u-sequence of maximal

length and K/k is relatively perfect.

• If K is relatively perfect over k, then for every intermediate field L of K/k

of finite exponent, L(K)/L is ω0-generated if the same holds true for K/k.

The result below ensures the existence of ω0-generated extensions. More specif-

ically, we have:

Theorem 3.7. Let K/k be a q-finite extension of unbounded exponent. The set H

of subfields of K/k of unbounded exponent ordered by inverse inclusion is inductive

(namely, K1 ≤ K2 if and only if K2 ⊆ K1). In particular, K/k contains an

ω0-generated extension.

Proof. Immediately follows from Propositions 3.2 and 3.4. �

Without loss of generality, we agree that the definition of an ω0-generated ex-

tension include the extensions of bounded exponent as special cases, since every

subfield of an extension of bounded exponent is also of bounded exponent.

Proposition 3.8. Any q-finite extension is decomposed into a finite number of

ω0-generated extensions.

Proof. The result is clear if K/k is finite. Otherwise, by Proposition 3.4, K/k has

a u-sequence k = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K of maximal length n. Necessarily

Ki ⊆ Ki+1 is a u-sequence of maximal length 1. Otherwise K/k admits a u-

sequence of length greater than n, a contradiction. Consequently, we are led to

prove the result when k ⊆ K is of maximal length. In particular, rp(K/k)/k has no

a proper subfield of unbounded exponent. However, according to [13, Proposition

3.1], K/rp(K/k) is finite, and consequently K/k decomposes into a finite number

of ω0-generated extensions. �
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Sweedler showed in [23, p. 404, Corollary 2] for any purely inseparable extension

K/k, there exists a unique minimal intermediate field m of K/k over which K is

modular. Improving [6, p. 148, Theorem 1.4], we have shown in [15, p. 75, Theorem

3.3] that m is not trivial when K/k is q-finite, i.e, m 6= K. More precisely, if K/k

is of finite irrationality degree and of unbounded exponent, the same is also true

for K/m. However, if K/k is of unbounded irrationality degree, we may well lose

this property by obtaining m = K (for example see [6, p. 149]).

In the case of modular extensions, the following result shows that the ω0-generated

becomes an intrinsic property exclusively linked to the q-finite extensions.

Theorem 3.9. For an ω0-generated extension K/k to be q-finite it is necessary

and sufficient that the minimal intermediate field m over which K is modular is

nontrivial, i.e., m 6= K.

In the proof, we will need the following result:

Lemma 3.10. Let K/k be a purely inseparable extension of unbounded exponent

and irrationality degree. If K/k is relatively perfect and modular, then K/k contains

a proper modular subfield L of unbounded exponent over k.

Proof. We will build by induction a strictly increasing sequence (Kn)n≥1 of mod-

ular intermediate field of K/k such that for all n, Kn/k has exponent n. As

K/k is relatively perfect, according to Proposition 2.14 and Corollary 2.9, for each

n ≥ 1, di(kp
−n ∩ K/k) = di(kp

−1 ∩ K/k) = di(K/k) and kp
−n ∩ K/k is equiex-

ponential of exponent n. Let G1 be an r-basis of kp
−1 ∩ K/k, it follows that

kp
−1 ∩K ' ⊗k(⊗kk(a))a∈G1

. Let us choose an element x of G1, since G1 is infi-

nite, there exists a finite subset G′1 of G1 such that x 6∈ k(G′1), in which case we

denote K1 = k(G′1). It is clear that K1/k is modular. We suppose that we have

constructed a sequence of extensions k ⊆ K1 ⊆ K2 ⊆ . . .Kn ⊆ K such that

(1) For each i ∈ {1, . . . , n}, Ki/k is finite modular extension.

(2) For every i ∈ {1, . . . , n}, o1(Ki/k) = i.

(3) x 6∈ Kn.

