

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA VOLUME 32 (2022) 241-245 DOI: 10.24330/ieja.1144159

ON SOLUBILITY OF GROUPS WITH FINITELY MANY CENTRALIZERS

Igor Lima and Caio Rodrigues

Received: 22 December 2021; Revised: 29 March 2022; Accepted: 25 May 2022 Communicated by Abdullah Harmancı

ABSTRACT. In this paper we present a new sufficient condition for a solubility criterion in terms of centralizers of elements. This result is a corrigendum of one of Zarrin's results. Furthermore, we extend some of K. Khoramshahi and M. Zarrin's results in the primitive case.

Mathematics Subject Classification (2020): 20D10, 20D15 Keywords: Centralizer, *n*-centralizer group, simple group

1. Introduction

Let G be a group, given $g \in G$ we define $C_G(g) = \{x \in G | xg = gx\}$ the centralizer of g in G and $Cent(G) = \{C_G(g) | g \in G\}$ the set of all centralizers of elements in G. Denote by |W| the cardinal of the set W. If $|Cent(G)| = n \in \mathbb{N}$ we say that G is a C_n -group or that G is a n-centralizer group. If G/Z(G) is an ncentralizer too, we say that G is a primitive n-centralizer group, or simply primitive n-centralizer.

The study of finite groups in terms of |Cent(G)| was started by Belcastro and Sherman in [3]. It is easy to see that a group is 1-centralizer if and only if it is abelian and there is no *n*-centralizer group for n = 2, 3. An *n*-centralizer group was constructed for each $n \neq 2, 3$ in [2]. We collect a few results in the following theorem.

Theorem 1.1. Suppose G is a finite n-centralizer group. Then

- (1) $n = 4 \iff G/Z(G) \cong C_2 \times C_2$ (see [3]).
- (2) $n = 5 \iff G/Z(G) \cong C_3 \times C_3 \text{ or } S_3 \text{ (see [3])}.$
- (3) $n = 6 \Rightarrow G/Z(G) \cong D_8$, A_4 , $C_2 \times C_2 \times C_2$ or $C_2 \times C_2 \times C_2 \times C_2$ (see [2]).
- (4) $n = 7 \iff G/Z(G) \cong C_5 \times C_5$, D_{10} or $\langle x, y | x^5 = y^4 = 1, x^y = x^3 \rangle$ (see [1]).
- (5) $n = 8 \Rightarrow G/Z(G) \cong C_2 \times C_2 \times C_2$, A_4 or D_{12} (see [1]).

The first author was supported by DPI/UnB and FAPDF, Brazil. The second author was supported by CNPq.

- (6) $n = 9 \iff G/Z(G) \cong D_{14}, C_7 \times C_7, Hol(C_7)$ or a non-abelian group of order 21 (see [6]).
- (7) $n = 10 \Rightarrow G/Z(G) \cong D_{16}, C_2^4, C_4 \times C_4, (C_4 \times C_2) \rtimes C_2, C_2 \times D_8, C_2^5, C_2^6$ or $C_2^3 \rtimes C_7$ (see [7]).
- (8) If G is a primitive 11-centralizer group of odd order, then $G/Z(G) \cong (C_9 \times C_3) \rtimes C_3$ (see [10]).

The concept of isoclinic groups was introduced by P. Hall in [5]. Two groups G_1 and G_2 (not necessarily finite) are said to be *isoclinic* if there are isomorphisms $\varphi: G_1/Z(G_1) \to G_2/Z(G_2)$ and $\phi: G'_1 \to G'_2$ such that if $\varphi(a_1Z(G_1)) = a_2Z(G_2)$ and $\phi(b_1Z(G_1)) = b_2(G_2)$, then $\phi([a_1, b_1]) = [a_2, b_2]$ for each $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$. It is easy to see that isoclinism is an equivalence relation.

As noted by P. Hall [5], every group G_2 which is isoclinic with G_1 also is isoclinic with the product $G_1 \times A$, where A is an abelian group. Indeed, if G_1 is isoclinic with G_2 and G_3 is isoclinic with G_4 , then the direct product $G_1 \times G_3$ is isoclinic with $G_2 \times G_4$. In particular if A is an abelian group, then A is isoclinic with the trivial group, say 1, and therefore G is isoclinic with $G \times A$, for all group G.

