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Abstract. Let ∆ be a simplicial complex, I∆ its Stanley-Reisner ideal and

R = K[∆] its Stanley-Reisner ring over a field K. In 2018, the author intro-

duced the squarefree zero-divisor graph of R, denoted by Γsf(R), and proved

that if ∆ and ∆′ are two simplicial complexes, then the graphs Γsf(K[∆])

and Γsf(K[∆′]) are isomorphic if and only if the rings K[∆] and K[∆′] are

isomorphic. Here we derive some algebraic properties of R using combinato-

rial properties of Γsf(R). In particular, we state combinatorial conditions on

Γsf(R) which are necessary or sufficient for R to be Cohen-Macaulay. More-

over, we investigate when Γsf(R) is in some well-known classes of graphs and

show that in these cases, I∆ has a linear resolution or is componentwise linear.

Also we study the diameter and girth of Γsf(R) and their algebraic interpre-

tations.
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1. Introduction

In this paper all rings are commutative with identity and K is a field. Let S =

K[x1, . . . , xn] be the polynomial ring in n indeterminates over K. By a squarefree

monomial ideal of S we mean an ideal generated by a set of squarefree monomials

of S. In the last few decades, the study of squarefree monomial ideals has got a

large attention (for example, see [3, 7–9, 11–14, 16]). This is because of the fact

that if we know algebraic properties of squarefree monomial ideals well, then we

can understand many algebraic properties of much larger classes of ideals such as

graded ideals of S (see [7]).

There are strong relations between squarefree monomial ideals and several com-

binatorial objects (see, for instance, [8, 11, 12] and Part III of [7]). Here we use two

related combinatorial objects. The first one is the concept of simplicial complexes.
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Recall that a simplicial complex ∆ on [n] = {1, . . . , n} is a family of subsets of [n],

called faces of ∆, with the following properties:

(i) if A ∈ ∆ and B ⊆ A, then B ∈ ∆;

(ii) {i} ∈ ∆ for all i ∈ [n].

For every subset F ⊆ [n] we set xF =
∏

i∈F xi. Then the ideal I∆ = ⟨xF |F ⊆
[n], F /∈ ∆⟩ of S is called the Stanley-Reisner ideal of ∆ and the ring K[∆] = S/I∆

is called the Stanley-Reisner ring of ∆ over K. Note that there is a one-to-one

correspondence between simplicial complexes on [n] and squarefree monomial ideals

of S in ⟨x1, . . . , xn⟩2.
On the other hand, recently several authors have defined some graphs based

on the structure of rings and used them to study the algebraic properties of these

rings. One of the first defined and most studied of such graphs is the zero-divisor

graph, see for example [1, 6, 10, 15] and the references therein. It is quite usual

that these graphs, which are defined for general commutative rings, are isomorphic

for non-isomorphic rings, see for example Theorem 2.2 and Corollary 2.4 of [12].

In [12], the author used the ideas in the definition of zero-divisor graphs, in the

special case of Stanley-Reisner rings and introduced squarefree zero-divisor graphs

of Stanley-Reisner rings as a “stronger version” of the zero-divisor graphs of such

rings. Suppose that I is a squarefree monomial ideal of S and R = S/I. Let V be

image in R of the set of all squarefree monomials of S which are not in I. By the

squarefree zero-divisor graph of R, we mean the graph on vertex set V , in which, two

vertices u and v are adjacent if and only if uv = 0 in R. We denote this graph by

Γsf(R). If I = I∆ for a simplicial complex ∆, we also use Γsf(∆) instead of Γsf(R).

Note that Γsf(∆) can be described using ∆: the vertices of Γsf(∆) correspond to

nonempty faces of ∆ and two vertices F and G are adjacent if and only if F∪G /∈ ∆.

Theorem 3.4 of [12] shows that Γsf(∆) ∼= Γsf(∆
′) if and only if K[∆] ∼= K[∆′] for

every pair of simplicial complexes ∆ and ∆′.

