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Abstract. In this paper we present a new sufficient condition for a solubility

criterion in terms of centralizers of elements. This result is a corrigendum of

one of Zarrin’s results. Furthermore, we extend some of K. Khoramshahi and

M. Zarrin’s results in the primitive case.
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1. Introduction

Let G be a group, given g ∈ G we define CG(g) = {x ∈ G| xg = gx} the

centralizer of g in G and Cent(G) = {CG(g)| g ∈ G} the set of all centralizers of

elements in G. Denote by |W | the cardinal of the set W . If |Cent(G)| = n ∈ N
we say that G is a Cn-group or that G is a n-centralizer group. If G/Z(G) is an n-

centralizer too, we say that G is a primitive n-centralizer group, or simply primitive

n-centralizer.

The study of finite groups in terms of |Cent(G)| was started by Belcastro and

Sherman in [3]. It is easy to see that a group is 1-centralizer if and only if it is

abelian and there is no n-centralizer group for n = 2, 3. An n-centralizer group

was constructed for each n 6= 2, 3 in [2]. We collect a few results in the following

theorem.

Theorem 1.1. Suppose G is a finite n-centralizer group. Then

(1) n = 4 ⇐⇒ G/Z(G) ∼= C2 × C2 (see [3]).

(2) n = 5 ⇐⇒ G/Z(G) ∼= C3 × C3 or S3 (see [3]).

(3) n = 6⇒ G/Z(G) ∼= D8, A4, C2×C2×C2 or C2×C2×C2×C2 (see [2]).

(4) n = 7 ⇐⇒ G/Z(G) ∼= C5 × C5, D10 or 〈x, y| x5 = y4 = 1, xy = x3〉 (see

[1]).

(5) n = 8⇒ G/Z(G) ∼= C2 × C2 × C2, A4 or D12 (see [1]).
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(6) n = 9 ⇐⇒ G/Z(G) ∼= D14, C7 × C7, Hol(C7) or a non-abelian group of

order 21 (see [6]).

(7) n = 10⇒ G/Z(G) ∼= D16, C
4
2 , C4×C4, (C4×C2)oC2, C2×D8, C

5
2 , C

6
2

or C3
2 o C7 (see [7]).

(8) If G is a primitive 11-centralizer group of odd order, then G/Z(G) ∼= (C9×
C3) o C3 (see [10]).

The concept of isoclinic groups was introduced by P. Hall in [5]. Two groups

G1 and G2 (not necessarily finite) are said to be isoclinic if there are isomorphisms

ϕ : G1/Z(G1) → G2/Z(G2) and φ : G′1 → G′2 such that if ϕ(a1Z(G1)) = a2Z(G2)

and φ(b1Z(G1)) = b2(G2), then φ([a1, b1]) = [a2, b2] for each a1, b1 ∈ G1 and

a2, b2 ∈ G2. It is easy to see that isoclinism is an equivalence relation.

As noted by P. Hall [5], every group G2 which is isoclinic with G1 also is isoclinic

with the product G1 × A, where A is an abelian group. Indeed, if G1 is isoclinic

with G2 and G3 is isoclinic with G4, then the direct product G1 × G3 is isoclinic

with G2 × G4. In particular if A is an abelian group, then A is isoclinic with the

trivial group, say 1, and therefore G is isoclinic with G×A, for all group G.

In [13] M. Zarrin establishes a relation between isoclinism and the number

centralizers of elements of G. He proves that if G1 and G2 are isoclinic, then

|Cent(G1)| = |Cent(G2)|. He also proves that if G is an arbitrary group with

|Cent(G)| = n, then there are only finitely many groups J , up to isoclinism, with

|Cent(J)| = n, moreover, there exists a finite group K that is isoclinic with G and

|Cent(G)| = |Cent(K)|. Theorem 3.5 of the same article is an extension of Theorem

1.1 for arbitrary groups. Note that Zarrin proves in [13] the case |Cent(G)| ≤ 8.

In this short paper we prove that if G is a finite n-centralizer group such that

n ≥ 4 and |G| < 30n
19 , then G is a non-nilpotent solvable group. This fact is a

correction of the proof of Theorem B (2) in [12]. Moreover, we extend the Theorem

3.5 in [8] in the primitive case.

Let I(G) be the set of all involutions of a group G, that is, I(G) = {a ∈ G| a =

a−1}. The problem with the proof of Theorem B (2) in [12] is that |I(G)| ≥ 4|G|
15

instead of |I(G)| > 4|G|
15 and we cannot apply Potter’s result, but this problem can

be refined if we change the condition in the statement Theorem B (2) to |G| <
30n/19.

