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Abstract. In this paper, we present many new characterizations of strongly

EP elements in rings with involution. We especially investigate the strongly

EP elements by constructing certain equations and considering the solutions

of equations, revealing the existence of solutions of certain equations and the

general solutions of some binary equations that play a role in characterizing

strongly EP elements. Proofs of relevant conclusions are also given.
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1. Introduction

Throughout this paper, R is an associative ring with 1. Let a be an element that

belongs to R. Then a is said to be group invertible if there exists a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called the group inverse of a and it is uniquely determined by

these equations [1]. We use R# to denote the set of all group invertible elements

of R.

An involution ∗ : a 7−→ a∗ in a ring R is an anti-isomorphism of degree 2, that

is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for any a, b ∈ R.

An element a ∈ R satisfying aa∗ = a∗a is said to be normal.

We say the element b = a† is the Moore-Penrose inverse (or MP-inverse) of a, if

the following conditions hold (see [13]):

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.
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There is at most one element b(= a†) satisfying the above conditions (see [8]). The

set of all MP-invertible elements of R will be denoted by R†. We say a ∈ R is EP

if a belongs to R# ∩ R† and satisfies a# = a† [6]. The set of all EP elements of R

is denoted by REP .

An element a ∈ R satisfying a = aa∗a is called a partial isometry. If a ∈ REP

is partial isometry, then a is called a strongly EP element. We respectively denote

the sets of all partial isometry elements and strongly EP elements of R by RPI and

RSEP .

EP elements have been investigated by many authors. In [11], many new char-

acterizations of EP elements in rings with involution in purely algebraic terms are

presented. At the same time, D. Mosić and D. S. Djordjević gave some equivalent

conditions under which an element in R is an EP element in [12]. S. Z. Xu, J. L.

Chen and J. Beńitez in [14] showed that the EP elements in R can be characterized

by three equations, which are (xa)∗ = xa, xa2 = a and ax2 = x. In addition,

more interesting results on EP elements and partial isometries can also be found in

[2,3,7,10,9,14,18].

In [4], using the generalized inverse of elements, common solutions of linear equa-

tions in a ring are discussed. Interesting research in this direction can be found in

the literatures [5,16,17]. Recently, by means of the solution of constructed equa-

tions, a new kind of characterizations of generalized inverse elements are studied

such as [15]. Motivated by these results above, this paper mainly considers the

new characterizations of the strongly EP element, which is a special kind of EP

element. A number of equivalent conditions are given to characterize these gener-

alized inverses. Different from some existing research, we especially consider the

characterizations of partial isometries and strongly EP elements from the perspec-

tive of the solutions of equations, which is a new way to study generalized inverses.

This is an interesting and meaningful job.

2. Results

On the basis of the existing research results, we study the relationship between

the characterization of the EP element and the solutions of certain equations. By

observing the established equalities, we describe some equations, and constantly

deform and extend these equations. From the perspectives of the existence of the

solutions of certain equations and the expression of the general solutions of some

binary equations, a series of equivalent conditions for the elements in rings with

involution to become EP elements are given.
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To facilitate the proof of the theorems later, we first show a useful auxiliary

lemma.

Lemma 2.1. Let a ∈ R# ∩R†. Then a#a(a†)∗ = (a†)∗ = (a†)∗aa#.

Proof. Since (a†)∗ = aa†(a†)∗, we get

a#a(a†)∗ = a#a2a†(a†)∗ = aa†(a†)∗ = (a†)∗.

Similarly, we have (a†)∗aa# = (a†)∗. �

In the following research, we let a ∈ R#∩R† and χa = {a, a#, a†, a∗, (a#)∗, (a†)∗}.
Observing Lemma 2.1, we can construct the following equation.

a#ax = x. (1)

Theorem 2.2. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the equation (1)

has at least four solutions in χa.

Proof. By Lemma 2.1, we know that a, a# and (a†)∗ are always the solutions of

the equation (1).

(⇒) Assume that a ∈ REP , then a# = a†. This implies that x = a† is also a

solution.