The main advantage of squarefree zero-divisor graphs, is that, against simplicial

complexes, they are graphs. So they let us to use the rich theory of graphs for

studying squarefree monomial ideals. The main aim of this study is to see what

we can find about algebraic properties of R by knowing combinatorial properties

of Γsf(R). In Section 3, we find some combinatorial properties that Γsf(R) must

have, when R is Cohen-Macaulay. Then in Section 3, we study diameter and girth

of Γsf(R) and their algebraic interpretations. Finally in Section 4, we investigate

when Γsf(R) is in some well-known classes of graphs, such as complete, bipartite,

complete multipartite, regular or chordal graphs. In these cases, we answer the
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questions when R is (sequentially) Cohen-Macaulay or I has a linear resolution (or

is componentwise linear) in terms of combinatorial properties of Γsf(R).

In the sequel, all graphs are finite, simple and undirected. If u and v are vertices

of a graph, by v ∼ u we mean that u and v are adjacent. We denote the set of

vertices of a graph G by V(G). Any undefined graph theoretic notation is as in

[17]. Also recall that the maximal faces of a simplicial complex ∆ are called facets

and by ∆ = ⟨F1, . . . , Ft⟩ we mean that F1, . . . , Ft are all facets of ∆. Moreover,

dim∆ = max{|F |−1|F ∈ ∆}. For more on (squarefree) monomial ideals, simplicial

complexes, and the related algebraic concepts, such as linear resolutions or Cohen-

Macaulayness, see [2, 7].

2. Combinatorial properties necessary for Cohen-Macaulayness

One of the important topics of research in commutative algebra is finding charac-

terizations of Cohen-Macaulay commutative rings. In particular, many have tried

to give combinatorial characterizations for Cohen-Macaulayness of certain classes

of squarefree monomial ideals (see for example [7, 8]). It is well-known that if I∆

is Cohen-Macaulay and dim∆ > 0, then ∆ is pure (that is, all of its facets have

the same size) and connected (which means there is a sequence of faces F1, . . . , Ft

between any two nonempty faces F1 and Ft, such that Fi ∩ Fi+1 ̸= ∅). Here we

study when ∆ is pure or connected in terms of Γsf(∆). In the following, by G we

mean the complement of a graph G. Also we always assume that ∆ is a simplicial

complex on [n], unless stated otherwise explicitly.

Theorem 2.1. Suppose that ∆ is a simplicial complex. Then ∆ is connected if

and only if Γsf(∆) is connected.

Proof. Suppose that ∆ is connected. If xF and xG are two vertices of Γsf(∆), then

there is a sequence F = F1, . . . , Ft = G of faces of ∆ such that Fi ∩ Fi+1 ̸= ∅, for
each i. Now in Γsf(∆), we have the following path between xF and xG:

xF1 ∼ xF1∩F2 ∼ xF2 ∼ xF2∩F3 ∼ · · · ∼ xFt−1∩Ft ∼ xFt .

Conversely, assume that Γsf(∆) is connected. If ∆ is not connected, then there

is a partition [n] = V1∪V2 such that no face of ∆ has vertices from both V1 and V2.

Let A1 = {xF |F ⊆ V1} and A2 = {xF |F ⊆ V2}. Then A1 ∪A2 = V(Γsf(∆)). Since

in Γsf(∆) we have u1 ∼ u2 for each pair ui ∈ Ai, thus in Γsf(∆) there is no edge

between A1 and A2 which means Γsf(∆) is not connected. From this contradiction,

we deduce that ∆ is connected. □
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Theorem 2.2. Suppose that ∆ is a simplicial complex. Then ∆ is pure if and only

if there is a nonnegative integer r such that each vertex of Γsf(∆) which is in a

largest clique has degree r.

Proof. First suppose that F is a facet of ∆ and A is an arbitrary face. Then

A ⊆ F if and only if A ∪ F ∈ ∆ if and only if xAxF ̸= 0 in K[∆] if and only if

xA ̸∼ xF . Therefore the set all vertices not adjacent to xF correspond exactly to

all nonempty subsets of F , the number of which is 2|F | − 1. Therefore deg(xF ) =

|V(Γsf(∆))| − 2|F | + 1. Let rF denote this number.

Now assume that xG is a vertex of Γsf(∆) which is in a largest clique A. If there

are two facets F1 and F2 with G ⊆ F1, F2, then (A \ {xG}) ∪ {xF1 , xF2} is a clique

larger that A, a contradiction. So G is contained in exactly one facet F of ∆. Now

xA ∼ xG ⇔ A ∪G /∈ ∆ ⇔ A ̸⊆ F ⇔ xA ∼ xF .