In [13] M. Zarrin establishes a relation between isoclinism and the number centralizers of elements of G. He proves that if G_1 and G_2 are isoclinic, then $|Cent(G_1)| = |Cent(G_2)|$. He also proves that if G is an arbitrary group with |Cent(G)| = n, then there are only finitely many groups J, up to isoclinism, with |Cent(J)| = n, moreover, there exists a finite group K that is isoclinic with G and |Cent(G)| = |Cent(K)|. Theorem 3.5 of the same article is an extension of Theorem 1.1 for arbitrary groups. Note that Zarrin proves in [13] the case $|Cent(G)| \leq 8$.

In this short paper we prove that if G is a finite n-centralizer group such that $n \ge 4$ and $|G| < \frac{30n}{19}$, then G is a non-nilpotent solvable group. This fact is a correction of the proof of Theorem B (2) in [12]. Moreover, we extend the Theorem 3.5 in [8] in the primitive case.

Let I(G) be the set of all involutions of a group G, that is, $I(G) = \{a \in G | a = a^{-1}\}$. The problem with the proof of Theorem B (2) in [12] is that $|I(G)| \ge \frac{4|G|}{15}$ instead of $|I(G)| > \frac{4|G|}{15}$ and we cannot apply Potter's result, but this problem can be refined if we change the condition in the statement Theorem B (2) to |G| < 30n/19.

2. Preliminaries

We shall need the following results in [9] and [12] for the correction of Theorem B in [12]. For the convenience of the reader, we repeat the statements of the followings results.

242

Lemma 2.1. Let G be a finite C_n -group. Then

$$n \le \frac{|G| + |I(G)|}{2}.$$

Theorem 2.2 (Potter, 1988). Suppose G admits an automorphism which inverts more than $\frac{4|G|}{15}$ elements. Then G is solvable.

3. Correction

Now we are ready to prove the following theorem, which is similar to Theorem B in [12], using the same proof outline.

Theorem 3.1. If G is a finite n-centralizer group with $n \ge 4$, then the following holds:

- (1) |G| < 2n, then G is non-nilpotent.
- (2) $|G| < \frac{30n}{19}$, then G is a non-nilpotent solvable group.

Proof. We will just prove part (2). From part (1), which is proved in Theorem B (1) in [12], we have that G is non-nilpotent, since $|G| < \frac{30n}{19} < 2n$. Moreover, since $2n > \frac{19|G|}{15}$, Lemma 2.1 implies that

$$|I(G)| \ge 2n - |G| > \frac{4|G|}{15}.$$

Since I(G) is the set of all elements of G that is inverted by the identity automorphism, Theorem 2.2 completes the proof.

The condition (2) above is better than the part (2) of Theorem B in [12]. However using a GAP check [11] we don't know an example of a group G such that $|G| < \frac{30n+15}{19}$ and G is not a solvable group. It is immediate from Theorem 1.1 examples of groups where both conditions of Theorem 3.1 holds exist, for instance $G = S_3$ and n = 5.

4. A condition for isoclinism

We will need of a Lemma (see Lemma 3.3 in [8]).

Lemma 4.1. Let H a subgroup of an arbitrary group G such that |Cent(H)| = |Cent(G)|. Then $H \cap Z(G) = Z(H)$ and $\frac{H}{Z(H)} \cong \frac{HZ(G)}{Z(G)}$. In particular, H is isoclinic with HZ(G).

Using similar arguments we extend Theorem 3.5 in [8] and for the case n = 11, we add the hypothesis that H is a primitive 11-centralizer group.

Theorem 4.2. Let G be a non-abelian arbitrary group. If $H \leq G$, |Cent(G)| = |Cent(H)| = n = 8, then H is isoclinic with G. This result still holds if n = 11, H is primitive and G is a primitive 11-centralizer of odd order.