Let Gn+1 be an r-basis of kp
−n−1 ∩ K/k, from Proposition 2.12, kp

−n−1 ∩ K '
⊗k(⊗kk(a))a∈Gn+1

. As o1(Kn/k) = n, we deduce that Kn ⊆ kp
−n−1 ∩ K. But

Kn/k is finite and Gn+1 is infinite, therefore there exists a finite subset G′n+1 of

Gn+1 such that Kn ⊆ k(G′n+1). If x 6∈ k(G′n+1), then Kn+1 = k(G′n+1) is suitable.

If x ∈ k(G′n+1), since kp
−n−1 ∩ K ' ⊗k(⊗kk(a))a∈G′n+1

⊗k (⊗kk(a))a∈Gn+1\G′n+1
,

x 6∈ k(Gn+1 \ G′n+1). Otherwise, as k(G′n+1) and k(Gn+1 \ G′n+1) are k linearly
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disjoint, then x ∈ k(G′n+1) ∩ k(Gn+1 \ G′n+1) = k, a contradiction. Let y be an

element of Gn+1 \G′n+1, (y exists because Gn+1 is infinite and G′n+1 is finite). Let

Kn+1 = Kn(y), it is immediately verified that

• x 6∈ Kn+1, since Kn+1 ⊆ k(Gn+1 \G′n+1) and x 6∈ k(Gn+1 \G′n+1).

• Kn+1/k is finite and o1(Kn+1/k) = o(y/k) = n+ 1.

• Kn+1 ' Kn ⊗k k(y), (application of the transitivity of linear disjointness

of k(G′n+1) and k(Gn+1 \ G′n+1)), and as Kn/k is modular, by [5, p. 55,

Lemma 3.4], Kn+1/k is modular.

Hence, Kn+1/k is suitable, and so L =
⋃
i≥1

Ki is modular [24, p. 40, Proposition

1.2] and of unbounded exponent over k with x 6∈ L. �

Proof of Theorem 3.9. The necessary condition immediately follows from [15,

p. 75, Theorem 3.3]. Conversely, let m be the minimal intermediate field over

which K is modular. Since K/k is ω0-generated and m 6= K, m/k has an exponent

e, and from Lemma 3.10, K/m will be q-finite. In the following, for every n, we

set Kn = mp−e−n ∩ K and di(K/m) = l. Let Gn be an r-basis of Kn/m, taking

into account Proposition 2.14 and Corollary 2.9, |Gn| = l and o1(Kn/m) = e + n.

Moreover, we have k(Kn
pe) = k(mpe , Gn

pe) = k(Gn
pe), so di(k(Kn

pe)/k) ≤ l and

o1(k(Kn
pe)/k) ≥ o1(m(Kn

pe)/m) = n. In particular, the extensionH =
⋃
k(Kn

pe)

of k has unbounded exponent, but as K/k is ω0-generated, we get K = H. However,

by virtue of [13, Proposition 2.3], di(H/k) = sup
n∈N

(di(Kn/k)) ≤ l, it follows that K/k

is q-finite. �

Corollary 3.11. Any ω0-generated modular extension is q-finite.

In the following subsection we extend the notion of ω0-generated extension.

3.3. Generalization of an ω0-generated extension.

Definition 3.12. Let j be a positive integer. A purely inseparable extensionK/k of

unbounded exponent is said to be j-ω0-generated if K/k has no proper intermediate

field of unbounded exponent and of irrationality degree less than or equal to j.

In other words, any proper intermediate field of K/k whose irrationality degree

does not exceed j strictly has an exponent.

Definition 3.13. A purely inseparable extension K/k is called +∞-ω0-generated

if K/k is j-ω0-generated for all j.
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Remark 3.14. By Theorem 3.9, any modular ω0-generated extension is of finite

irrationality degree. This is no longer the case for +∞-ω0-generated extension.

Indeed, in Theorem 3.20, we exhibit an example of a modular +∞-ω0-generated

extension of infinite irrationality degree. The construction requires the following

results.

Theorem 3.15. Given a purely inseparable extension K/k which is relatively per-

fect and modular, and let L be a proper intermediate field of K/k. If K/L is modular

and [L : k] < ∞, then for every integer n > e = o1(L/k), kp
−n ∩ K/k(Lp

e−1

) is

modular. In particular, K/k(Lp
e−1

) is also modular.