Therefore deg(xG) = rF . Thus each vertex of Γsf(∆) which is in a largest clique

has degree rF for some facet F . But as rF just depends on |F |, ∆ is pure if and

only if all rF ’s are equal and the result follows. □

Remark 2.3. The proof of Theorem 2.2, shows that largest cliques of Γsf(∆)

correspond to the set of all facets of ∆. More concretely, if for each facet F of ∆,

we consider a face GF ⊆ F which is not contained in any other facet, then the

set of all xGF
for all facets F is a largest clique and every largest clique has this

form. Also note that, by the proof of Theorem 2.2, xGF
and xF have the same

neighborhoods.

As instant corollaries of the above results we get the following.

Corollary 2.4. Suppose that I is a squarefree monomial ideal and R = S/I. If R

is Cohen-Macaulay, then either Γsf(R) is a complete graph or Γsf(R) is connected

and the degrees of all vertices of Γsf(R) contained in a largest clique are equal.

Proof. If I ̸⊆ ⟨x1, . . . , xn⟩2, say xr, . . . , xn ∈ I for some 1 ≤ r ≤ n, then R ∼= S′/I ′

for S′ = K[x1, . . . , xr−1] and a squarefree monomial ideal I ′ of S′ contained in

⟨x1, . . . , xr−1⟩2. Clearly Γsf(R) does not differ whether we view R as S/I or S′/I ′.

Therefore we can assume that I ⊆ ⟨x1, . . . , xn⟩2, hence I = I∆ for a simplicial

complex ∆. If dim∆ = 0, then Γsf(∆) is a complete graph. Else, since R is Cohen-

Macaulay, ∆ is pure and connected and the result follows from Theorem 2.1 and

Theorem 2.2. □



PROPERTIES OF SQUAREFREE ZERO-DIVISOR GRAPHS 125

Corollary 2.5. Suppose that I is a squarefree monomial ideal and R = S/I. If

the maximum size of an independent set of Γsf(R) which meets a largest clique is

3, then R is Cohen-Macaulay if and only if Γsf(R) is connected.

Proof. By [12, Corollary 3.6], 3 = 2dimR − 1 = 2dim∆+1 − 1. By [2, Exercise

5.1.26(c)], when dim∆ = 1, then K[∆] is Cohen-Macaulay if and only if ∆ is

connected. □

3. Diameter and girth of Γsf(R)

Next we study the diameter of squarefree zero-divisor graphs. Recall that the

diameter of a graph G, denoted diamG, is the maximum distance of two vertices

in G. Let R = K[∆] for the simplicial complex ∆ = ⟨F1, . . . , Ft⟩. Note that

the vertices of Γsf(R) corresponding to the faces F with F ⊆ ∩t
i=1Fi are isolated

vertices. Thus if such faces exist, diamΓsf(R) = ∞. Assume that Z(R) denote the

set of zero-divisors of R. Then the graph Γsf(R) is a disjoint union of 2a−1 isolated

vertices which are not in Z(R) (where a = | ∩t
i=1 Fi|) and the induced subgraph

of Γsf(R) on V(Γsf(R)) ∩ Z(R). Let’s denote the latter graph by Γ̂sf(R). If ∆ has

exactly one facet, then R is a polynomial ring over K and Γsf(R) is just a set of

isolated vertices. In other words, Γ̂sf(R) is empty in this case. The following result

shows that Γ̂sf(R) is the “main part” of Γsf(R), in the sense that if we know Γ̂sf(R),

then we can reconstruct Γsf(R), unless Γ̂sf(R) = ∅.

Proposition 3.1. Assume that R is a Stanley-Reisner ring with nonempty Γ̂sf(R).

Suppose that α equals the size of a maximal independent set of Γ̂sf(R) meeting a

largest clique. If α = 2ap where p is odd, then Γsf(R) is a disjoint union of Γ̂sf(R)

and 2a−1 isolated vertices. Hence, if S is another Stanley-Reisner ring, then R ∼= S

if and only if Γ̂sf(R) ∼= Γ̂sf(S).

Proof. Let R = K[∆] and ∆ = ⟨F1, . . . , Ft⟩. We know that Γsf(R) is a disjoint

union of Γ̂sf(R) and a set J of 2|F0| − 1 isolated vertices, where F0 = ∩t
i=1Fi.