(⇐) 1) If x = a† is a solution, then a† = a#aa†, this gives a ∈ REP by [11,

Theorem 2.1];

2) If x = a∗ is a solution, then a∗ = a#aa∗, this infers a ∈ REP by [11, Theorem

2.1];

3) If x = (a#)∗ is a solution, then (a#)∗ = a#a(a#)∗. Post-multiplying the

equality by (a∗)2, one has a∗ = a#aa∗. Hence a ∈ REP by [11, Theorem 2.1]. �

Remark 2.3. The general solution of the equation (1) is given by

x = a# + u− (1− a#a)u,

where u ∈ R is arbitrary.

Note that a ∈ REP if and only if a# = a†. Hence Theorem 2.2 implies a ∈ REP

if and only if the general solution of the equation (1) is given by

x = a† + u− (1− a#a)u,

where u ∈ R is arbitrary.

It is well known that a ∈ RPI if and only if a = (a†)∗. Thus Lemma 2.1 infers

the following corollary.
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Corollary 2.4. Let a ∈ R# ∩R†. Then the following conditions are equivalent:

(1) a ∈ RPI ;

(2) a#a(a†)∗ = a;

(3) (a†)∗aa# = a.

Inspired by Corollary 2.4, we can construct the following equation.

a#x(a†)∗ = x. (2)

Theorem 2.5. Let a ∈ R# ∩R†. Then a ∈ RPI if and only if the equation (2) has

at least one solution in χa.

Proof. (⇒) Assume that a ∈ RPI , then x = a is a solution of the equation (2).

(⇐) 1) If x = a is a solution, then a#a(a†)∗ = a. It follows from Lemma 2.1

that (a†)∗ = a. Hence a ∈ RPI ;

2) If x = a# is a solution, then a#a#(a†)∗ = a#. Pre-multiplying the equality

by a2, one has aa#(a†)∗ = a#a(a†)∗ = a, which gives a ∈ RPI by 1);

3) If x = a† is a solution, then a#a†(a†)∗ = a†. Pre-multiplying the equality

by a∗a2, one yields a†a = a∗a2a†. Post-multiplying the equality by aa#a†, we get

a† = a∗. Hence a ∈ RPI ;

4) If x = a∗ is a solution, then a#a∗(a†)∗ = a∗. That is a# = a∗. Therefore,

a ∈ RPI by [12, Theorem 2.2];

5) If x = (a#)∗ is a solution, then a#(a#)∗(a†)∗ = (a#)∗. Applying the involu-

tion to the equality, one yields a# = a†a#(a#)∗. Pre-multiplying the last equality

by (a†)∗a2 and using Lemma 2.1, we have (a†)∗a = (a†)∗(a#)∗. It follows from [12,

Theorem 2.3(x)] that a ∈ RPI ;

6) If x = (a†)∗ is a solution, then a#(a†)∗(a†)∗ = (a†)∗. Post-multiplying the

equality by a∗aa# and using Lemma 2.1, one gets a#(a†)∗ = aa#. Pre-multiplying

the equality by a and again using Lemma 2.1, one has (a†)∗ = a, which shows

a ∈ RPI . �

Remark 2.6. The equation (2) can be generalized as follows

a#x(a†)∗ − y = 0. (3)

The general solution of the equation (3) is given by

x = −aua∗ + v − aa#vaa†,

y = −a#aua†a,

where u, v ∈ R.
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Hence a ∈ RPI if and only if the general solution of the equation (3) is given by

x = −(a†)∗ua∗ + v − aa#vaa†,

y = −a#aua†a,

where u, v ∈ R.

According to [12, Theorem 2.2], we know a ∈ RSEP if and only if a# = a∗.

Hence Lemma 2.1 leads to the following corollary.

Corollary 2.7. Let a ∈ R# ∩R†. Then the following conditions are equivalent:

(1) a ∈ RSEP ;

(2) a∗a(a†)∗ = (a†)∗;

(3) (a†)∗aa∗ = (a†)∗.

We then can give the following equation by Corollary 2.7.

Example 2.8. Let R = Z3×3
2 . Then we define a∗ = aT for any a ∈ R.

Take a =
(

1 1 1
0 0 0
0 0 0

)
, then we have a# = a, a† = a∗ =

(
1 0 0
1 0 0
1 0 0

)
. Hence we get a ∈ RPI

while a /∈ RSEP .

Now, we change the equation (2) into equation (4) as follows:

axa = x. (4)

Obviously, we can prove that every element in χa is the solution of the equation

(4).

Remark 2.9. If a ∈ RPI , then the general solution of the equation (3) is given by

x = a† + u− (1− a†a)u,

where u ∈ R is arbitrary.