For the proof of this theorem, we will use the following results. Firstly, for all

non-negative integer n, consider Kn = kp
−e−n ∩K and Ln = Lp

−n ∩K.

Lemma 3.16. Under the same assumptions of the above theorem, for each positive

integer n, there exists two subfields N and M of Kn/k such that:

• L ⊆ k(Npn), with N/k is finite.

• Kn 'M ⊗k N ' (M ⊗k L)⊗L N . Moreover, M/k and N/k are equiexpo-

nential of exponent n+ e.

• L(M)/L(Mp) and L(Ln+e
p)/L(Mp) are L(Mp) linearly disjoint.

• Ln+e/L(M) is modular with di(Ln+e/L(M)) = di(Kn/M) = di(N/k) =

di(Kn/L(M)).

Proof. Since L/k has an exponent e, L ⊆ kp−e∩K; from whence L→ Lp
−n∩K →

Kn → Ln+e. Let G be an r-basis of Kn/k. As K/k is relatively perfect and

modular, then according to Proposition 2.14, Kn/k is equiexponential of expo-

nent n + e. In particular, Kn ' ⊗k(⊗kk(a))a∈G, and therefore K0 = k(Kn
pn) '

⊗k(⊗kk(ap
n

))a∈G. But L/k is finite and L ⊆ K0, so there exists a finite subset

G1 of G such that L ⊆ k(G1
pn). Let us denote the relative complement of G1 in

G by G2, (G2 = G \ G1), and consider the extensions N and M of k obtained,

respectively, by adjoining G1 and G2 to k. It is immediately verified that:

• Kn 'M ⊗k N ' (M ⊗k L)⊗L N .

• M and N are equiexponential of exponent n+ e.

In particular, for each x ∈ G2, o(x/L(G2 \ {x})) = n + e, and consequently if

there exists x ∈ G2 such that x ∈ L(Ln+e
p)(G2 \ {x}), we will have n + e =

o(x/L(G2 \ {x})) ≤ o1(L(Ln+e
p)(G2 \ {x})/L(G2 \ {x})) ≤ o1(L(Ln+e

p)/L) =

n+ e− 1, a contradiction; from whence G2 is r-independent in Ln+e/L or, equiv-

alently, to L(M) and L(Ln+e
p) are linearly disjoint over L(Mp). Therefore there



ON +∞-ω0-GENERATED FIELD EXTENSIONS 115

exists a subset G3 of Ln+e such that G2 ∪ G3 is an r-basis of Ln+e/L(Ln+e
p), so

G2 ∪ G3 is a minimal generating set of Ln+e/L. Since K/L is modular and rel-

atively perfect, Ln+e ' ⊗L(⊗LL(a))a∈G2∪G3
' (L ⊗k M) ⊗L (⊗LL(a))a∈G3

) '
M ⊗k (⊗LL(a))a∈G3

). Hence, Ln(M) ' M ⊗k (⊗LL(ap
e

))a∈G3
' (M ⊗k L) ⊗L

(⊗LL(ap
e

))a∈G3
⊆ Kn and Kn ' M ⊗k N ' (M ⊗k L) ⊗L N ⊆ Ln+e. Firstly,

as N/k is equiexponential of exponent n + e and L ⊆ k(Npn), we will have

|G1| = di(N/k) = di(N/k(Np)) = di(N/k(Npn)) ≤ di(N/L) ≤ di(N/k), and

thus di(N/L) = |G1|. On the other hand, by virtue of Theorem 2.1 and [13,

Corollary 2.5], we have |G3| = di(Ln(M)/L(M)) ≤ di(Kn/L(M)) = di(N/L)

and di(Kn/L(M)) ≤ di(Ln+e/L(M)) = |G3|, (namely Kn ⊆ Ln+e). As a result,

|G3| = |G1| = di(N/k). �

As Kn 'M ⊗k N ' (M ⊗k L)⊗LN and Kn/k are equiexponential of exponent

n+ e, it is immediately verified that:

• For each i ∈ {1, . . . , n}, k(Kn
pi) = Kn−i = k(Mpi)⊗kk(Npi), soM(Kn

pi) =

M(Kn−i) = M⊗k k(Npi). In particular, for each i ∈ {1, . . . , n}, M(Ki)/M

is equiexponential of exponent e+ i and di(N/k) = di(M(Ki)/M).