Suppose that I is a maximal independent set of Γ̂sf(R) meeting a largest clique of

Γ̂sf(R). Then this clique is also a largest clique in Γsf(R) and hence I′ = I ∪ J is a

maximal independent set of Γsf(R) meeting a largest clique of Γsf(R). According to

[12, Corollary 3.6], |I′| = 2dimR−1. Therefore, 2ap = |I| = 2dimR−1−(2|F0|−1) =

2|F0|(2dimR−|F0| − 1) and hence a = |F0|, as required. The final statement follows

from [12, Theorem 3.4]. □

We can see Γ̂sf(R) as the zero-divisor graph of a semigroup. The zero-divisor

graph Γ(E) of a commutative semigroup E with a zero was introduced and studied
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in [4, 5]. The vertices of this graph are nonzero zero-divisors of E and two vertices

x and y are connected when xy = 0. Set E = V(Γ̂sf(R)) ∪ {0} and define 0 · x = 0

for all x ∈ E and

xF · xF ′ =

{
xF∪F ′ if xFxF ′ ̸= 0

0 else
,

for each xF , xF ′ ∈ V(Γ̂sf(R)). Then (E, ·) is a commutative semigroup with zero

and Γ(E) = Γ̂sf(R). We get the following as an immediate corollary of this fact.

Corollary 3.2. Let R be a Stanley-Reisner ring with Γ̂sf(R) ̸= ∅. Then Γ̂sf(R) is

connected and diam Γ̂sf(R) ≤ 3.

Proof. This holds for the zero-divisor graph of any semigroup by [4, Theorem

1.2]. □

In the sequel, we denote the unique minimal generating set of a monomial ideal

I by G(I) and call the elements of G(I) the minimal generators of I. Also by PF ,

where F ⊆ [n], we mean the prime ideal generated by {xi|i ∈ F}. By [7, Lemma

1.5.4] every minimal prime ideal of a squarefree monomial ideal has this form.

Theorem 3.3. Let ∆ be a simplicial complex on [n] and R = K[∆]. Set I = I∆

and assume that Γ̂sf(R) ̸= ∅.

(i) diam Γ̂sf(R) = 1 if and only if R ∼= K[x1, . . . , xn]/I where I = ⟨xixj |1 ≤
i ̸= j ≤ n⟩ and n = |V(Γsf(R))|.

(ii) diam Γ̂sf(R) ≤ 2 if and only if for each pair of distinct indeterminates xi

and xj each of which appears in some minimal generator of I with the

property that xixj /∈ I, we have (I : xi) ∩ (I : xj) ̸⊆ I + ⟨xi, xj⟩.

Proof. (i) By Proposition 3.1, Γsf(R) is complete. It is easy to see that for the

specified ring R, Γsf(R) is a complete graph on n vertices. According to [12, Theo-

rem 3.4], Γsf(R) ∼= Γsf(R
′) if and only if R ∼= R′, when R and R′ are Stanley-Reisner

rings over K, hence the result follows.

(ii) Assume that diam Γ̂sf(R) ≤ 2 and xi and xj are distinct indeterminates

appearing in some minimal generators of I such that xixj /∈ I. Since xi and xj

appear in some minimal generators of I, xi, xj ∈ Z(R) and hence xi, xj ∈ Γ̂sf(R).

Since xixj ̸= 0, these vertices are not adjacent and as diam Γ̂sf(R) ≤ 2, there is a

vertex xF ∈ Γ̂sf(R) such that xixF = xjxF = 0, in particular, i, j ∈ F̄ = [n] \ F .

By replacing F with a facet of ∆ containing F , we can assume that F is a facet of

∆.
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According to [7, Lemma 1.5.4], PF̄ is a minimal prime of I and xi, xj ∈ PF̄ .

Suppose that (I : xi) ∩ (I : xj) ⊆ I + ⟨xi, xj⟩ ⊆ PF̄ . Then either (I : xi) ⊆ PF̄

or (I : xj) ⊆ PF̄ . Without loss of generality, assume that the former holds. Let

P ′ = PF̄\{i} which is strictly contained in PF̄ . So by the minimality of PF̄ , we have

I ̸⊆ P ′. To complete the proof we get a contradiction by showing that I ⊆ P ′. Let

u ∈ G(I). If xi ∤ u, then as u ∈ PF̄ , xr|u for some i ̸= r ∈ F̄ and hence u ∈ P ′.