Observing Corollary 2.7, we can easily obtain the following lemma which gives

a characterization of normal elements.

Lemma 2.10. Let a ∈ R# ∩R†. Then a is normal if and only if a∗a(a†)∗ = a.

From Lemma 2.10, we can construct the following equation.

a∗x(a†)∗ = x. (5)

Clearly, the equation (5) is solvable in χa if and only if x = a†axa†a for each

solution x in χa. Hence we obtain the following lemma.
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Lemma 2.11. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the equation

x = a†axa†a has at least one solution in χa.

Evidently, if a ∈ REP , then x = a∗ is a solution of the equation (5). Therefore,

Lemma 2.11 leads to the following theorem.

Theorem 2.12. Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the equation (5)

has at least one solution in χa.

Remark 2.13. Let a ∈ REP . Then the general solution of the equation (5) is

given by

x = −(a†)∗ua∗ + v − aa†vaa†,

where u, v ∈ R are satisfying aa†uaa† = (a†)∗ua∗ − v + aa†vaa†.

By Lemma 2.1, we have a#a(a†)∗ = (a†)∗ = (a†)∗aa#. Applying the involution

to the equality, one has

a†a∗(a#)∗ = a† = (a#)∗a∗a†. (6)

Combining the equality (6) with the fact that a ∈ RSEP if and only if (a#)∗ = a,

we have the following lemma.

Lemma 2.14. Let a ∈ R# ∩R†. Then the following conditions are equivalent:

(1) a ∈ RSEP ;

(2) a†a∗a = a†;

(3) aa∗a† = a†.

Note that a†a∗a ∈ REP with (a†a∗a)† = a†(a#)∗a = (a†a∗a)#. Lemma 2.14

gives the following theorem.

Theorem 2.15. Let a ∈ R# ∩R†. Then the following conditions are equivalent:

(1) a ∈ RSEP ;

(2) a†(a#)∗a = a;

(3) a(a#)∗a† = a.

Post-multiplying the equality (2) of Theorem 2.15 by a† and pre-multiplying the

equality (3) of Theorem 2.15 by a†, we have the next corollary.

Corollary 2.16. Let a ∈ R# ∩R†. Then the following conditions are equivalent:

(1) a ∈ RSEP ;
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(2) a†(a#)∗ = aa†;

(3) (a#)∗a† = a†a;

(4) a#(a†)∗ = aa†;

(5) (a†)∗a# = a†a.

Post-multiplying the equality (2) of Corollary 2.16 by a∗ and pre-multiplying

the equality (3) of Corollary 2.16 by a∗, with the help of equality (6), we have the

following corollary which appears in [12, Theorem 2.3].

Corollary 2.17. Let a ∈ R# ∩R†. Then the following conditions are equivalent:

(1) a ∈ RSEP ;

(2) a† = aa†a∗;

(3) a† = a∗a†a.

Condition (2) of Corollary 2.17 gives the following equation.

x = axa∗. (7)

Then, the following theorem follows from [12, Theorem 2.3] and Corollary 2.17.

Theorem 2.18. Let a ∈ R# ∩R†. Then a ∈ RSEP if and only if the equation (7)

has at least one solution in χa.

Note that if a ∈ RSEP , then a = (a†)∗ and a∗ = a†. Therefore, we can obtain

the following equation from equation (7).

x = (a†)∗xa†. (8)

Theorem 2.19. Let a ∈ R# ∩R†. Then a ∈ RSEP if and only if the equation (8)

has at least one solution in χa.

If a ∈ RSEP , by Corollary 2.17, one has a†(a†)∗a∗ = (a†)∗a†a†. Then we can

construct the following equation.

x(a†)∗a∗ = (a†)∗xa†. (9)

Theorem 2.20. Let a ∈ R# ∩ R†. Then a ∈ RPI if and only if the equation (9)

has at least one solution in χa.

Proof. (⇒) Assume that a ∈ RPI , then a∗ = a†. This infers x = a is a solution.