• Ln+e/L(M) is equiexponential of exponent n+ e.

In the following we set di(N/k) = j, and denote by s the largest integer such

that os(L/k) = o1(L/k) = e.

Lemma 3.17. Under the above conditions, for every positive integer n, we have:

(1) di(M(Kn
pi)/L(M)) = di(N/k), for each i ∈ {0, . . . , n− 1}.

(2) di(M(Kn
pn)/L(M)) = di(M(K0)/L(M)) = j − s.

In particular, for each r ∈ {j − s + 1, . . . , j}, or(Kn/L(M)) = oj−s+1(Kn/L(M))

= n.

Proof. Let {α1, . . . , αm} be a canonically ordered r-basis of L/k, hence k →
k(α1, . . . , αs) → L → K0 → Kn. Let B be an r-basis of M(K0)/M(L), there-

fore M(K0) = M(α1, . . . , αm, B). But L(M) ' L ⊗k M , then M(α1, . . . , αs)/M

is equiexponential of exponent e. We complete the system {α1, . . . , αs} into an

r-basis of M(K0)/M by a subset C of K0 [7, p. 374, Proposition 8]. In partic-

ular, we will have |B| = di(M(K0)/L(M)) ≤ di(M(K0)/M(α1, . . . , αs)) = |C| =

j − s. Moreover, for each r ∈ {s + 1, . . . ,m}, o(αr/k(α1, . . . , αs)) < e, thus by

applying the r-basis completion algorithm [7, p. 374, Proposition 8], we have

M(K0) = M(α1, . . . , αs, B), so B is an r-basis of M(K0)/M(α1, . . . , αs), and

therefore |B| = j − s, whence di(M(K0)/M(L)) = |B| = j − s. Similarly, we

have L(M)(Kn
pn−1

) = K1(M) and L(M)(Kn
pn) = M(K0). As Kn ' L(M)⊗LN ,
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then M(Kn
pn−1

) ' L(M)⊗LL(Npn−1

), it follows that di(M(L)(Kn
pn−1

)/M(L)) =

di(M(K1)/M(L)) = di(L(Npn−1

)/L). But N/k is equiexponential of exponent

n + e and L ⊆ k(Npn), by virtue of Theorem 2.1 and [13, Corollary 2.5], we

will have j = di(k(Npn−1

)/k(Npn)) ≤ di(L(Npn−1

)/L) ≤ di(k(Npn−1

)/k) = j.

As a result, di(M(K1)/M(L)) = j, whence, according to Theorem 2.3, for each

r ∈ {j − s+ 1, . . . , j}, or(Kn/L(M)) = oj−s+1(Kn/L(M)) = n. �

Proof of Theorem 3.15. Throughout this demonstration, we will use the previ-

ous notations. First, we briefly recap some useful results: for every positive integer

n, we have

(1) Kn ⊆ Ln+e.

(2) Ln+e/L(M) is modular with di(Ln+e/L(M)) = j = di(Kn/L(M)).

(3) Kn ' L(M)⊗L N .