If xi|u, then u/xi ∈ (I : xi) ⊆ PF̄ and xi ∤ (u/xi). Thus as above, u/xi ∈ P ′ and

hence u ∈ P ′. This shows that I ⊆ P ′ as required.

Conversely, assume that for each pair of distinct indeterminates xi and xj ap-

pearing in some minimal generator of I such that xixj /∈ I, we have (I : xi) ∩ (I :

xj) ̸⊆ I + ⟨xi, xj⟩. Let xF1 ̸= xF2 be two nonadjacent vertices of Γ̂sf(R). We must

find a vertex adjacent to both xF1 and xF2 . If F1 ⊆ F2, then every vertex adjacent

to xF1
is also adjacent to xF2

. So in this case, since Γ̂sf(R) has not isolated vertices,

we are done. Thus we assume that F1 and F2 are incomparable. If i ∈ F1 \ F2 and

j ∈ F2 \ F1, then xi and xj are nonadjacent and every vertex adjacent to both xi

and xj is also adjacent to both xF1 and xF2 . So we can assume that F1 = {i} and

F2 = {j}.
By assumption, (I : xi) ∩ (I : xj) ̸⊆ I + ⟨xi, xj⟩ and as I + ⟨xi, xj⟩ is squarefree

monomial and hence a radical ideal, there is a minimal prime PF of I + ⟨xi, xj⟩
such that (I : xi)∩ (I : xj) ̸⊆ PF . Let PG be a minimal prime of I contained in PF .

Then (I : xi) ̸⊆ PG and (I : xj) ̸⊆ PG. Let u ∈ (I : xi) \ PG, then xiu ∈ I ⊆ PG

and hence xi ∈ PG, that is, i ∈ G. Similarly j ∈ G. According to [7, Lemma 1.5.4],

Ḡ = [n] \G is a facet of ∆ and as i, j /∈ Ḡ, we have xixḠ = xjxḠ = 0, that is, xḠ

is a neighbor of both xi and xj , as required. □

Recall that the girth of a graph is defined as the length of the smallest cycle of

the graph. Girth of a squarefree zero-divisor graph can be easily found.

Proposition 3.4. If the simplicial complex ∆ has at least three different facets,

then girth Γsf(∆) = 3. If ∆ has exactly one facet, then girth Γsf(∆) = ∞. If ∆ has

two facets F1, F2 with |F1| ≤ |F2|, then if |F1| = 1, we have girth Γsf(∆) = ∞, and

if |F1| > 1, we have girth Γsf(∆) = 4.

Proof. If ∆ has at least three different facets F1, F2, F3, then xF1 ∼ xF2 ∼ xF3 ∼
xF1

is a cycle with length 3. If ∆ has one facet, then Γsf(∆) is a set of isolated

vertices. If ∆ has two facets F1, F2, then Γsf(∆) is disjoint union of a set of 2|F1∩F2|−
1 isolated vertices and a complete bipartite graph with partition sizes 2|F1|−2|F1∩F2|

and 2|F2| − 2|F1∩F2|. From this, the result easily follows. □
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4. When Γsf(R) is in a well-known class of graphs

In the final section of this article, we investigate when Γsf(R) is in some of the

well-known classes of graph. Recall that a graph is complete r-partite, when its set

of vertices can be partitioned to r subsets such that two vertices are adjacent if and

only if they are from different subsets. Moreover, a graph is called regular, when

all of its vertices have the same degree. Also a graph G is said to be chordal, when

for each S ⊆ V(G), the induced subgraph of G on S is not a cycle, unless |S| = 3.

Theorem 4.1. Let R be a Stanley-Reisner ring over a field K.

(i) Γsf(R) is complete, if and only if R ∼= K[x1, . . . , xn]/I where I = ⟨xixj |1 ≤
i ̸= j ≤ n⟩ for some positive integer n.

(ii) Γsf(R) is bipartite, if and only if R ∼= K[x1, . . . , xn+m+a]/I where I =

⟨xixj |1 ≤ i ≤ n, n + 1 ≤ j ≤ n + m⟩, for some nonnegative integers

a, n,m.