(⇐) 1) If x = a is a solution, then a(a†)∗a∗ = (a†)∗aa†. It follows that a2a† =

(a†)∗aa†. Post-multiplying the equality by aa#, one obtains a = (a†)∗aa#. By

Lemma 2.1, we have a = (a†)∗. Hence a ∈ RPI ;
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2) If x = a# is a solution, then a#(a†)∗a∗ = (a†)∗a#a†. Post-multiplying the

equality by a2, one has a = (a†)∗a#a. Hence a ∈ RPI by Lemma 2.1;

3) If x = a† is a solution, then a†(a†)∗a∗ = (a†)∗a†a†, that is a† = (a†)∗a†a†.

Post-multiplying the equality by a and then applying the involution to the last

equation, we have a†a = a†a(a†)∗a†. Pre-multilying the last equality by a#a and

using Lemma 2.1, one obtains a#a = (a†)∗a†. Post-multiplying the equality a#a =

(a†)∗a† by a, we have a = (a†)∗. Hence a ∈ RPI ;

4) If x = a∗ is a solution, then a∗(a†)∗a∗ = (a†)∗a∗a†, that is a∗ = aa†a†.

Post-multiplying the equality by a and then applying the involution, one has a∗a =

a†a2a†. Again post-multiplying the last equality by a, we have a∗a2 = a†a2. Hence

a ∈ RPI by [12, Theorem 2.2];

5) If x = (a#)∗ is a solution, then (a#)∗(a†)∗a∗ = (a†)∗(a#)∗a†. Note that

aa†a# = a#. Then (a#)∗ = (a†)∗(a#)∗a†. Applying the involution to the last

equality, one yields that a# = (a†)∗a#a†. Post-multiplying the equality by a2, we

have a = (a†)∗aa#. Consequently, we deduce that a ∈ RPI by Lemma 2.1;

6) If x = (a†)∗ is a solution, then (a†)∗(a†)∗a∗ = (a†)∗(a†)∗a†. Applying the

involution to the equality, one has aa†a† = (a†)∗a†a†. Pre-multiplying the last

equality by a∗, one has a∗a† = a†a†. Hence a ∈ RPI . �

Example 2.21. Let R = Z3×3
2 . Then we define a∗ = aT for any a ∈ R.

Take a =
(

1 1 1
0 0 0
0 0 0

)
, then we have a# = a, a† = a∗ =

(
1 0 0
1 0 0
1 0 0

)
. Then the equation (9)

only has three solutions in χa, which are x = a, x = a#, a = (a†)∗.

Next, we change the equation (9) as follows.

xa∗(a†)∗ = (a†)∗xa†. (10)

Theorem 2.22. Let a ∈ R#∩R†. Then a ∈ RSEP if and only if the equation (10)

has at least one solution in χa.

Proof. (⇒) Assume that a ∈ RSEP , then a∗ = a† = a#, this infers x = a is a

solution.

(⇐) 1) If x = a is a solution, then aa∗(a†)∗ = (a†)∗aa†. It follows that a =

(a†)∗aa†. Hence a2a† = (a†)∗aa†. This gives a ∈ RPI by the proof of 1) in

Theorem 2.20. Now we have a = (a†)∗aa† = a2a∗ because a = (a†)∗ and a† = a∗.

By [12, Theorem 2.3(xx)], we have a ∈ RSEP ;

2) If x = a# is a solution, then a#a∗(a†)∗ = (a†)∗a#a†, that is a# = (a†)∗a#a†.

Post-multiplying the equality by a2 and using Lemma 2.1, one has a = (a†)∗. Hence
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a ∈ RPI . Now we have a# = (a†)∗a#a† = aa#a†. Multiplying the equality by a

on the left, we obtain aa# = aa†. Consequently, a ∈ REP and then a ∈ RSEP ;

3) If x = a† is a solution, then a†a∗(a†)∗ = (a†)∗a†a†, that is a†a†a = (a†)∗a†a†.

Post-multiplying the equality by a∗(a#)∗ and using the equality (6), one gets a† =

(a†)∗a†a†. Hence, by the proof of 3) of Theorem 2.20, we have a ∈ RPI . Note

that a† = a†a†a. Then a† = a∗a†a, it follows from [12, Theorem 2.3(xviii)] that

a ∈ RSEP ;

4) If x = a∗ is a solution, then a∗a∗(a†)∗ = (a†)∗a∗a†, that is a∗a†a = aa†a†.