By virtue of Proposition 2.11, there exists a canonically ordered r-basis {a1, . . . , aj}
of Kn/L(M) such that Kn ' L(M)⊗LL(a1, . . . , aj−s)⊗LL(aj−s+1)⊗L · · ·⊗LL(aj),

and so for each i ∈ {j − s + 1, . . . , j}, aip
n ∈ L. Let {α1, . . . , αm} be an r-

basis of L/k, hence Kn = M(α1, . . . , αm, a1, . . . , aj). As o(αi/k) ≤ e for each

i ∈ {1, . . . ,m} and Kn/M is equiexponential of exponent n + e, then by the

r-basis completion algorithm and Lemma 3.16, we have Kn ' M(a1, . . . , aj) '
M ⊗k k(a1)⊗k · · · ⊗k k(aj). But Kn/k and Kn/M are equiexponential of exponent

n + e, therefore k(aj−s+1
pn , . . . , aj

pn)/k is equiexponential of exponent e. On the

other hand, k(aj−s+1
pn , . . . , aj

pn) ⊆ L, thus by completing this system to a canoni-

cally ordered r-basis of L/k, we get k(Lp
e−1

) = k(aj−s+1
pn+e−1

, . . . , aj
pn+e−1

). Ac-

cordingly, by virtue of Proposition 2.7, we will haveKn 'M⊗k(a1)⊗k· · ·⊗kk(aj) '
(M⊗kk(Lp

e−1

))⊗k(Lpe−1 )k(Lp
e−1

)(a1)⊗k(Lpe−1 )· · ·⊗k(Lpe−1 )k(Lp
e−1

)(aj) withM/k

is modular. According to [5, p. 55, Lemma 3.4], we deduce that Kn/k(Lp
e−1

) is

also modular. �

Lemma 3.18. Let K/k be an equiexponential extension of exponent n > 1 and L

a proper intermediate field of kp
−1 ∩ K/k. If k 6⊆ Kp, there exists an extension

K ′/K satisfying the conditions below:

(1) di(K/k) = di(K ′/k),

(2) K ′/k is equiexponential of exponent n+ 1,

(3) K ′/L is not modular.

Proof. If K/L is not modular, then K ′ = K(Bp
−1

), where B is an r-basis of K/k,

is suitable. If K/L is modular, according to Theorem 2.17, there exists an r-basis

G of K/k such that G1 = {(apo(a/L)

)a∈G| o(a/L) < n} is also a modular r-basis of
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L/k and K ' ⊗L(⊗LL(a))a∈G. Since L ⊆ kp−1 ∩K and K/k is equiexponential of

exponent n, for every a ∈ G, we have o(a/kp
−1 ∩K) = n−1 ≤ o(a/L) ≤ o1(K/k) =

n. It follows that G1 = {a ∈ G such that o(a/L) = n− 1}, and consequently K '
⊗L(⊗LL(a))a∈G1

⊗L (⊗LL(a))a∈G\G1
. Necessarily G \ G1 and G1 are nonempty,

otherwise kp
−1 ∩ K = L or L = k. However this contradicts the fact that L is a

proper subfield of kp
−1 ∩K/k. Let α ∈ G\G1 and β ∈ G1. As k 6⊆ Kp, there exists

t ∈ k such that t 6∈ Kp. We then set G′ = (ap
−1

)a∈G\{β} ∪ {tp
−1

αp
−1

+ βp
−1} and

K ′ = k(G′). It is easily verified that

• K ′/k is equiexponential of exponent n+ 1.

• K ⊆ K ′ and di(K/k) = di(K ′/k).

Suppose that K ′/L is modular. As αp
n−1 6∈ L or, equivalently, to (1, αp

n−1

) is

linearly independent over L, then it is remains in particular linearly independent

over L∩K ′p
n

. We complete this system to a linear basis B of K ′
pn

over L∩K ′p
n

.

Since K ′
pn

and L are L∩K ′p
n

linearly disjoint by virtue of modularity, B is also a

linear basis of L(K ′
pn

) over L. But (αp
−1

tp
−1

+ βp
−1

)p
n

= tp
n−1

αp
n−1

+ βp
n−1

and

(αp
−1

tp
−1

+βp
−1

)p
n

is written uniquely as a sum of elements of B, by identification

we will have tp
n−1 ∈ k ∩ K ′p

n

, and so tp
−1 ∈ kp

−1 ∩ K ′ = kp
−1 ∩ K ⊆ K, this

contradicts the fact that t 6∈ Kp. It follows that K ′/L is not modular. �

Lemma 3.19. Let Ω be an algebraic closure of a field k of characteristic p > 0 and

H the set of intermediate fields of Ω/k that are finite over k. If k is countable, the

same is also true for Ω and H.