(iii) Γsf(R) is a complete r-partite graph, if and only if there are positive in-

tegers n1, . . . , nr such that R ∼= K[xi,j |1 ≤ i ≤ r, 1 ≤ j ≤ ni]/I where

I = ⟨xi,jxl,m|i ̸= l⟩.
(iv) Γsf(R) is regular, if and only if there are positive integers n, r such that

R ∼= K[xi,j |1 ≤ i ≤ r, 1 ≤ j ≤ n]/I, where I = ⟨xi,jxl,m|i ̸= l⟩.
(v) Γsf(R) is chordal, if and only if there is an integer 0 ≤ r ≤ n with 0 < n

such that R ∼= K[x1, . . . , xn]/I where either

I = ⟨xixj |1 ≤ i ̸= j ≤ n, i ≤ r⟩ or

I = ⟨xixj |1 ≤ i ̸= j ≤ n, i ≤ r⟩+ ⟨xixjxk|r < i < j < k ≤ n⟩.

Proof. Throughout the proof we assume that R = K[∆] where ∆ = ⟨F1, . . . , Ft⟩.
(i) Indeed, this was proved in the proof of Theorem 3.3(i).

(ii) Suppose Γsf(R) is bipartite. Then t = |Ass(R)| equals the size of the largest

clique of Γsf(R) by [12, Corollary 3.5]. Since Γsf(R) is bipartite, it follows that

t ≤ 2. If t = 1, then R has the claimed form with a = |F1| and n = m = 0.

Assume that t = 2. Let F1 \ F2 = {1, . . . , n}, F2 \ F1 = {n + 1, . . . , n + m} and

F1 ∩ F2 = {n+m+ 1, . . . , n+m+ a}. Then it is easy to see that the ideal I = I∆

has the claimed form. The converse is clear.

(iii) Suppose that Γsf(∆) is complete r-partite. Since the number of facets of ∆

is |Ass(R)| and according to [12, Corollary 3.5], t = r. Suppose that Fi ∩ Fj ̸= ∅
for some i ̸= j. Then xFj∩Fi is not adjacent to xFi and xFj . So these three vertices

should be in one part which contradicts xFi
∼ xFj

. Consequently, the facets of ∆
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are mutually disjoint. Thus the minimal non-faces of ∆ are of the form {u, v} with

u and v from different facets. Hence if we assume Fi = {(i, j)|1 ≤ j ≤ ni}, then R

is the ring claimed in the statement. Conversely, suppose that R has the specified

form. Then it is easy to see that in Γsf(R) the set of vertices Pi =
{
xF |F ⊆

{(i, 1), . . . , (i, ni)}
}
is independent for each i and if i ̸= j then every vertex of Pi is

adjacent to every vertex of Pj . Therefore, Γsf(R) is complete r-partite.

(iv) If R is the specified ring, then by part (iii), Γsf(R) is a complete r-partite

graph in which all parts have the same size. Thus Γsf(R) is regular. Conversely,

assume that Γsf(R) is regular. If Fi ̸= Fj are facets of ∆ and Fi ∩ Fj ̸= ∅, then
xFi

is adjacent to all neighbors of xFi∩Fj
. Since xFj

≁ xFi∩Fj
but xFi

∼ xFj
,

deg(xFi∩Fj ) < deg(xFi) which contradicts regularity of Γsf(R). Therefore, as in the

proof of the previous part, Γsf(R) is complete r-partite with part sizes 2|Fi| − 1. A

complete r-partite graph is regular, only if all parts have the same size and from

this the result follows.

(v) Suppose that R is any of the two rings mentioned in this part. It is routine

to see that vertices of Γsf(R) can be partitioned into two sets V1 and V2, such that

V1 is a clique and V2 is an independent set of Γsf(R). Therefore any induces cycle

of Γsf(R) with length at least 4, has at most 2 vertices in V1. Therefore, such a

cycle must have at leas two adjacent vertices in V2, a contradiction. Hence Γsf(R)

is chordal.