Post-multiplying the equality by a∗(a#)∗ and then using equality (6), one has

a∗ = aa†a†. By the proof of 4) of Theorem 2.20, we get a ∈ RPI . Note that

a∗ = aa†a† = a∗a†a. Then a† = aa†a† = a∗a†a, this implies a ∈ RSEP ;

5) If x = (a#)∗ is a solution, then (a#)∗a∗(a†)∗ = (a†)∗(a#)∗a†. Post-multiplying

the equality by a∗(a#)∗ and using the equality (6), one has (a#)∗ = (a†)∗(a#)∗a†.

By the proof of 5) of Theorem 2.20, we get a ∈ RPI . Now we have (a#)∗ =

(a†)∗(a#)∗a† = (a#)∗a∗(a†)∗, and it follows that a# = a†aa#. Hence a ∈ REP .

Consequently, a ∈ RSEP ;

6) If x = (a†)∗ is a solution, then (a†)∗a∗(a†)∗ = (a†)∗(a†)∗a†. Applying the

involution to the equality, one gets a† = (a†)∗a†a†. Pre-multiplying the last equality

by a#a and using Lemma 2.1, one has a#aa† = a†, which gives a ∈ REP . This

leads to a#a = a†a = (a†)∗a†a†a = (a†)∗a†. By the proof of 3) of Theorem 2.20,

we know that a ∈ RPI . Thus a ∈ RSEP . �

We generalize the equation (8) as follows

x− (a†)∗ya† = 0. (11)

Proposition 2.23. The general solution of the equation (11) is given by{
x = −aa†paa†

y = −a∗pa+ z − a†aza†a
, where p, z ∈ R. (12)

Proof. First, the formula (12) is exactly the solution of the equation (11).

Next, assume that

{
x = x0

y = y0
is a solution of the equation (11). Thus we get

x0 = (a†)∗y0a
†.

Note that

−aa†((a†)∗y0a†)aa† = −(a†)∗y0a
† = −x0.

Hence we obtain

x0 = −aa†(−(a†)∗y0a
†)aa†.
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Moreover, we find that

−a∗(−x0)a+ y0 − a†ay0a†a = −a∗(−(a†)∗y0a
†)a+ y0 − a†ay0a†a

= a†ay0a
†a+ y0 − a†ay0a†a = y0.

Therefore, the formula (12) is the general solution of the equation (11). �

Corollary 2.24. (1) Let a ∈ R# ∩ R†. Then a ∈ REP if and only if the general

solution of the equation (11) is given by{
x = −aa†paa#

y = −a∗pa+ z − a†aza†a
, where p, z ∈ R. (13)

(2) Let a ∈ R# ∩ R†. Then a ∈ RPI if and only if the general solution of the

equation (11) is given by{
x = −aa†paa†

y = −a†pa+ z − a†aza†a
, where p, z ∈ R. (14)

(3) Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the general solution of the

equation (11) is given by{
x = −aa†paa#

y = −a†pa+ z − a†aza†a
, where p, z ∈ R. (15)

Corollary 2.25. Let a ∈ R# ∩ R†. Then a is normal if and only if the general

solution of the equation (11) is given by{
x = −aa†paa#

y = −a†a∗apa+ z − a†aza†a
, where p, z ∈ R. (16)

Proof. (⇒) Assume that a is normal. Then a ∈ REP and a∗ = a†a∗a. Hence the

formula (12) is the same as the formula (16), which is the solution of the equation

(11) by Proposition 2.23.

(⇐) If the general solution of the equation (11) is given by formula (16), then

−aa†paa# − (a†)∗(−a†a∗apa+ z − a†aza†a)a† = 0.

That is aa†paa# = (a†)∗a†a∗apaa† for any p ∈ R. Especially, choose p = 1, we have

aa# = (a†)∗a†a∗a2a†. Post-multiplying the equation by aa†, one yields aa# = aa†.

Hence a ∈ REP .

Now we obtain aa# = (a†)∗a†a∗a2a† = (a†)∗a†a∗a. Thus we deduce that

a∗ = a∗aa† = a∗aa# = a∗(a†)∗a†a∗a = a†a∗a,

aa∗ = aa†a∗a = a†aa∗a = a∗a,
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which implies a is normal. �

We still have two questions as follows:

Question 2.26. What is the expression of the general solution of the equation

xa∗(a†)∗ − (a†)∗ya† = 0?

Question 2.27. Let a ∈ R# ∩ R†. When can aa† − aa# accurately be a regular

element?
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