2. Preliminaries

We shall need the following results in [9] and [12] for the correction of Theorem B

in [12]. For the convenience of the reader, we repeat the statements of the followings

results.
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Lemma 2.1. Let G be a finite Cn-group. Then

n ≤ |G|+ |I(G)|
2

.

Theorem 2.2 (Potter, 1988). Suppose G admits an automorphism which inverts

more than 4|G|
15 elements. Then G is solvable.

3. Correction

Now we are ready to prove the following theorem, which is similar to Theorem

B in [12], using the same proof outline.

Theorem 3.1. If G is a finite n-centralizer group with n ≥ 4, then the following

holds:

(1) |G| < 2n, then G is non-nilpotent.

(2) |G| < 30n
19 , then G is a non-nilpotent solvable group.

Proof. We will just prove part (2). From part (1), which is proved in Theorem B

(1) in [12], we have that G is non-nilpotent, since |G| < 30n
19 < 2n. Moreover, since

2n > 19|G|
15 , Lemma 2.1 implies that

|I(G)| ≥ 2n− |G| > 4|G|
15

.

Since I(G) is the set of all elements of G that is inverted by the identity automor-

phism, Theorem 2.2 completes the proof. �

The condition (2) above is better than the part (2) of Theorem B in [12]. However

using a GAP check [11] we don’t know an example of a group G such that |G| <
30n+15

19 and G is not a solvable group. It is immediate from Theorem 1.1 examples

of groups where both conditions of Theorem 3.1 holds exist, for instance G = S3

and n = 5.

4. A condition for isoclinism

We will need of a Lemma (see Lemma 3.3 in [8]).

Lemma 4.1. Let H a subgroup of an arbitrary group G such that |Cent(H)| =

|Cent(G)|. Then H ∩ Z(G) = Z(H) and H
Z(H)

∼= HZ(G)
Z(G) . In particular, H is

isoclinic with HZ(G).

Using similar arguments we extend Theorem 3.5 in [8] and for the case n = 11,

we add the hypothesis that H is a primitive 11-centralizer group.
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Theorem 4.2. Let G be a non-abelian arbitrary group. If H ≤ G, |Cent(G)| =

|Cent(H)| = n = 8, then H is isoclinic with G. This result still holds if n = 11, H

is primitive and G is a primitive 11-centralizer of odd order.

Proof. From Lemma 4.1, 1 6= H
Z(H)

∼= HZ(G)
Z(G) ≤

G
Z(G) . By Zarrin’s Theorem 3.3 (2)

[13] there is a finite group K which is isoclinic with G and |Cent(G)| = |Cent(K)|,
so G/Z(G) ∼= K/Z(K). Let |Cent(G)| = |Cent(K)| = n = 8. From Theorem 1.1

we have that K/Z(K) ∼= G/Z(G) ∼= C2 × C2 × C2, A4 or D12. If HZ(G)
Z(G) < G

Z(G) ,

we have that H
Z(H)

∼= C2, C2 × C2, C3, C6, or S3. If H
Z(H) is cyclic, then H

is abelian, which is a contradiction. If H
Z(H)

∼= S3 or C2 × C2, from Theorem

1.1, |Cent(H)| = 5 or 4, which is a contradiction. Therefore from Lemma 4.1

it follows that H/Z(H) ∼= HZ(G)
Z(G) = G

Z(G) . Let n = 11 and suppose that G is

a primitive 11-centralizer group of odd order. From Theorem 1.1 we have that

G/Z(G) ∼= (C9 × C3) o C3. If HZ(G)
Z(G) < G

Z(G) , we have that H
Z(H)

∼= C3, C3 × C3,

C9, C9 × C3, or (C3 × C3) o C3. Again, H
Z(H) can’t be cyclic. Using the GAP

(see [10]), and the fact that H is primitive, we can verify that if H
Z(H)

∼= C3 × C3,

C9×C3, or (C3×C3)oC3 then 11 = |Cent(H)| = |Cent( H
Z(H) )| = 1 or 5, which is a

contradiction. Therefore from Lemma 4.1 it follows that H/Z(H) ∼= HZ(G)
Z(G) = G

Z(G) .

In either case we obtain H
Z(H)

∼= HZ(G)
Z(G) = G

Z(G) , so HZ(G) = G. Again by Lemma

4.1, H is isoclinic with HZ(G) = G. �
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