Now assume that Γsf(R) is chordal. Let V1 = {i ∈ [n]|∀j ̸= i xixj ∈ I}
and V2 = [n] \ V1. We can assume that V1 = [r] for some r ≤ n. Suppose that

I ̸= I0 = ⟨xixj |1 ≤ i ̸= j ≤ n, i ≤ r⟩. Thus there is a squarefree monomial

u ∈ G(I) \ I0. If deg(u) = 2, then u = xixj for some r < i ̸= j ≤ n. Since i, j > r,

there are i′, j′ ∈ [n] such that xixi′ , xjxj′ /∈ I. If xi′xj /∈ I, then xi′xi ∼ xj ∼ xi ∼
xi′xj ∼ xi′xi is an induced cycle of length 4 in Γsf(R). Therefore xi′xj ∈ I. But

now xi′ ∼ xj ∼ xi ∼ xjxj′ ∼ xi′ is an induced cycle of length 4. This contradiction

shows that deg(u) > 2.

Suppose that deg(u) ≥ 4. Then u = xixjxkxlv for some squarefree monomial

v. Now we have the induced cycle xixj ∼ xkxlv ∼ xixjxl ∼ xjxkxlv ∼ xixj with

length 4, a contradiction. So deg(u) = 3. Now we show that if xixjxk ∈ G(I) (for

mutually different i, j, k), then xF ∈ G(I) for each F ⊆ {r + 1, . . . , n} such that

|F ∩ {i, j, k}| = 2. We just need to show that xF ∈ I, for such sets F . Suppose

xF /∈ I for some such F , say F = {i, j, l} with l /∈ {i, j, k}. Then we get the following

induced cycle of length 4 which is a contradiction: xk ∼ xixj ∼ xjxk ∼ xixjxl ∼
xk. Now assume that G = {a, b, c} is an arbitrary 3-subset of {r + 1, . . . , n}. If
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|G ∩ {i, j, k}| = 1, say a = i, then by the above argument xixjxc ∈ I and hence

again applying the above argument with {i, j, c} instead of {i, j, k} we see that

xG ∈ G(I). If G ∩ {i, j, k} = ∅, then by a similar argument we see that xG ∈ G(I).

Thus

I = ⟨xixj |1 ≤ i ̸= j ≤ n, i ≤ r⟩+ ⟨xixjxk|r < i < j < k ≤ n⟩. □

Recall that a graded ideal I of S has a linear resolution if it can be generated

in degree d and its Castelnuovo-Mumford regularity (see definition (2) on [7, p.

48]) is equal to d. Also it is said that I is componentwise linear if for all j, the

ideal generated by all homogenous polynomials of I with degree j has a linear

resolution. Moreover, a squarefree monomial ideal I is called squarefree stable if

for all monomials u ∈ I (or equivalently, u ∈ G(I)) and for all j < m(u) such that

xj does not divide u, one has xj(u/xm(u)) ∈ I, where m(u) denotes the largest

index of an indeterminate which divides u.

Corollary 4.2. Suppose that R = S/I is a Stanley-Reisner ring. If Γsf(R) is

complete or bipartite or complete r-partite or regular, then I has a linear resolution.

If Γsf(R) is chordal, then R is componentwise linear.

Proof. Suppose that Γsf(R) is complete or bipartite or complete r-partite or reg-

ular. Let G be the graph in which vertices denote the indeterminates of S and two

vertices are adjacent when their product is in I. Using Theorem 4.1, it is easy to

see that G is a chordal graph and it follows from [7, Theorem 9.2.12], that I has a

linear resolution.

Now assume that Γsf(R) is chordal. According to [7, Proposition 8.2.17], to show

that I is componentwise linear, we just need to show that I[j] has a linear resolution

for each j, where I[j] denotes the ideal generated by the squarefree monomials of I

with degree j. But it follows Theorem 4.1(v), that for all j, I[j] is squarefree stable.

Thus by [7, Corollary 7.4.2] that I[j] has a linear resolution. □

Suppose that R = K[∆] and let ∆[i] = ⟨F ∈ ∆||F | = i+1⟩ be the pure i skeleton

of ∆. Then R is called sequentially Cohen-Macaulay if K[∆[i]] is Cohen-Macaulay

for each i ≤ dim∆. It is well-known that R is Cohen-Macaulay if and only if it is

sequentially Cohen-Macaulay and ∆ is pure.

Corollary 4.3. Suppose that R is a Stanley-Reisner ring.

(i) Suppose that Γsf(R) is complete. Then R is Cohen-Macaulay.