Proof. Consider the equivalence relation ∼ on Ω defined by α ∼ β if and only

if irr(α, k) = irr(β, k) where irr(α, k) and irr(β, k) are respectively the minimal

polynomials over k of α and β. Let E be a system of coset representatives for

Ω/∼ (we can choose the elements of E among the roots of all the irreducible monic

polynomials in such a way that each polynomial will be identified by one and only

one root, that is, by an element of E). Since the roots of a polynomial are finite,

for every a ∈ E, |a| is finite. Similarly, we have k[X] is countable, in particular E

is also countable, and consequently Ω =
⋃
a∈E

a is countable [3, III, p. 49, Corollary

3]. In the sequel, we shall denote for every positive integer n, Hn = {L ∈ H such

that L/k is generated by at most n elements of Ω}. It’s clear that the mapping:

Ωn −→ Hn,

(α1, . . . , αn) 7−→ k(α1, . . . , αn),
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is surjective, so |Hn| ≤ |Ωn|, and consequently Hn is countable. Since H =
⋃
n≥1

Hn,

H/k is countable [3, III, p. 49, Corollary 3]. �

We now have all the necessary tools to construct a +∞-ω0-generated extension

of unbounded irrationality degree. For this, we consider a countable field k of

characteristic p > 0 and of unbounded imperfection degree (cardinality of a p-base

of k, which is equal to di(k/kp)), and let ((Xi)i∈N∗ , t) be a p-independent subset

of k. We set M1 = k((Xi
p−1

)i∈N∗) and M2 = k((Xi
p−2

)i∈N∗). Let E be the set of

proper intermediate fields of M1/k. By virtue of Lemma 3.19, E can be presented

as E = (Ln)n≥3. By repeated application of Lemma 3.18, we construct a sequence

of increasing extensions (Mn/k)n≥3 satisfying:

(1) Mn/Ln is not modular.

(2) Mn/k is equiexponential of exponent n.

Finally let K =
⋃
i∈N∗

Mn.

Theorem 3.20. The extension K/k above is modular and +∞-ω0-generated of

unbounded irrationality degree (By Theorem 3.9, this extension is not ω0-generated).

For the proof we will use in addition the following result:

Lemma 3.21 ([6], p. 155, Lemma 2.6). Let k ⊆ S ⊂ K be purely inseparable

extensions such that K/k is modular. If L is an intermediate field of S/k over

which S is modular, then K/L is also modular, (in particular, the same is true for

K/S).

Proof of Theorem 3.20. Firstly, by construction K/k is relatively perfect of un-

bounded irrationality degree. Let S be a proper intermediate field of K/k of irra-

tionality degree j over k. Suppose that S/k is of unbounded exponent. By virtue of

Theorem 3.7, S/k contains an ω0-generated extension that is denoted by S′. In par-

ticular S′/k is relatively perfect. Let L′ be the minimal intermediate field of S′/k

over which S′ is modular, so L′/k is finite from Theorem 3.9. If we set L = L′
p−1

∩S′,
then S′/L is modular [6, p. 144, Proposition 6.4]. Thus, in view of Lemma 3.21

above, K/L is also modular. By using Theorem 3.15, for every integer n > o1(L/k),

the same is also true for kn/k(Lp
e−1

) where e = o1(L/k) and kn = kp
−n ∩K. In

addition, k(Lp
e−1

) belongs to E (because it is finite and of exponent 1 over k),

therefore there exists a natural number t such that Lt = k(Lp
e−1

). But kn = Mn

for every n ≥ 3, so Mn/Lt is modular for every integer n > sup(o1(L/k), t), and

a fortiori Lt(M
pn−t

n )/Lt is modular. It follows that Mt/Lt is also modular, which

contradicts the construction of Mn. �
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