Proof. From Lemma 4.1, $1 \neq \frac{H}{Z(H)} \cong \frac{HZ(G)}{Z(G)} \leq \frac{G}{Z(G)}$. By Zarrin's Theorem 3.3 (2) [13] there is a finite group K which is isoclinic with G and |Cent(G)| = |Cent(K)|, so $G/Z(G) \cong K/Z(K)$. Let |Cent(G)| = |Cent(K)| = n = 8. From Theorem 1.1 we have that $K/Z(K) \cong G/Z(G) \cong C_2 \times C_2 \times C_2$, A_4 or D_{12} . If $\frac{HZ(G)}{Z(G)} < \frac{G}{Z(G)}$, we have that $\frac{H}{Z(H)} \cong C_2$, $C_2 \times C_2$, C_3 , C_6 , or S_3 . If $\frac{H}{Z(H)}$ is cyclic, then His abelian, which is a contradiction. If $\frac{H}{Z(H)} \cong S_3$ or $C_2 \times C_2$, from Theorem 1.1, |Cent(H)| = 5 or 4, which is a contradiction. Therefore from Lemma 4.1 it follows that $H/Z(H) \cong \frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$. Let n = 11 and suppose that G is a primitive 11-centralizer group of odd order. From Theorem 1.1 we have that $G/Z(G) \cong (C_9 \times C_3) \rtimes C_3.$ If $\frac{HZ(G)}{Z(G)} < \frac{G}{Z(G)}$, we have that $\frac{H}{Z(H)} \cong C_3, C_3 \times C_3$, $C_9, C_9 \times C_3$, or $(C_3 \times C_3) \rtimes C_3$. Again, $\frac{H}{Z(H)}$ can't be cyclic. Using the GAP (see [10]), and the fact that H is primitive, we can verify that if $\frac{H}{Z(H)} \cong C_3 \times C_3$, $C_9 \times C_3$, or $(C_3 \times C_3) \rtimes C_3$ then $11 = |Cent(H)| = |Cent(\frac{H}{Z(H)})| = 1$ or 5, which is a contradiction. Therefore from Lemma 4.1 it follows that $H/Z(H) \cong \frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$. In either case we obtain $\frac{H}{Z(H)} \cong \frac{HZ(G)}{Z(G)} = \frac{G}{Z(G)}$, so HZ(G) = G. Again by Lemma 4.1, H is isoclinic with HZ(G) = G.

Acknowledgement. The authors would like to thank the referees for the valuable suggestions and comments.

References

- A. Abdollahi, S. M. Jafarian Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math., 33(1) (2007), 43-57.
- [2] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7 (2000), 139-146.
- [3] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag., 67(5) (1994), 366-374.
- [4] Z. Foruzanfar and Z. Mostaghim, On 10-centralizer groups of odd order, ISRN Algebra 2014, 607984 (4pp).
- [5] P. Hall, The classification of prime power groups, J. Reine Agnew. Math., 182 (1940), 130-141.
- [6] S. M. Jafarian Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl., 14 (1) (2015), 1550003 (13 pp).

- [7] S. M. Jafarian Amiri, H. Madadi and H. Rostami, Groups with exactly ten centralizers, Bull. Iranian Math. Soc., 44 (2018), 1163-1170.
- [8] K. Khoramshahi and M. Zarrin, Groups with the same number of centralizers, J. Algebra Appl. 20(2) (2021), 2150012 (6 pp).
- W. M. Potter, Nonsolvable groups with an automorphism inverting many elements, Arch. Math. (Basel), 50 (1998), 292-299.
- [10] M. Rezaei and Z. Foruzanfar, On primitive 11-centralizer groups of odd order, Malays. J. Math. Sci., 10(3) (2016), 361-368.
- [11] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.10.2; 2019. (https://www.gap-system.org)
- [12] M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iranian Math. Soc., 39 (2013), 517-521.
- M. Zarrin, On noncommuting sets and centralisers in infinite groups, Bull. Aust. Math. Soc., 93 (2016), 42-46.

Igor Lima (Corresponding Author) Departamento de Matemática Universidade de Brasília Brasilia-DF, 70910-900 Brazil e-mail: igor.matematico@gmail.com

Caio Rodrigues

IMPA Estrada Dona Castorina, 110 22460-320 Rio de Janeiro, Brazil e-mail: oiac10@gmail.com