(ii) Suppose that Γsf(R) is bipartite. Then R is Cohen-Macaulay if and only

if Γsf(R) has at most one edge. Also R is sequentially Cohen-Macaulay if

and only if Γsf(R) is a union of a star and a set of isolated vertices.
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(iii) Suppose that Γsf(R) is complete r-partite. Then R is Cohen-Macaulay if

and only if either Γsf(R) or Γsf(R) is complete. Also R is sequentially

Cohen-Macaulay if and only if the vertices of Γsf(R) can be partitioned

into a clique V1 and an independent set V2, such that every vertex of V1

is adjacent to every vertex of V2.

(iv) Suppose that Γsf(R) is regular. Then R is Cohen-Macaulay if and only if

R is sequentially Cohen-Macaulay if and only if either Γsf(R) or Γsf(R)

is complete.

(v) Suppose that Γsf(R) is chordal. Then R is sequentially Cohen-Macaulay.

Also R is Cohen-Macaulay if and only if either Γsf(R) or Γsf(R) is com-

plete or the set of vertices of Γsf(R) can be partitioned into an independent

set V1 with size n and a clique V2 with size
(
n
2

)
such that for each vertex

v of V1, deg(v) =
(
n
2

)
− (n− 1).

Proof. (i) If R = K[∆], then by Theorem 4.1(i), ∆ is zero-dimensional and hence

Cohen-Macaulay.

(iii) Let G be the graph in which vertices denote the indeterminates of S and

two vertices are adjacent when their product is in I. Then it follows Theorem

4.1(iii) that G is a complete r-partite graph. Suppose that part i has size ni with

1 ≤ n1 ≤ n2 · · · ≤ nr. By [16, Theorem 2.17], R is sequentially Cohen-Macaulay

if and only if nr−1 = 1. In this case, if we let V1 to be the r-th part and V2 to be

the set of all other vertices, then V1 and V2 have the required properties. Note that

since each part of G is a facet of ∆, thus if R = K[∆], then ∆ is pure, if and only

if nr = n1. So R is Cohen-Macaulay if and only if either r = 1 or r > 1 and all

ni’s are one. In the former case, Γsf(R) is a set of isolated vertices and in the latter

case, Γsf(R) is a complete graph. (It should be noted that in [16, Theorem 2.12],

which characterises Cohen-Macaulay complete t-partite graphs, it seems that the

authors have assumed t > 1 without mentioning this.)

(ii) and (iv) By parts (ii) and (iv) of Theorem 4.1, if Γsf(R) is bipartite or

regular, then it is a complete r-partite graph with possibly some extra isolated

vertices. Noting that isolated vertices denote indeterminates not appeared in G(I)

and using the fact that R is Cohen-Macaulay if and only if R[x] is so, the result

follows from part (iii).

(v) Suppose that R = K[∆]. Then by Theorem 4.1(v) either ∆ = ⟨{i}|1 ≤ i ≤
r⟩ ∪ ⟨{r + 1, . . . , n}⟩ or ∆ = ⟨{i}|1 ≤ i ≤ r⟩ ∪ ⟨{i, j}|r < i < j ≤ n⟩. In both cases

and for all 0 < i ≤ dim∆, ∆[i] is the pure i skeleton of a simplex on n− r vertices

and hence is Cohen-Macaulay. Therefore R is sequentially Cohen-Macaulay. Thus
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R is Cohen-Macaulay if and only if ∆ is pure if and only if either r = 0 or r = n.

If r = n, then Γsf(R) is complete. If r = 0, then either ∆ has exactly one facet and

Γsf(R) is a set of isolated vertices or ∆ = ⟨{i, j}|1 ≤ i < j ≤ n⟩. In the latter case,

V(Γsf(R)) = V1 ∪ V2 with V1 = {x1, . . . , xn} and V2 = {xF |F ⊆ [n], |F | = 2}. Also

V1 is an independent set and V2 is a clique and each vertex xi of V1 is adjacent to

all xF ∈ V2 with i /∈ F . So deg(xi) = |V2| − (n− 1).

Conversely, if such a partition of V(Γsf(R)) exists, then Γsf(R) is chordal and ∆

is one of the aforementioned complexes. Because there does not exist any vertex

adjacent to all other vertices, we must have r = 0 and ∆ is pure. From this, the

claim follows. □
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